

Anchorage Port Modernization Project

Test Pile Program

Municipality of Anchorage

PORT of Anchorage

Contract No: C 20150888

FINAL REPORT

AUGUST 1, 2016

(UPDATED - SEPTEMBER 20, 2016)

TABLE OF CONTENTS

1.0	Introduction and Construction Summary	3
1.1	Scope of Work	3
1.2	Time Onsite	3
1.3	Marine Equipment and Hammer Details	3
1.4	Basics of Noise Abatement Systems	4
1.5	Deployment Mechanisms and Challenges	5
1.6	Port Communications and Challenges	5
1.7	Summary Reports	6
2.0	Dynamic Pile Measurements and Analyses	ATTACHMENT 1
3.0	Hydroacoustic Monitoring (HAM) Report	ATTACHMENT 2
4.0	Marine Mammal Observation (MMO) Report	ATTACHMENT 3

1.0 INTRODUCTION AND CONSTRUCTION SUMMARY

The primary purpose of the Anchorage Port Modernization Project (APMP) Test Pile Program was to evaluate the performance of the installation equipment and methods under conditions similar to what will be used for production pile installation. In doing so, the following information was collected and evaluated from the test program which will help to establish tentative pile installation criteria:

- Monitoring of hydro-acoustic noise made by vibratory and impact pile driving.
- Testing of alternative noise abatement systems through use of a confined bubble curtain and resonator system.
- Performance of the pile driving equipment with regard to hydro-acoustic noise, relative driving stresses and transferred energy.
- Pile drivability, the effectiveness of pile driving equipment, installation procedures, and developing data to help determine production pile toe elevations.
- Marine mammal behavior during project activities, specifically Beluga Whales.

1.1 SCOPE OF WORK

Kiewit Infrastructure West Co. (KIWC) installed ten (10) 48-inch diameter, 1-inch wall thickness steel piling to various toe depths around the Port of Anchorage at four (4) locations.

The ten (10) piling were installed utilizing a combination of different pile hammers, as well as testing the effectiveness of two (2) separate noise abatement systems with regard to hydroacoustic noise. Dynamic monitoring was performed with a Pile Driving Analyzer (PDA) on all ten (10) of the piles during the initial drive as well as during re-strikes of the piles to evaluate pile setup.

During the time pile driving activities were being performed, KIWC utilized three (3) specialty subcontractors to monitor and collect data:

- Robert Miner Dynamic Testing of Alaska, Inc. Dynamic Pile Measurement and Analyses
- JASCO Applied Services Hydro Acoustic Monitoring
- AECOM Marine Mammal Observation

1.2 TIME ON SITE

KIWC began mobilizing its marine equipment down in the Seattle area in late March of 2016 and towed its equipment up to Anchorage arriving to the Port in late April. Pile driving activities began at the Port the first week of May with activities continuing through June. Activities included: initial driving of the piles to the required toe elevations, pile re-strikes after a two-week wait period and cutting off the piles at mudline. KIWC finished its field activities at the Port and demobilized its equipment by the end of June 2016.

1.3 MARINE EQUIPMENT and HAMMER DETAILS

KIWC mobilized and utilized the following major pieces of equipment and pile driving hammers to execute the Test Pile Program (TPP):

- Derrick Barge (DB) General
 - o 300' x 100' x 18' Barge
 - o 700T Lifting Capacity Crane
- Kiewit 204 Barge
 - o 200' x 54' x 12' Barge
- APE 400 Vibratory Hammer
 - o Eccentric Moment: 13,000 (in-lbs)
- APE D180 Diesel Impact Hammer
 - o Rated Energy: 446.4 (k-ft)
- APE 15-4 Hydraulic Impact Hammer
 - o Rated Energy: 120 (k-ft)

1.4 BASICS OF NOISE ABATEMENT SYSTEMS

1.4.1 Confined Bubble Curtain:

The Confined Bubble Curtain was designed and constructed to work in varying depths of water. The system allowed for the pile driving operation to be completely enclosed by bubbles for the full depth of the water column. Aeration pipe layers were installed within to provide a minimum bubble flux of 2.0 cubic meters per minute per lineal meter of pipe in each aeration layer, while maintaining contact with the mudline.

The air delivery system consisted of one (1) 1600 CFM compressor linked directly to a manifold with pressure gauges and air flow monitors. The structural element was comprised of a telescoping steel pipe system made up of a 5-foot inner pipe and a 6-foot diameter outer pipe. The inner pipe housed four (4) pipe aeration layers at 9-foot spacing. Two winches were mounted at the top of the outer pipe to raise and lower the inner pipe to accommodate the varying water depths due to the extreme tidal fluctuations.

1.4.2 Resonator System:

The Resonator system as specified in the contract specifications was designed by AdBm Technologies. The resonator is an underwater noise attenuation system that uses resonant attenuation for mitigating underwater noise. The system uses thousands of Helmholtz resonators to accomplish this. Resonators are molded from HDPE (High-Density Polyethylene) into blocks containing multiple resonators. The resonators are placed in a framework that completely surrounds the noise source from the sea floor to near the surface of the water. The framework for this project consisted of four sides, each side resembling a venetian blind acting in an accordion like fashion, extending down to the mudline using four (4) winches mounted to

a steel support frame. The bottom structure of the resonator is called the ballast assembly which acts as an anchor for the resonator slats that provide the framework for the resonant attenuation. The ballast assembly helped to stabilize the system in the strong currents of the Cook Inlet. Each slat layer was suspended from the layer above using alloy chains. As the system is retracted up, the slat layers stacked on top of each other.

1.5 DEPLOYMENT MECHANISMS AND CHALLENGES

KIWC utilized a steel fabricated frame attached to the end and cantilevered off the barge as its main support system. Hydraulic winches were mounted to the frame and used to deploy and retrieve each of the noise abatement systems. Four (4) were used for the resonator system and two (2) were used for the confined bubble curtain system. The winches were powered by a single hydraulic power unit staged on the barge. Each system had a set of lifting lugs attached to its main components that allowed the winch cables to be secured, allowing each of the systems to be either lowered or raised by the winch controls.

Overall, the deployment mechanism for each of the systems worked well. The extreme tidal fluctuations required full time attention to the winch controls to ensure the system was following the varying water depths throughout each of the pile driving activities. Continuous monitoring and communication of the currents also played a vital role in the successful execution of deployment or retrieval of each system.

1.6 PORT COMMUNICATIONS AND CHALLENGES

KIWC understood from the start of the project the importance of communication with both the Port operations team as well as the other stakeholders and tenants. KIWC performed a lot of upfront coordination with other contractors at the Port as well as re-communicating its plan of activities as the work progressed. KIWC sent out a communication email to all tenants and users of the Port anytime it would move its marine equipment and/or change its mooring configuration. This allowed a timely response to mitigate any berthing or coordination conflicts. KIWC recognized the challenges with performing work within an active Port facility and was able to accommodate the changes of the differing berthing schedules. Upfront planning and communication was the key.

For future projects that require a lot of coordination between the marine contractor, its equipment with the Port operations team, and its tenants, KIWC recommends ensuring communication meetings are conducted and the contractor's work plan is disseminated to key points of contact of the Port's tenants and other contractors working within the Port limits as early as possible.

1.7 SUMMARY REPORTS

Throughout the course of the APMP Test Pile Program, KIWC's specialty subcontractors monitored and collected various sources of data. This data was analyzed and summarized into three (3) major reports:

- Dynamic Pile Measurements and Analyses
- Hydroacoustic Monitoring (HAM) Report
- Marine Mammal Observation (MMO) Report

1.7.1 Dynamic Pile Measurements and Analyses:

This report provides results obtained from dynamic pile measurements and analyses completed for installation and restrike of ten (10) Indicator Piles. The measurements and analyses were completed by Robert Miner Dynamic Testing of Alaska, Inc. (RMDT). See **Attachment 1** for complete report.

1.7.2 Hydroacoustic Monitoring (HAM):

This report provides results obtained from hydroacoustic monitoring to analyze underwater sound pressure levels throughout the installation of ten (10) Indicator Piles, during both vibratory and impact hammer pile driving. Autonomous sound recorders were deployed at nominal distances of 10 m and 1 km from each pile and a mobile hyrdrophone system drifted during measurements to target data collection at ranges corresponding to marine mammal disturbance thresholds. Measurements and analyses were completed by JASCO Applied Sciences. See **Attachment 2** for complete report.

1.7.3 Marine Mammal Observation (MMO):

This report presents the information for monitoring and data collection of beluga whale and other marine mammal observations during the pile driving activities. The monitoring and data collection was completed by AECOM. See **Attachment 3** for complete report.

ATTACHMENT 1 **Dynamic Pile Measurements and Analyses**

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

July 26, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

PP48"x1.0", May 3- June 21, 2016

APE D180-42 Diesel Hammer & APE 15-4 Hydraulic Hammer Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for installation and restrike of the ten Indicator Piles referenced above. The measurements and analyses presented herein were completed by Robert Miner Dynamic Testing of Alaska, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Piles:

The Anchorage Municipality Port Modernization Project Test Pile Program included installation and restrike of ten Indicator Piles, numbered IP 1-10, installed in four different zones (Locations 1, 4, 5 & 6) within the port waterfront. All Indicator Piles are vertical, 48" O.D. steel pipe piles with a wall thickness of 1.00". Indicator Pile 6 has a bearing plate (internal diaphragm) located approximately 82 ft above the pile tip; the other nine Indicator Piles were installed open-end. We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations. At the time of driving the pile lengths ranged from 192 to 205 ft. For further information regarding the piles please refer to project documents prepared by KIWC.

Measurement and Analysis Method:

We collected dynamic measurements using strain sensors and accelerometers attached to the piles. Four strain sensors and 4 accelerometers were attached to all piles for all drive and restrike tests except the initial drive of IP 8. At the start of monitoring on each pile, and for all restrikes the sensors were located 15 to 18 ft from the pile top. For some piles this sensor configuration was altered near the end of installation driving if the sensor location was approaching or entering the water or entering the confined bubble curtain. Changes to the sensor configuration included moving the sensor location higher on the pile, or replacing the eight sensors with two or four water resistant strain sensors and two water resistant accelerometers. The installation of IP 8 was monitored using the industry standard configuration of two strain sensors and two accelerometers. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc.

Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. The <u>CA</u>se <u>Pile Wave Analysis Program</u> (CAPWAP) computes soil resistance forces

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

and their approximate distribution using the force and velocity data recorded in the field during dynamic monitoring. Final CAPWAP results include an evaluation of the soil resistance distribution, pile axial stress as a function of distance below the sensors, soil quake and damping factors, and a simulated static load-set graph. The static load-set graph is based on the CAPWAP calculated static resistance parameters and the elastic compression characteristics of the pile. Appendix A is a description of the PDA and CAPWAP methods.

Hammers:

Installation of each pile started with the APE 400 vibratory having quad-clamps. In most cases the pile tip was driven approximately 50 ft below the mud-line using the vibratory hammer, after which depth impact driving started. Two different impact hammers drove the piles. The APE D180-42 open end diesel impact hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively. The APE 15-4 impact hammer is reported to have a 30 kip ram and a maximum stroke of 4.0 ft, yielding a 120 kip-ft rated energy. Both hammers operated in "off-shore" type swinging leads. The hammer used for impact installation of each pile is listed in Table 1. The Delmag D180-42 was used for all restrikes.

Test Sequence:

Appendix E contains a project site map with overlays depicting the approximate location of each pile. Pile Driving Records are also presented in Appendix E. The site map and the Pile Driving Records in Appendix E were provided by KIWC.

Beginning May 3 and ending June 7 the ten Indicator Piles were installed in four different zones identified as Locations 1, 4, 5 & 6. Table 1a is a summary of selected pile details ordered by the Indicator Pile No. Table 1b contains the same information reordered to group piles by Location. Pile installation involved various combinations of hammers, target tip elevations, and sound attenuation methods. In this report the tip elevations, mudline elevations and penetration resistance data (blows/ft) are based on driving logs provided by KIWC. Field reports prepared by RMDT presented the PDA field results and CAPWAP analysis results as the Port's Test Pile Program progressed. Appendix D contains the various field reports which RMDT issued for the installation of the ten piles. However, the Case Method and CAPWAP results originally included with the field reports were removed from Appendix D; those results are now assembled in Appendices B and C.

The restrike tests began on June 8 and ended on June 21, 2016. The waiting times between driving and restrike ranged from 13 to 38 days and are given with the restrike CAPWAP results in Tables 3a-d. Field reports were issued for the restrikes as the data collection progressed. We used the KIWC Pile Driving Records to correlate the sequence of measured hammer blows to depth below mudline. The KIWC Pile Driving Records for pile installation are based on observation of the pile relative to the template structure attached to the floating pile barge. Because changes in the tide level effected the position of the template, penetration resistance values recorded for each ft on the Pile Driving Record corresponded to a distance that may have been slightly greater than 1 ft if the tide level was falling during driving. To account for this circumstance the Pile Driving Records indicate "No Count" for some depth intervals; this recording method provides suitable piecewise correction to the effect which a gradually lowered template reference would otherwise have on the depths listed in the Pile Driving Record.

We used the KIWC records as if the "No Count" entries were not present because use of those entries would put discontinuities in the plots of results versus depth and thus distract the reader

from the trends and more important aspects of the data. The plotted and tabulated depths given in Appendix B are thus correct *for the end of driving*, but diverge in one ft intervals each time a "No Count" entry is present in the logs as one moves *upward* in the logs. The net effect, with respect to depth information in Appendix B, is that the depths at the end of driving are correct and the depths for the start of monitoring are shown deeper than was actually the case. Such downward shift for the shallowest depths is approximately equal to the number of "No Count" entries in the logs prepared by KIWC. During restrike tests KIWC observed the axial advance of each pile using a survey instrument located on either land or a stable pier structure and thus obtained penetration resistance observations that were not biased by water level changes.

PRESENTATION OF RESULTS

Case Method Results:

In the field, the PDA processed dynamic measurements and computed a variety of results, some of which are summarized in Table 2 for the end of initial driving. The data in Table 2 include the approximate pile penetration, penetration resistance, energy transferred to the sensor location on the pile, EMX, and the calculated maximum axial compressive stress, CSX. For the D180-42 open-end diesel hammer the computed ram stroke height, STK, is included in the Case Method results. Penetration and penetration resistance data (blows per ft, or blows per inch) used and presented herein is based on the KIWC Pile Driving Records.

Figures and numerical summaries in Appendix B provide Case Method results for the sequence of installation driving and for the sequence of all restrikes. These plot and figures include results for driving stress, transfer energy and other quantities as a function of approximate depth for driving and as a function of blow number for restrikes.

All Case Method and CAPWAP results were computed using values for the overall wave speed and pile steel Young's Modulus which were consistent with measurements collected during driving. Based on the measured reflections times and the known pile lengths we computed a compressional wave speed of approximately 17,100 ft per second; a value of approximately 31,000 ksi for Young's modulus corresponded to this relatively high wave speed and we applied that modulus value to compute force from measured strain. This back-calculated modulus was approximately 1.03 times the normally assumed value, and it thus increased by approximately 2 to 3 percent all results which included force units, such as soil resistance and transfer energy (kip-ft). Results given in this report incorporate use of this stiffer modulus and thus yield increased force magnitude relative to the commonly applied 30,000 ksi modulus.

In routine testing, the PDA uses the average of the signals from the strain transducers to compute the average maximum axial compression stress at the sensor location, CSX. The PDA also calculates the maximum compressive stress at the sensor location using the largest strain from a single strain transducer, CSI. Table 2 lists CSX values that are characteristic of the end of driving and Appendix B presents additional CSX and CSI data. The PDA computed CSX and CSI values apply to the sensor location near the pile top. In Appendix C the "Extrema Table" for each CAPWAP analysis gives axial compressive stress values computed for locations other than the sensor location. Excluding IP 6 the Extrema Table results indicate that CSX values were within 1.0 ksi of the corresponding peak axial stress lower in the pile. Neither the Case Method CSX values or the CAPWAP computed axial stress values include stresses associated with bending or uneven loading across the pile cross-section.

During data acquisition, force and velocity records were evaluated for indications of pile

damage below the sensor location. If present during testing, damage that yields a significant reduction of axial compressive stiffness would normally be detected provided that it is not too close to the pile toe. During field testing and data review we did not observe in the PDA results indications of pile damage below the sensors; it is our opinion that the piles were installed without deformation or damage which would effect soil-pile interactions, driveability or pile performance.

The Case Method transfer energy values, EMX, varied significantly during the course of driving on each pile and also between piles. The EMX values are thus helpful when considering the differences in penetration resistance (blows per ft) during driving. For example at Location 1 driving on IP 3 and IP 4 ended with the same penetration (149 ft) but the penetration resistance was 72 blows per ft (BPF) for IP 3 and 30 BPF for IP 4, thus differing by a factor of 2.4. The transfer energy values shown for final driving in Table 2 for IP 3 and IP 4 differ by a factor of approximately 0.4, so that the difference in penetration resistance is matched by a commensurate and reciprocal difference in transfer energy. Although these two piles were driven with different hammers the EMX values allow rational comparisons of the penetration resistances. The results in Appendix B include transfer energy values throughout impact driving for all piles and thus support rational comparisons of driving resistances for other piles and depths.

Soil Resistance:

CAPWAP analyses were completed for a variety of test conditions. For all piles CAPWAP® analyses were completed for the end of driving and for early restrike blows. Also, depending upon the conditions and based on discussion with the project team, CAPWAP analyses were completed for intermediate installation depths and later restrike blows. Tables 3a-d summarize the CAPWAP results and detailed program output is in Appendix C. Our opinions and comments on the CAPWAP results for each pile follow grouped by Location Number.

Location 1, Indicator Pile 3: The CAPWAP analyses are for driving data at soil penetration depths of 116 and 149 ft, and for restrike at 149 ft depth (Tip Elevation -184) after a 13 day waiting period. For the end of driving at 149 ft depth the CAPWAP computed ultimate resistance was 1240 kips derived from 840 kips of shaft friction and 400 kips of end bearing. When compared with the end of driving, the CAPWAP for restrike at 149 ft depth yielded a large increase of shaft friction and 2900 kips of total resistance. Due to the high penetration resistance upon restrike, and corresponding small net pile movement it is our opinion that the 2900 kip ultimate resistance computed for restrike is a lower bound value for resistance the would be mobilized given larger transfer energy and larger impact forces during restrike.

The intermediate depth of 116 ft was selected for supplemental CAPWAP analysis of installation data because the restrike analysis yielded friction values of approximately 1200 kips in the upper 116 ft of soil. Based on synthesis of the 160 kip CAPWAP computed end bearing for 116 ft, and the restrike CAPWAP computed 1200 kip shaft friction for soil between the mudline and 116 ft, the restrike ultimate resistance for a pile embedded 116 ft might be computed as 1360 kips. However, the approach used for summing restrike friction over specific depth range with end bearing from a driving at a different depth entails uncertainty and it is our opinion the likely range for restrike at 116 ft would 1250 to 1400 kips. Our estimated range considers uncertainty in the CAPWAP computed shaft friction distribution and the effect of such uncertainty upon our synthesis of shaft friction and end bearing from two different CAPWAP analyses to estimate restrike results for a depth where restrike did not occur. Similar considerations apply to our estimates given below for restrike total resistance for any depth at which a restrike did not occur.

<u>Location 1, Indicator Pile 4:</u> IP 4 was driven to a Tip Elevation of approximately -175 ft where the soil penetration was 149 ft. CAPWAP analyses were completed using data for soil penetration depths of 103 and 149 ft during installation, and for the 149 ft depth after a 33 day restrike waiting period. The CAPWAP computed ultimate resistance for drive and restrike at 149 ft was 1070 and 2550 kips, respectively, with approximately 90 percent of the restrike resistance from friction.

The intermediate depth of 103 ft was selected for supplemental CAPWAP analysis of installation data because the 33 day restrike yielded friction values of approximately 1260 kips in the upper 103 ft of soil . Based on synthesis of the end bearing for 103 ft, and the restrike shaft friction we estimate that the restrike ultimate resistance for a pile embedded 103 ft would likely range from 1250 to 1400 kips.

The APE 15-4 hammer drove IP 4 to approximately 113 ft below mudline on May 12. Approximately 15 hour later, on May 13, driving resumed with the D180-42 hammer. The detailed Case Method results shown in Appendix B provide further measured results associated with this hammer change and pause in driving.

Location 4, Indicator Pile 2: IP 2 was driven to a Tip Elevation and soil depth of -170 ft and 141 ft, respectively. Using dynamic measurements from installation driving we completed CAPWAP analysis for hammer blows when the depth in soil was 115 and 141 ft. For the 115 ft depth the CAPWAP resistance was modest, totaling 630 kips derived from 520 kips of friction and 110 kips of end bearing. The intermediate depth of 115 ft was chosen for CAPWAP because the restrike results suggest that restrike shaft friction from the mudline to 115 ft was approximately 1100 to 1200 kips.

For the end of driving at 141 ft depth the CAPWAP resistance was 1210 kips composed of 780 kips of friction and 430 kips of end bearing. IP 2 was tested during restrike on June 9 and June 21. CAPWAP analysis for the first restrike yielded 2760 kips, of which 1940 kips was from friction. However, the penetration resistance was quite high during this first restrike and the full ultimate resistance may not have been mobilized. The second restrike occurred with larger ram stroke heights and transfer energy values that were typically 3 times larger than the first restrike. The CAPWAP computed resistance for the second restrike was 3420 kips, with increases in both friction and end bearing relative to the first restrike. It is not clear to what extent the larger soil resistance for the second restrike was due to the effects of better mobilization of resistance given the greater transfer energy, or to the effects of the 12 additional days of soil setup time. However, the lower penetration resistance (blows per inch) observed for the second restrike is very likely caused by the fact that transfer energy was significantly greater during the second restrike.

Location 4, Indicator Pile 5: IP 5 was driven to a Tip Elevation and soil depth of -173 ft and 144 ft, respectively. Using dynamic measurements from installation driving we completed CAPWAP analysis for hammer blows when the depth in soil was 111 and 144 ft. The restrike on IP 5 at a depth of 144 ft yielded an ultimate resistance of 3560 kips, composed of 2360 kips of friction and 1200 kips of end bearing. We consider it likely that the 1200 kip end bearing reflects partial plugging upon restrike. Also, we consider it likely that the 3560 kip CAPWAP restrike resistance is a lower bound value and that a larger resistance would have been activated given a stronger hammer blow.

For the 111 ft depth the CAPWAP resistance was modest, totaling 500 kips derived from 470 kips of friction and 30 kips of end bearing. The intermediate depth of 111 ft was chosen for

CAPWAP because the restrike results suggest that restrike shaft friction from the mudline to 111 ft was approximately 1170 kips. Based on the available data we estimate that a suitable restrike at 111 ft would an ultimate resistance of approximately 1100 to 1250 kips.

Location 4, Indicator Pile 6: IP 6 was driven with an internal bearing plate located approximately 82 ft above the pile tip. This bearing plate is reported to have a 3" diameter hole to allow the upward movement of fluid and soil during driving. Although all three piles at Location 4 were driven with the APE D180-42 hammer the penetration resistance for IP 6 were significantly higher than for IP 2 and IP 5. It is our opinion that this harder driving resulted from resistance on, or associated with, the plate. Driving on IP 6 ended with Tip Elevation -156 and a soil penetration of 129 ft. Although the penetration resistance was substantially larger for IP 6 that is was for IP 2 and IP 5 the CAPWAP computed resistance was values for IP 6 were lower at the end of driving; shaft friction was computed as 580 kips, "end bearing" on the internal plate was computed as 220 kips, and end bearing at the pile tip was computed as 100 kips.

CAPWAP analysis for restrike Blow 3 on IP 6 at 129 ft depth yielded 2060 kips ultimate resistance, composed of 1580 kip of shaft friction, 180 kips on the internal plate and 290 kips of tip resistance. For IP 6 we also completed CAPWAP analysis for restrike Blows 10 and 31. Comparison of the results for restrike Blows 3, 10 and 31 suggest that as the restrike progressed the shaft friction and tip resistance decreased and the resistance on the internal plate increased. Due to the complexities and uncertainties of resistance on the internal plate, and models of such resistance, the CAPWAP results for IP 6 contain somewhat more uncertainty than is normally expected for CAPWAP of uniform piles. Notwithstanding this uncertainty, it is our opinion that the available CAPWAP results suggest that soil resistance on the internal plate decreased following initial driving, was low at the start of restrike and then increased as the restrike progressed. Shaft friction and tip resistance, however, followed a common pattern wherein friction increased during the time between drive and restrike then decreased as the restrike progressed, and end bearing on restrike showed a modest initial increase attributable to internal friction and partial plugging which decreased as the restrike progressed.

Comparison of the CAPWAP computed Smith damping values for the resistance on the plate indicates that unusually large damping resistances are present below the plate, with the highest damping for the end of driving and end of restrike, and lower damping for the start of restrike. This pattern together with the patten of computed resistance on the plate suggest that resistance of the plate during driving may be greater than the long term resistance, with resistance relaxing somewhat following driving. This is consistent with the decrease in penetration resistance noted for the restrike relative to the end of driving; the end of driving resistance was 84 blows per ft, the start of restrike was 4 blows per inch, and the end of restrike was 6 blows per inch.

In addition to the aspects of resistance discussed above, we note that driveability of IP 6 was apparently also altered by the effect of the plate on transfer energy. This is discussed in our field report for IP 6 as reproduced in Appendix D. The ram stroke heights observed for IP 6 were somewhat lower than those recorded for other piles driven with the D180-42 for this project. We noted, qualitatively, that pile 'elastic' displacement and rebound was markedly higher for this pile at all depths, and especially at intermediate depths. Such elastic rebound is sometimes referred to as "bouncy" driving or a "large quake" condition and is often associated with a reduction in ram stroke height relative to the stroke expected for a diesel hammer operating under otherwise comparable conditions.

The transfer energy values for IP 6 are significantly lower than those for other Indicator Piles driven with the D180-42, and the modestly lower ram stroke heights do not fully account for this lower energy. CAPWAP analyses completed for a hammer blow near 129 ft depth indicate that approximately 100 ft below the PDA sensors a very large and abrupt reduction in energy transfer occurred; about one-half of the energy arriving at that zone passed into the pile below that zone. Our sensors were mounted 15 ft from the pile and thus 103 ft from the internal bearing plate. It is our opinion that the interaction between the internal water or soil and the bearing plate markedly reduced energy transfer to the lower portion of the pile. We consider it likely that the energy was mostly reflected upward from the plate and associated internal soil resistance and this reflection of energy reduced the maximum energy transfer, EMX, at our sensor location. However, we presently do not have a clear understanding of the wave mechanics associated with this apparent cause for the lower EMX values measured during driving on IP 6.

The Case Method RX7 soil resistance calculations for IP 6 were relatively similar for the last 30 ft of driving and were close to 600 kips . However, it is our opinion that the Case Method results are dominated by the behavior of the soil beneath the bearing plate and thus do not reveal driveability changes normally associated with soil resistance changes much lower on the pile. Moreover, a primary use of Case Method resistance results involves assumed correlation with other methods and comparison of results for different piles and depths. Due to the presence of the bearing plate in IP 6, such relative comparisons for driveability and resistance are likely to require more data than is presently available.

Based, in part, on the apparent high damping values for soil below the bearing plate it is our opinion that there is significant uncertainty regarding the nature of the driving resistance on the bearing plate. Also, the large displacements and rebound observed during driving on IP 6 may cause greater disturbance at the soil pile interface and (temporarily) reduce the shaft friction relative to end-of-drive friction for an open-end pile which is driven without the larger number of high rebound hammer blows that occurred with IP6. Comparison of end-of-drive friction values for IP 6 and other piles may require extra consideration of such driving disturbance.

The CAPWAP computed 900 kip ultimate resistance for the end of driving on IP 6 is low relative to the penetration resistance when compared with the other Indicator Piles. We attribute part of the increased penetration resistance (blows per ft) with IP 6 to the lower transfer energy values computed for the sensor location near the top of IP 6. The average final transfer energy, EMX, was 132 kip-ft, and thus approximately 0.6 times the 227 kip-ft average for final driving on other piles with the D180-42. Moreover, energy transfer computed in CAPWAP analyses for a location approximately 20 ft from the pile toe was far less for IP 6 than for all other piles, including those driven with the APE 15-4 hammer. Reduced energy transfer past the bearing plate and into the bottom portion of the pile would cause a significant reduction in driveability, as would the large elastic rebound noted above. If production piles have a bearing plate then these aspects of driveability should be carefully considered when interpreting any pile driving observations.

Location 5, Indicator Pile 1: IP 1 was driven with the APE 15-4 hammer to a Tip Elevation of -150 ft where the soil penetration was 128 ft. CAPWAP analyses for restrike indicate yield a significant increase in shaft friction during the 14 day period between drive and restrike. Also, it is our opinion that the increase in CAPWAP computed end bearing upon restrike likely results from partial plugging inside the lower part of the pile with the resulting resistance expressing as apparent end bearing. The CAPWAP computed ultimate resistance upon restrike was 2450 kips, composed from 1900 kips of friction and 550 kips of end bearing.

Location 5, Indicator Pile 7: IP 7 was driven approximately 11 ft deeper than nearby IP 1 and yielded significantly higher resistance at the end of driving, with approximately one-half of the friction resistance coming from the lower 40 ft of the pile, and significantly more end bearing than IP 1. The restrike on IP 7 yielded an ultimate resistance of 3900 kips of which 2960 kips was shaft friction. Using the restrike friction results we estimate that the restrike friction resistance acting within the upper 99 ft was approximately 1280 kips. A supplemental CAPWAP analysis for driving at 99 ft yielded an end bearing resistance of approximately 30 kips at that depth. Based on the available CAPWAP results we estimate that the for a depth of 99 ft the restrike resistance would have been approximately 1200 to 1300 kips.

<u>Location 6, Indicator Pile 8:</u> IP 8 was driven to Tip Elevation -133 ft and soil penetration 105 ft. The CAPWAP computed ultimate resistance for the end of driving and the start of restrike was 1160, and 2780 kips, respectively. Approximately 88 percent of the restrike resistance was computed as shaft friction; end bearing for the end of driving and restrike was similar in magnitude.

<u>Location 6, Indicator Pile 9:</u> IP 9 was driven to Tip Elevation -140 ft and soil penetration 115 ft. The CAPWAP computed ultimate resistance for the end of driving and the start of restrike was 1310, and 4030 kips, respectively. Approximately 82 percent of the restrike resistance was computed as shaft friction.

Location 6, Indicator Pile 10: IP 10 was driven to Tip Elevation -137 ft and soil penetration 113 ft and was in these regards similar to IP 9. The CAPWAP computed ultimate resistance for the end of driving and the start of restrike was 1190, and 2220 kips, respectively. Approximately 72 percent of the restrike resistance was computed as shaft friction. Comparison of the shaft friction results for IP 10, 9 and 8 suggest that the longer waiting time for IP 8 and 9 yielded substantial additional time-dependent strength increases. The restrike waiting times of IP 8, 9 and 10 were 38, 34 and 15 days, respectively.

Additional Considerations

The static soil resistance values computed with the Case Method are estimates of the mobilized, axial compressive soil resistance at the time of testing. These soil resistance results are ultimate resistance values and they must be reduced by an appropriate factor of safety or resistance factor to obtain working loads or factored resistances.

During pile driving, excess positive pore pressures are often generated. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and the pile capacity at the time of driving. As these pore pressures dissipate, the soil strength may increase and the soil resistance may increase. This phenomena is called soil setup or soil freeze. Alternately, relaxation of end bearing may occur for piles driven into dense granular soils. Dynamic testing during <u>restrike</u> with adequate set per blow usually yields a better indication of long term soil resistance than a test at the end of pile driving.

Numerous factors are usually considered in pile foundation design. Some of these considerations include cyclic loading performance, lateral and uplift loading requirements, effective stress changes (due to changes in water table, excavations, fills or other changes in overburden pressure), settlement from underlying weaker layers, the effects of scour or liquefaction on pile capacity, as well as pile group effects, strong ground motion, and time dependant changes in pile structural strength or corrosion. These factors have not been evaluated by RMDT in the interpretation of the dynamic testing results. The foundation

designer should determine if these considerations are applicable to this project and, if so, their impact on the foundation design.

We enjoyed performing these analyses for you. If you or your client have any questions or if we can provide further assistance, please contact us.

Sincerely,

Robert F. Miner, P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

July 26, 2016

Table 1a.	Summary of	Pile and Test Details				
Indicator Pile No.	Location No.	Installation Impact Hammer	Date Installed	Tip Elevation as Installed, ft	Soil Penetration, as Installed, ft	Date of Restrike
IP 1	5	APE 15-4	07June2016	-150	128	21June2016
IP 2	4	APE D180-42	19May2016	-170	141	09 & 21June
IP 3	1	APE 15-4	03June2016	-184	149	16June2016
IP 4	1	APE 15-4 & D180-42	12&13May2016	-175	149	15June2016
IP 5	4	APE D180-42	18May2016	-173	144	09June2016
IP 6	4	APE D180-42	01June2106	-156	129	21June2016
IP 7	5	APE D180-42	25May2016	-165	139	08June2016
IP 8	6	APE 15-4	03May2016	-133	~105	10June2016
IP 9	6	APE D180-42	06&07May2016	-140	~115	10June2016
IP 10	6	APE 15-4	26May2016	-137	113	10June2016

Table 1b. Summary of Pile and Test Details sorted by Location													
Indicator Pile No.	Location No.	Installation Impact Hammer	Date Installed	Tip Elevation as Installed, ft	Soil Penetration, as Installed, ft	Date of Restrike							
IP 3	1	APE 15-4	03June2016	-184	149	16June2016							
IP 4	1	APE 15-4 & D180-42	12&13May2016	-175	149	15June2016							
IP 2	4	APE D180-42	19May2016	-170	141	09 & 21June							
IP 5	4	APE D180-42	18May2016	-173	144	09June2016							
IP 6	4	APE D180-42	01June2106	-156	129	21June2016							
IP 1	5	APE 15-4	07June2016	-150	128	21June2016							
IP 7	5	APE D180-42	25May2016	-165	139	08June2016							
IP 8	6	APE 15-4	03May2016	-133	~105	10June2016							
IP 9	6	APE D180-42	06&07May2016	-140	~115	10June2016							
IP 10	6	APE 15-4	26May2016	-137	113	10June2016							

Table 2. Summary of Case Method Results												
Pile	Test	Approx. Depth Below Mud-Line (ft)	Approximate Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Compressive Stress (CSX) ksi						
IP 3, Loc. 1 Drive 149 72/ft 96 NA 22												
IP 4, Loc. 1 Drive 149 30/ft 226 9.7 29												
IP 2, Loc. 4	Drive	141	16/ft	226	9.7	30						
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29						
IP 6, Loc. 4	Drive	129	84/ft	132	8.9	23						
IP 1, Loc. 5	Drive	128	54/ft	89	NA	21						
IP 7, Loc. 5	Drive	139	22/ft	236	9.9	29						
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22						
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27						
IP 10, Loc. 6	Drive	113	77/ft	110	NA	30						

Table 3a. Summary of CAPWAP Results for Location 1													
Pile	Hammer	Test	Date of Test	Restrike Waiting	Approx Depth in	Reported Penetration	Computed Soil Resistan		esistance,				
						Resistance (blows/set)	Total	Shaft	Toe				
IP 3 (Loc 1)	APE 15-4	Drive	03Jun201		116	65/ft	600	440	160				
IP 3 (Loc. 1)	APE 15-4	Drive	03Jun2016	-	149	72/ft	1240	840	400				
IP 3 (Loc. 1)	D180-42	Restrike	16Jun2016	13 Days	149	~43/ 1 inch	2900	2500	400				
IP 4 (Loc. 1)	D180-42	Drive	13May2016	1	103	45/ft	530	400	130				
IP 4 (Loc. 1)	4 (Loc. 1) D180-42 Drive 13M		13May2016	-	149 ft	30/ft	1070	940	130				
IP 4 (Loc. 1)	D180-42	Restrike	149 ft	~10/ 1 inch	2550	2270	280						

Table 3b. Summary of CAPWAP Results for Location 4													
Pile	Hammer	Test	Date of Test	Restrike Waiting	Approx Depth	Reported Penetration			omputed Soil sistance, kips				
				Time (days)	in Soil (ft)	Resistance (blows/set)	Total	Shaft	Toe				
IP 2 (Loc. 4)	D180-42	Drive	19May2016		115	24/ft	630	520	110				
IP 2 (Loc. 4)	D180-42	Drive	19May2016		141	16/ft	1210	780	430				
IP 2 (Loc. 4)	D180-42	Restrike	09Jun2016	21 Days	141	~22/1 inch	2760	1940	820				
IP 2 (Loc. 4)	D180-42	2 nd Restrike	21Jun2016	21 + 12 Days	~141	10/ 1 inch	3420	2420	1000				
IP 5 (Loc. 4)	D180-42	Drive	18May2016		111	60/ft	500	470	30				
IP 5 (Loc. 4)	D180-42	Drive	18May2016		144	23/ft	1340	840	500				
IP 5 (Loc. 4)	D180-42	Restrike	09Jun2016	22 Days	144	~28/1 inch	3560	2360	1200				
IP 6 (Loc. 4)	D180-42	Drive	01Jun2016		129	84/ft	900	580	220+100				
IP 6 (Loc. 4)	D180-42	Restrike Blow 3	21Jun2016	20 Days	129	4/ 1 inch	2060	1580	180+290				
IP 6 (Loc. 4)	D180-42	Restrike Blow 10	21Jun2016	20 Days	129	5/ 1 inch	1790	1360	170+260				
IP 6 (Loc. 4)	D180-42	Restrike Blow 31	21Jun2016	20 Days	129	6/ 1 inch	1580	1170	230+180				

Note: IP 6 has an internal bearing plate located approximately 82 ft above the pile tip. For IP 6 the tabulated end bearing results are the computed end bearing for the internal plate and the pile tip. For example, for Restrike Blow 3 the computed end bearing totaled 470 kips composed of 180 kips on the internal plate and 290 kips on the pile toe.

Table 3c. Sumi	Table 3c. Summary of CAPWAP Results for Location 5														
Pile	Hammer Test		Date of Test	Restrike Waiting	Approx Depth in	Reported Penetration	Compu	ted Soil Rokips	esistance,						
				Time (days)	Soil (ft)	Resistance (blows/set)	Total	Shaft	Toe						
IP 1 (Loc. 5)	APE 15-4	Drive	07Jun2016		128	54/ft	690	500	190						
IP 1 (Loc. 5)	D180-42	Restrike	21Jun2016	14 Days	128	5/ 1 inch	2450	1900	550						
IP 7 (Loc. 5)	D180-42	Drive	25May2016		~99	23/ft	400	370	30						
IP 7 (Loc. 5)	. 5) D180-42 Drive 25May201		25May2016		139	22/ft	1750	800	850						
IP 7 (Loc. 5) D180-42 Restrike 08Jun16 14 Days 139 ~21/1 inch 3900 2960															

Table 3d. Sumi	Table 3d. Summary of CAPWAP Results for Location 6													
Pile	Hammer	Test	Date of Test	Restrike Waiting Time	Approx Depth in	Reported Penetration	Computed Soil Resistal kips		esistance,					
					Soil (ft)	Resistance (blows/set)	Total	Shaft	Toe					
IP 8 (Loc. 6)	APE 15-4	Drive	03May2016		105	31/3"	1160	880	280					
IP 8 (Loc. 6)	D180-42	Restrike 10Jun		38 Days	105	~7/1 inch	2780	2450	330					
IP 9 (Loc. 6)	D180-42	Drive	07May2016		115	37/ft	1310	820	490					
IP 9 (Loc. 6)	D180-42	Restrike	10Jun2016	34 Days	115	~20/1 inch	4030	3310	720					
IP 10 (Loc. 6)	P 10 (Loc. 6) APE 15-4 Drive 26May		26May2016		113	77/ft	1190	610	580					
IP 10 (Loc. 6) D180-42 Restrike 10Jun2016 15 Days 113 ~5/1 inch 2220 1590 63														

APPENDIX A AN INTRODUCTION INTO DYNAMIC PILE TESTING METHODS

The following has been written by Goble Rausche Likins and Associates, Inc. and may only be copied with its written permission.

BACKGROUND

Modern procedures of design and construction control require verification of bearing capacity and integrity of deep foundations during preconstruction test programs and also production installation. Dynamic pile testing methods meet this need economically and reliably, and therefore, form an important part of a quality assurance program when deep foundations are executed. Several dynamic pile testing methods exist; they have different benefits and limitations and different requirements for proper execution.

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (such as that of a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. method is therefore also referred to as a "High Strain The Case Method requires dynamic measurements on the pile or shaft under the ram impact and then an evaluation of various quantities based on closed form solutions of the wave equation, a partial differential equation describing the motion of a rod under the effect of an impact. Conveniently, measurements and analyses are done by a single piece of equipment: the Pile Driving Analyzer® (PDA). However, for bearing capacity evaluations an important additional method is CAPWAP® which performs a much more rigorous analysis of the dynamic records than the simpler Case Method.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity and pile stress and field blow count. The GRLWEAP™ program performs this analysis and provides a complete set of helpful information and input data.

The following description deals primarily with the Case Method or "High Strain Test" Method of pile testing, however, for the sake of completeness, the "Low Strain Test" performed with the Pile Integrity Test™ (PIT), mainly for pile integrity evaluation, will also be described.

RESULTS FROM DYNAMIC TESTING

There are two main objectives of high strain dynamic pile testing:

- · Dynamic Pile Monitoring and
- Dynamic Load Testing.

Dynamic pile monitoring is conducted during the installation of impact driven piles to achieve a safe and economical pile installation. Dynamic load testing, on the other hand, has as its primary goal the assessment of pile bearing capacity. It is applicable to both cast *insitu* piles or drilled shafts and impact driven piles during restrike.

Dynamic Pile Monitoring

During pile installation, the sensors attached to the pile measure pile top force and velocity. A PDA conditions and processes these signals and calculates or evaluates:

- Bearing capacity at the time of testing, including an assessment of shaft resistance development and driving resistance. This information supports formulation of a driving criterion.
- <u>Dynamic pile stresses</u>, axial and averaged over the pile cross section, both tensile and compressive, during pile driving to limit the potential of damage either near the pile top or along its length. Bending stresses can be evaluated at the point of sensor attachment.
- <u>Pile integrity</u> assessment by the PDA is based on the recognition of certain wave reflections from along the pile. If detected early enough, a pile may be saved from complete destruction. On the other hand, once damage is recognized measures can be taken to prevent reoccurrence.
- Hammer performance parameters including the energy transferred to the pile, the hammer speed in blows per minute and the stroke of open ended diesel hammers.

Dynamic Pile Load Testing

Bearing capacity testing of either driven piles or drilled shafts applies the same basic measurement approach of dynamic pile monitoring. However, the test is done independent of the pile installation process and therefore a pile driving hammer or other dynamic loading device may not be available. If a special ram has to be mobilized then its weight should be between 0.8 and 2% of the test load (e.g. between 4 and 10 tons for a 500 ton test load) to assure sufficient soil resistance activation.

For a successful test, it most important that the test is conducted after a <u>sufficient waiting time</u> following pile installation for soil properties approaching their long term condition or concrete to properly set. During testing, PDA results of pile/shaft stresses and transferred energy are used to maintain safe stresses and assure sufficient resistance activation. For safe and sufficient testing of drilled shafts, ram energies are often increased from blow to blow until the test capacity has been activated. On the other hand, restrike tests on driven piles may require a warm hammer so that the very first blow produces a complete resistance activation. Data must be evaluated by CAPWAP for bearing capacity.

After the dynamic load test has been conducted with sufficient energy and safe stresses, the CAPWAP analysis provides the following results:

- Bearing capacity i.e. the mobilized capacity present at the time of testing
- <u>Resistance distribution</u> including shaft resistance and end bearing components
- Stresses in pile or shaft calculated for both the static load application and the dynamic test. These stresses are averages over the cross section and do not include bending effects or nonuniform contact stresses, e.g. when the pile toe is on uneven rock.
- Shaft impedance vs depth; this is an estimate of the shaft shape if it differs substantially from the planned profile
- <u>Dynamic soil parameters</u> for shaft and toe, i.e. damping factors and quakes (related to the dynamic

stiffness of the resistance at the pile/soil interface.)

MEASUREMENTS

PDA

The basis for the results calculated by the PDA are pile top strain and acceleration measurements which are converted to force and velocity records, respectively. The PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. Using closed form Case Method solutions, based on the one-dimensional linear wave equation, the PDA calculates the results described in the analytical solutions section below.

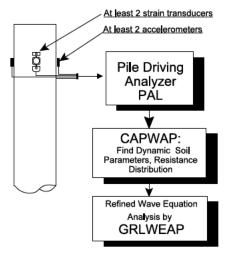
HPA

The ram velocity may be directly obtained using radar technology in the Hammer Performance Analyzer $^{\text{TM}}$. For this unit to be applicable, the ram must be visible. The impact velocity results can be automatically processed with a PC or recorded on a strip chart.

Saximeter™

For open end diesel hammers, the time between two impacts indicates the magnitude of the ram fall height or stroke. This information is not only measured and calculated by the PDA but also by the convenient, hand-held Saximeter.

PIT


The Pile Integrity Tester™ (PIT) can be used to evaluate defects in concrete piles or shafts which may have occurred during driving or casting. Also timber piles of limited length can be tested in that manner. This so-called "Low Strain Method" or "Pulse-Echo Method" of integrity testing requires only the measurement of acceleration at the pile top. The stress wave producing impact is then generated by a small hand-held hammer and the records interpreted in the time domain. PIT also supports the so-called "Transient Response Method" which requires the additional measurement of the hammer force and an analysis in the frequency domain. This method may also be used to evaluate the unknown length of deep foundations under existing structures.

ANALYTICAL SOLUTIONS BEARING CAPACITY

Wave Equation

GRL has written the GRLWEAP™ program which calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the "bearing graph." Once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no measurements and therefore can be performed during the design stage of a project, for example for the selection of hammer, cushion and pile size.

After dynamic pile monitoring and/or dynamic load testing has been performed, the "Refined Wave Equation Analysis" or RWEA (see schematic below) is often performed by inputting the PDA and CAPWAP calculated parameters. Then the bearing graph from the RWEA is the basis for a safe and sufficient driving criteria.

Case Method

The Case Method is a closed form solution based on a few simplifying assumptions such as ideal plastic soil behavior and an ideally elastic and uniform pile. Given the measured pile top force F(t) and pile top velocity v(t), the total soil resistance is

$$R(t) = \frac{1}{2} \{ [F(t) + F(t_2)] + Z[v(t) - v(t_2)] \}$$
 (1)

where

t = a point in time after impact

 t_2 = time t + 2L/c

L = pile length below gages

 $c = (E/\rho)^{\frac{1}{2}}$ is the speed of the stress wave

 ρ = pile mass density

Z = EA/c is the pile impedance

E = elastic modulus of the pile (ρ c²)

A = pile cross sectional area

The total soil resistance consists of a dynamic (R_d) and a static (R_s) component. The static component is therefore

$$R_s(t) = R(t) - R_d(t) \tag{2}$$

The dynamic component may be computed from a soil damping factor, J, and a pile toe velocity, $v_t(t)$ which is conveniently calculated for the pile toe. Using wave considerations, this approach leads immediately to the dynamic resistance

$$R_d(t) = J[F(t) + Zv(t) - R(t)]$$
 (3)

and finally to the static resistance by means of Equation 2.

There are a number of ways in which Eq. 1 through 3 can be evaluated. Most commonly, t₂ is set to that time at which the static resistance becomes maximum. The result is the so-called **RMX** capacity. Damping factors for RMX typically range between 0.5 for coarse grained materials to 1.0 for clays. The **RSP** capacity (this method is most commonly referred to in the literature, yet it is not very frequently used) requires damping factors between 0.1 for sand and 1.0 for clay. Another capacity, **RA2**, determines the capacity at a time when the pile is essentially at rest and thus damping is small; RA2

therefore requires no damping parameter. In any event, the proper Case Method and its associated damping parameter is most conveniently found after a CAPWAP analysis has been performed.

The static resistance calculated by Case Method or CAPWAP is the mobilized resistance at the time of testing. Consideration therefore has to be given to soil setup or relaxation effects and whether or not a sufficient set has been achieved under the test loading that would correspond to a full activation of the ultimate soil resistance.

The PDA also calculates an estimate of shaft resistance as the difference between force and velocity times impedance at the time immediately prior to the return of the stress wave from the pile toe. This shaft resistance is not reduced by damping effects and is therefore called the total shaft resistance **SFT**. A correction for damping effects produces the static shaft resistance estimate, **SFR**.

The Case Method solution is simple enough to be evaluated "in real time," i.e. between hammer blows, using the PDA. It is therefore possible to calculate all relevant results for all hammer blows and plot these results as a function of depth or blow number. This is done in the PDAPLOT program.

CAPWAP

The CAse Pile Wave Analysis Program combines the wave equation pile and soil model with the Case Method measurements. Thus, the solution includes not only the total and static bearing capacity values but also the shaft resistance, end bearing, damping factors and soil stiffnesses. The method iteratively calculates a number of unknowns by signal matching. While it is necessary to make hammer performance assumptions for a GRLWEAP analysis, the CAPWAP program works with the pile top measurements. Furthermore, while GRLWEAP and Case Method require certain assumptions regarding the soil behavior, CAPWAP calculates these soil parameters.

STRESSES

During pile monitoring, it is important that compressive stress maxima at pile top and toe and tensile stress maxima somewhere along the pile be calculated for each hammer blow.

At the pile top (location of sensors) both the maximum compression stress, **CSX**, and the maximum stress from individual strain transducers, **CSI**, are directly obtained from the measurements. Note that CSI is greater than or equal to CSX and the difference between CSI and CSX is a measure of bending in the plane of the strain transducers. Note also that all stresses calculated for locations below the sensors are averaged over the pile cross section and therefore do not include components from either bending or eccentric soil resistance effects.

The PDA calculates the compressive stress at the pile bottom, **CSB**, assuming (a) a uniform pile and (b) that the pile toe force is the maximum value of the total resistance R(t) minus the total shaft resistance, SFT. Again, for this stress estimation uniform resistance force are assumed (e.g. not a sloping rock.)

For concrete piles, the maximum tension stress, TSX, is also of great importance. It occurs at some point below the pile top. The maximum tension stress can be computed from the pile top measurements by finding the maximum tension wave (either traveling upward, $W_{\rm d}$) and reducing it by the minimum compressive wave traveling in opposite direction.

$$W_{11} = \frac{1}{2}[F(t) - Zv(t)]$$
 (4)

$$W_d = \frac{1}{2}[F(t) + Zv(t)]$$
 (5)

CAPWAP also calculates tensile and compressive stresses along the pile and, in general, more accurately than the PDA. In fact, for non-uniform piles or piles with joints, cracks or other discontinuities, the closed form solutions from the PDA may be in error.

PILE INTEGRITY

High Strain Tests (PDA)

Stress waves in a pile are reflected wherever the pile impedance, $Z = EA/c = \rho cA = A \sqrt{(E \rho)}$, changes. Therefore, the pile impedance is a measure of the quality of the pile material (E, ρ, c) and the size of its cross section (A). The reflected waves arrive at the pile top at a time which is greater the farther away from the pile top the reflection occurs. The

magnitude of the change of the upward traveling wave (calculated from the measured force and velocity, Eq. 4) indicates the extent of the cross sectional change. Thus, with β_i (**BTA**) being a relative integrity factor which is unity for no impedance change and zero for the pile end, the following is calculated by the PDA.

$$\beta_i = (1 - \alpha_i)/(1 + \alpha_i) \tag{6}$$

with

$$\alpha_i = \frac{1}{2} (W_{UR} - W_{UD}) / (W_{Di} - W_{UR})$$
 (7)

where

W_{UR} is the upward traveling wave at the onset of the reflected wave. It is caused by resistance.

W_{UD} is the upwards traveling wave due to the damage reflection.

 $W_{\text{Di}} \;\;$ is the maximum downward traveling wave due to impact.

It can be shown that this formulation is quite accurate as long as individual reflections from different pile impedance changes have no overlapping effects on the stress wave reflections.

Without rigorous derivation, it has been proposed to consider as slight damage when β is above 0.8 and a serious damage when β is less than 0.6.

Low Strain Tests (PIT)

The pile top is struck with a held hand hammer and the resulting pile top velocity is measured, displayed and interpreted for signs of wave reflections. In general, a comparison of the reflected acceleration leads to a relative measure of extent of damage, again the location of the problem is indicated by the arrival time of the reflection. PIT records can also be interpreted by the $\beta\text{-Method}$. However, low strain tests do not activate much resistance which simplifies Eq. 7 since W_{UR} is then equal to zero.

For drilled shafts and PIT records that clearly show a toe reflection, an approximate shaft profile can be calculated from low strain records using the PITSTOP program's PROFILE routine.

HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$E(t) = \int_{0}^{t} F(t)v(t) dt$$
 (8a)

The maximum of the E(t) curve is the most important information for an overall evaluation of the performance of a hammer and driving system. This **EMX** value allows for a classification of the hammer's performance when presented as the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency

$$e_{T} = EMX/E_{R}$$
 (8b)

where

 E_R is the manufacturer's rated energy value.

Both Saximeter and PDA calculate the stroke (**STK**) of an open end diesel hammer using

$$STK = (g/8) T_B^2 - h_I$$
 (9)

where

g is the earth's gravitational acceleration,

 $T_{\rm B}$ is the time between two hammer blows,

 h_L is a stroke loss value due to gas compression and time losses during impact (usually 0.3 ft or 0.1 m).

DETERMINATION OF WAVE SPEED

An important facet of dynamic pile testing is an assessment of pile material properties. Since in general force is determined from strain by multiplication with elastic modulus, E, and cross sectional area, A, the dynamic elastic modulus has to be determined for pile materials other than steel. In general, the records measured by the PDA clearly indicate a pile toe reflection as long as pile penetration per blow is greater than 1 mm or .04 inches. The time between the onset of the force and velocity records at impact and the onset of the reflection from the toe (usually apparent by a local maximum of the wave up curve) is the so-called wave travel time, T. Dividing 2L (L is here the length of the pile below sensors) by T leads to the stress wave speed in the pile:

$$c = 2L/T \tag{10}$$

The elastic modulus of the pile material is related to the wave speed according to the linear elastic wave equation theory by

$$E = c^2 \rho \tag{11}$$

Since the mass density of the pile material, ρ , is usually well known (an exception is timber for which samples should be weighed), the elastic modulus is easily found from the wave speed. Note, however, that this is a dynamic modulus which is generally higher than the static one and that the wave speed depends to some degree on the strain level of the stress wave. For example, experience shows that the wave speed from PIT is roughly 5% higher than the wave speed observed during a high strain test.

Other Notes:

- If the pile material is nonuniform then the wave speed c, according to Eq. 10, is an average wave speed and does not necessarily reflect the pile material properties of the location where the strain sensors are attached to the pile top. For example, pile driving often causes fine tension cracks some distance below the top of concrete piles. Then the average c is slower than that at the pile top. It is therefore recommended to determine E in the beginning of pile driving and not adjust it when the average c changes.
- If the pile has such a high resistance that there is no clear indication of a toe reflection then the wave speed of the pile material must be determined either by assumption or by taking a sample of the concrete and measuring its wave speed in a simple free column test. Another possibility is to use the proportionality relationship, discussed under "DATA QUALITY CHECKS" to find c as the ratio between the measured velocity and measured strain.

DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing PDA or PIT tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent

measurements are taken that have to conform to certain relationships.

Proportionality

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the pile, force and velocity measured at the pile top are proportional

$$F = v Z = v (EA/c)$$
 (12a)

This relationship can also be expressed in terms of stress

$$\sigma = v (E/c) \tag{12b}$$

or strain

$$\varepsilon = v / c$$
 (12c)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements.

Measurements are always taken at opposite sides of the pile as a means of calculating the average force and velocity in the pile. The velocity on the two sides of the pile is very similar even when high bending exists. Thus, an independent check of the velocity measurements is easy and simple.

Strain measurements may differ greatly between the two sides of the pile when bending exists. It is even possible that tension is measured on one side while very high compression exists on the other side of the pile. In extreme cases, bending might be so high that it leads to a nonlinear stress distribution. The averaging of the two strain signals does then not lead to the average pile force and proportionality will not be achieved.

When testing drilled shafts, measurements of strain may also be affected by local concrete quality variations. It is then often necessary to use four strain transducers spaced at 90 degrees around the pile for an improved strain data quality. The use of four transducers is also recommended for large pile

diameters, particularly when it is difficult to mount the sensors at least two pile widths or diameters below the pile top.

LIMITATIONS, ADDITIONAL CONSIDERATIONS

Mobilization of capacity

Estimates of pile capacity from dynamic testing indicate the **mobilized pile capacity at the time of testing**. At very high blow counts (low set per blow), dynamic test methods tend to produce lower bound capacity estimates as not all resistance (particularly at and near the toe) is fully activated.

Time dependent soil resistance effects

Static pile capacity from dynamic method calculations provide an estimate of the axial pile capacity. Increases and decreases in the pile capacity with time typically occur (soil setup/relaxation). Therefore, restrike testing usually yields a better indication of long term pile capacity than a test at the end of pile driving. Often a wait period of one or two days between end of driving and restrike is satisfactory for a realistic prediction of pile capacity but this waiting time depends, among other factors, on the permeability of the soil.

(A) Soil setup

Because excess positive pore pressures often develop during pile driving in fine grained soil (clays, silts or even fine sands), the capacity of a pile at the time of driving may often be less than the long term pile capacity. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and thus the pile capacity at the time of driving. As these pore pressures dissipate, the soil resistance acting on the pile increases as does the axial pile capacity. This phenomena is routinely called soil setup or soil freeze.

(B) Relaxation

Relaxation (capacity reduction with time) has been observed for piles driven into weathered shale, and may take several days to fully develop. Pile capacity estimates based upon initial driving or short term restrike tests can significantly overpredict long term pile capacity. Therefore, piles driven into shale

should be tested after a minimum one week wait either statically or dynamically (with particular emphasis than on the first few blows). Relaxation has also been observed for displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe. Again, restrike tests should be used, with great emphasis on early blows.

Capacity results for open pile profiles

Larger diameter open ended pipe piles (or H-piles which do not bear on rock) may behave differently under dynamic and static loading conditions. Under dynamic loads the soil inside the pile or between its flanges may slip and produce internal friction while under static loads the plug may move with the pile, thereby creating end bearing over the full pile cross section. As a result both friction and end bearing components may be different under static and dynamic conditions.

CAPWAP Analysis Results

A portion of the soil resistance calculated on an individual soil segment in a CAPWAP analysis can usually be shifted up or down the shaft one soil segment without significantly altering the match quality. Therefore, use of the CAPWAP resistance distribution for uplift, downdrag, scour, or other geotechnical considerations should be made with an understanding of these analysis limitations.

Stresses

PDA and CAPWAP calculated stresses are average values over the cross section. Additional allowance has to be made for bending or non-uniform contact stresses. To prevent damage it is therefore important to maintain good hammer-pile alignment and to protect the pile toes using appropriate devices or an increased cross sectional area.

In the United States is has become generally acceptable to limit the dynamic installation stresses of driven piles to the following levels:

90% of yield strength for steel piles

85% of the concrete compressive strength - after subtraction of the effective prestress - for concrete piles in compression

- 100% of effective prestress plus ½ of the concrete's tension strength for prestressed piles in tension
- 70% of the reinforcement strength for regularly reinforced concrete piles in tension
- 300% of the static design allowable stress for timber

Note that the dynamic stresses may either be directly measured at the pile top by the PDA or calculated by the PDA for other locations along the pile based on the pile top measurements.

Additional design considerations

Numerous factors have to be considered in pile foundation design. Some of these considerations include

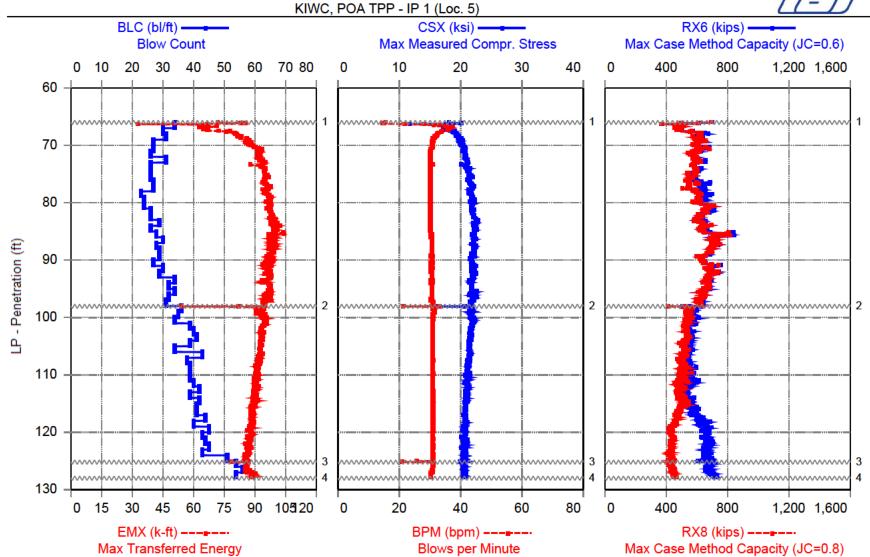
- additional pile loading from downdrag or negative skin friction,
- · lateral and uplift loading requirements
- effective stress changes (due to changes in water table, excavations, fills or other changes in overburden),
- long term settlements in general and settlement from underlying weaker layers and/or pile group effects.

These factors have not been evaluated by GRL and have not been considered in the interpretation of the dynamic testing results. The foundation designer should determine if these or any other considerations are applicable to this project and the foundation design.

Wave equation analysis results

The results calculated by the wave equation analysis program depend on a variety of hammer, pile and soil input parameters. Although attempts have been made to base the analysis on the best available information, actual field conditions may vary and therefore stresses and blow counts may differ from the predictions reported. Capacity predictions derived from wave equation analyses should use restrike information. However, because of the uncertainties associated with restrike blow counts and restrike hammer energies, correlations of such results with static test capacities with have often displayed considerable scatter.

As for PDA and CAPWAP, the theory on which GRLWEAP is based is the one-dimensional wave equation. For that reason, stress predictions by the wave equation analysis can only be averages over the pile cross section. Thus, bending stresses or stress concentrations due to non-uniform impact or uneven soil or rock resistance are not considered in these results. Stress maxima calculated by the wave equation are usually subjected to the same limits as those measured directly or calculated from measurements by the PDA.


Appendix B

Summary of Case Method Field Results

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 07-June-2016 Test started: 07-June-2016

- 1 Begin PDA monitoring, near Tip El. -81 ft, 6/7/2016, 11:39:40 AM
- 2 Restart after 4 min pause including reset of strain sensor.
- 3 Restart after 2 min pause to reset strain sensor.
- 4 End Driving near Tip EI -150, 128 ft soil penetration, 6/7/20161:01:50 PM

KIWC, POA TPP - IP 1 (Loc. 5) PP48x1.0", APE 15-4 OP: RMDT Date: 07-June-2016

147.65 in² SP: 0.492 k/ft³ AR: EM: 31,052 ksi 178.00 ft LE: WS: 17,100.0 f/s JC: 0.35 []

EMX: Max Transferred Energy FMX: Maximum Force CSX: Max Measured Compr. Stress BPM: Blows per Minute VMX: Maximum Velocity CSI: Max F1 or F2 Compr. Stress

BPM:	Blows p	er Min	ute		SI: M							
RX6:	Max Ca	ise Met	thod Ca	pacity (JC=0.6)	F	RX7: Ma	ax Case	e Metho	d Capad	city (JC	=0.7)
RX8:	Max Ca	ise Met	thod Ca	pacity (JC=0.8)							
BL#	Depth	BLC	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
34	67	34	AV34	67.0	17.6	28.0	517	509	2,597	9.3	21.9	511
			STD	14.6	2.3	11.0	164	163	345	1.4	2.7	163
			MAX	95.9	21.5	37.8	1,364	1,357	3,172	11.9	25.4	1,357
64	68	30	AV30	72.4	18.3	34.7	538	529	2,708	9.6	23.6	532
			STD	6.5	0.7	1.4	74	67	111	0.5	1.0	71
			MAX	84.8	19.8	36.8	693	649	2,918	10.6	25.5	668
95	69	31	AV31	82.9	19.6	31.9	628	615	2,900	10.3	25.7	620
			STD	2.5	0.4	0.7	23	26	60	0.2	0.5	25
			MAX	87.3	20.4	33.1	693	664	3,012	10.6	26.8	665
122	70	27	AV27	86.9	20.1	31.1	616	613	2,971	10.6	26.3	614
			STD	1.6	0.3	0.4	36	37	42	0.2	0.3	37
			MAX	89.9	20.5	31.9	755	755	3,026	10.8	26.7	755
149	71	27	AV27	91.1	20.6	30.7	635	625	3,046	11.0	26.9	627
			STD	3.0	0.3	0.5	50	53	51	0.2	0.6	52
			MAX	96.6	21.1	31.5	738	736	3,118	11.3	27.9	737
175	72	26	AV26	92.1	20.7	30.3	580	573	3,062	11.0	27.9	575
			STD	1.7	0.3	0.3	26	28	49	0.2	0.5	29
			MAX	95.8	21.2	30.7	647	635	3,132	11.4	28.9	641
206	73	31	AV31	92.9	21.0	30.3	610	595	3,099	11.1	28.5	600
			STD	1.6	0.3	0.2	34	26	50	0.2	0.4	29
			MAX	96.0	21.5	30.7	685	646	3,175	11.6	29.3	658
232	74	26	AV23	93.1	20.9	30.4	587	582	3,085	11.0	28.6	583
			STD	3.3	0.5	0.5	16	16	75	0.3	0.7	15
			MAX	97.2	21.5	32.4	627	617	3,179	11.4	29.5	617
258	75	26	AV26	95.0	21.3	30.3	596	586	3,146	11.1	29.1	589
			STD	1.2	0.3	0.2	30	31	41	0.1	0.5	31
			MAX	97.5	21.9	30.5	653	626	3,240	11.5	29.9	632
284	76	26	AV26	95.8	21.7	30.2	582	569	3,206	11.2	29.4	572
			STD	1.3	0.3	0.1	17	24	47	0.2	0.6	21
			MAX	98.2	22.3	30.5	609	605	3,291	11.5	30.4	606
311	77	27	AV27	94.9	21.5	30.3	632	567	3,178	11.1	29.8	591
			STD	1.3	0.4	0.1	45	40	52	0.2	0.4	46
			MAX	97.0	22.1	30.5	728		3,263	11.5	30.3	688
338	78	27	AV27	96.2	21.9	30.3	628	554	3,237	11.4	30.1	576
			STD	1.7	0.4	0.1	43	31	57	0.2	0.3	36
004	70		MAX	98.6	22.5	30.5	686	610	3,323	11.6	30.7	644
361	79	23	AV23	96.2	21.7	30.2	662	612	3,199	11.4	30.5	631
			STD	1.9	0.4	0.2	36	25	60	0.2	0.4	30

KIWC, POA TPP - IP 1 (Loc. 5) PP48x1.0", AF OP: RMDT Date: 07-Jun												
BL#	Depth	BLC	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
			MAX	100.0	22.4	30.5	738	646	3,310	11.8	31.3	677
385	80	24	AV24	97.1	22.0	30.3	639	608	3,253	11.7	30.7	611
			STD	1.9	0.5	0.2	31	28	67	0.2	0.5	28
			MAX	100.4	22.9	30.6	690	661	3,378	12.0	31.4	661
409	81	24	AV24	97.4	21.9	30.2	666	657	3,240	11.9	31.0	659
			STD	1.1	0.3	0.1	45	45	48	0.1	0.4	43
			MAX	99.4	22.6	30.6	735	735	3,331	12.2	31.9	735
435	82	26	AV26	97.5	22.0	30.3	683	655	3,243	11.9	30.9	661
			STD	1.7	0.3	0.2	41	20	48	0.1	0.6	24
			MAX	100.6	22.5	30.6	774	707	3,320	12.1	31.9	707
461	83	26	AV25	98.4	22.3	30.3	623	609	3,294	11.9	31.3	611
			STD	2.2	0.4	0.2	27	22	56	0.2	0.9	22
			MAX	101.8	22.9	30.7	694	654	3,379	12.2	32.3	654
490	84	29	AV29	99.1	22.5	30.2	645	627	3,323	12.0	31.7	633
			STD	1.9	0.5	0.2	45	39	69	0.2	8.0	40
			MAX	102.0	23.5	30.6	734	734	3,468	12.4	33.1	734
516	85	26	AV26	100.3	22.4	30.2	642	639	3,304	12.1	32.2	639
			STD	2.1	0.3	0.2	28	26	45	0.2	0.5	26
			MAX	103.2	23.1	30.7	703	703	3,408	12.4	33.0	703
544	86	28	AV28	100.3	22.2	30.5	768	738	3,281	12.1	32.1	744
			STD	3.0	0.3	0.3	95	81	42	0.2	0.6	86
			MAX	105.0	22.9	31.2	1,003	920	3,380	12.4	32.9	957
574	87	30	AV30	98.7	22.2	30.7	712	710	3,283	11.9	31.7	711
			STD	2.7	0.3	0.3	34	35	47	0.3	0.9	35
			MAX	102.4	22.7	31.2	777	776	3,359	12.4	32.9	777
602	88	28	AV28	99.0	22.3	30.7	719	717	3,291	12.0	31.8	718
			STD	2.8	0.4	0.3	36	35	57	0.3	8.0	35
			MAX	102.6	22.9	31.2	809	808	3,381	12.4	32.8	809
631	89	29	AV29	98.9	22.2	30.7	690	688	3,281	12.0	31.8	689
			STD	1.9	0.3	0.2	_32	31	47	0.2	0.6	31
			MAX	102.4	22.7	31.1	759	759	3,357	12.3	32.5	759
660	90	29	AV29	97.5	22.0	30.7	639	634	3,247	12.0	31.6	635
			STD	2.3	0.5	0.4	_38	32	69	0.3	8.0	_33
			MAX		22.9	31.3	753	720	3,376	12.4	32.5	727
687	91	27	AV27	96.8	21.9	30.7	667	662	3,231	11.7	31.4	663
			STD	3.2	0.4	0.4	43	38	60	0.4	1.1	39
			MAX	100.2	22.5	31.3	783	783	3,326	12.2	32.8	783
717	92	30	AV30	96.9	22.2	30.7	694	682	3,274	11.6	31.4	686
			STD	2.3	0.5	0.3	42	_34	73	0.3	1.0	_36
			MAX	99.3	23.0	31.4	791	753	3,399	12.0	32.6	772
746	93	29	AV29	97.2	22.2	30.7	700	696	3,274	11.6	31.3	697
			STD	2.3	0.4	0.3	33	33	63	0.3	1.1	33
	•	<i></i>	MAX	99.7	23.0	31.4	767	758	3,392	12.1	32.4	758
780	94	34	AV34	95.9	21.8	30.7	674	668	3,225	11.7	31.2	670
			STD	2.7	0.5	0.4	29	24	69	0.3	0.9	26
			MAX	98.1	23.0	31.3	755	/30	3,394	12.1	32.4	730

KIWC, POA TPP - IP 1 (Loc. 5) PP48x1.0", APE 15-4 OP: RMDT Date: 07-June-2016 CSX

BL#	Depth		TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
812	95	32	AV32	97.1	21.8	30.7	680	677	3,224	11.9	31.2	678
			STD	1.3	0.2	0.2	16	17	29	0.2	0.4	17
			MAX	98.4	22.3	31.3	718	718	3,287	12.2	31.7	718
846	96	34	AV34	97.0	22.1	30.7	651	647	3,257	11.7	30.4	648
			STD	1.3	0.4	0.2	26	23	60	0.2	0.7	24
			MAX	99.4	22.9	31.1	713	689	3,379	12.0	31.6	689
878	97	32	AV32	96.2	22.1	30.7	631	630	3,268	11.5	30.4	630
			STD	2.0	0.5	0.3	23	25	74	0.1	0.6	24
			MAX	99.4	23.0	31.2	673	673	3,401	11.8	31.6	673
909	98	31	AV31	95.5	21.8	31.1	626	616	3,225	11.4	30.2	619
			STD	2.4	0.4	0.4	19	18	54	0.2	0.7	18
			MAX	102.0	22.7	31.6	669	658	3,350	11.8	31.9	658
945	99	36	AV36	88.5	21.2	30.8	573	542	3,138	11.2	29.0	553
			STD	13.7	2.2	4.9	32	57	323	1.2	3.0	42
			MAX	98.5	22.9	33.7	656	656	3,381	12.0	31.5	656
980	100	35	AV35	94.0	21.8	31.2	561	543	3,212	11.6	30.5	547
			STD	3.2	0.4	0.4	21	16	59	0.2	0.9	17
			MAX	97.5	22.6	31.9	610	581	3,333	12.0	31.9	586
1014	101	34	AV34	95.1	22.0	31.1	575	537	3,254	11.6	30.2	549
			STD	1.4	0.4	0.1	27	23	56	0.2	0.9	26
			MAX	97.6	22.7	31.5	676	615	3,348	11.9	32.0	645
1053	102	39	AV39	94.2	21.9	31.1	556	530	3,235	11.6	30.6	537
			STD	1.3	0.2	0.2	27	17	34	0.1	0.7	20
			MAX	98.0	22.5	31.5	614	569	3,324	11.9	31.7	587
1093	103	40	AV40	93.5	21.7	31.0	560	535	3,209	11.6	31.0	541
			STD	0.8	0.2	0.1	19	13	29	0.1	0.3	16
			MAX	97.0	22.2	31.2	615	566	3,277	11.8	31.8	579
1134	104	41	AV41	93.5	21.7	31.0	558	538	3,200	11.6	31.0	544
			STD	0.6	0.2	0.1	23	19	27	0.1	0.5	21
			MAX	94.6	22.1	31.2	638	581	3,262	11.9	31.7	606
1173	105	39	AV39	93.0	21.5	31.1	547	517	3,176	11.5	30.9	524
			STD	0.7	0.2	0.1	20	21	27	0.1	0.4	21
			MAX	94.2	21.8	31.3	584	564	3,221	11.8	31.6	573
1207	106	34	AV34	92.7	21.6	31.1	557	525	3,185	11.5	30.9	538
			STD	0.7	0.2	0.1	21	19	29	0.1	0.5	21
40-0			MAX	94.3	22.1	31.3	596		3,263	11.8	31.5	581
1250	107	43	AV43	92.7	21.5	31.1	541		3,179	11.5	30.9	524
			STD	0.8	0.2	0.1	22	_20	31	0.1	0.6	_20
4000	400	00	MAX	94.5	22.1	31.3	586		3,257	11.8	31.6	577
1288	108	38	AV38	92.4	21.4	31.1	528		3,166	11.4	31.0	506
			STD	1.1	0.2	0.2	19	21	33	0.2	0.6	23
1007	400	00	MAX	94.1	22.0	31.5	571		3,242	11.8	32.0	545
1327	109	39	AV39	91.7	21.3	31.1	555	515	3,143	11.3	30.6	527
			STD	0.8	0.2	0.1	26	22	32	0.1	0.6	25 503
1260	110	20	MAX	93.1	21.7	31.4	618		3,209	11.6	31.6	593
1366	110	39	AV39	91.0	21.2	31.1	540	515	3,137	11.1	30.0	523

KIWC, POA TPP - IP 1 (Loc. 5)

OP: RMDT

PP48x1.0", APE 15-4

Date: 07-June-2016

OP: F	ŔMDT		,	- /						Date: 0	7-June	-2016
	Depth	BLC	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	· ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
			STD	1.0	0.3	0.1	29	32	41	0.2	0.7	32
			MAX	92.7	21.9	31.4	617	606	3,231	11.3	31.4	611
1405	111	39	AV39	91.2	21.3	31.1	553	508	3,141	11.1	30.0	512
			STD	1.1	0.3	0.1	29	28	48	0.1	8.0	29
			MAX	93.6	22.0	31.3	602	563	3,243	11.3	31.4	563
1445	112	40	AV40	90.9	21.2	31.1	575	490	3,125	11.0	29.8	494
			STD	1.1	0.3	0.1	32	32	48	0.1	0.6	30
			MAX	92.8	21.7	31.4	640	565	3,209	11.2	31.1	567
1487	113	42	AV42	90.5	21.1	31.1	529	492	3,116	10.9	29.7	495
			STD	1.3	0.3	0.2	25	30	46	0.2	8.0	29
			MAX	93.2	21.6	31.5	594	594	3,191	11.3	31.0	594
1526	114	39	AV39	90.3	21.1	31.1	531	489	3,110	10.9	29.8	495
			STD	1.5	0.3	0.2	23	25	43	0.2	0.7	24
			MAX	93.0	21.6	31.6	582	545	3,191	11.2	30.9	551
1568	115	42	AV42	90.1	21.0	31.2	553	507	3,098	10.9	29.7	511
			STD	1.1	0.3	0.2	24	31	37	0.1	0.6	31
			MAX	92.6	21.4	31.5	606	602	3,163	11.1	30.8	604
1609	116	41	AV41	89.2	20.9	31.2	568	511	3,084	10.8	29.4	512
			STD	1.0	0.2	0.2	26	32	28	0.1	0.5	32
			MAX	91.4	21.3	31.5	621	574	3,141	11.1	30.3	574
1650	117	41	AV41	88.9	20.8	31.2	581	482	3,070	10.8	29.3	482
			STD	0.9	0.2	0.2	25	24	27	0.1	0.5	24
			MAX	90.3	21.3	31.5	642	552	3,138	11.1	30.1	552
1694	118	44	AV44	88.7	20.8	31.2	618	472	3,069	10.7	29.0	475
			STD	8.0	0.2	0.1	24	18	29	0.2	0.6	17
			MAX	90.9	21.2	31.5	659	518	3,137	11.0	30.1	518
1734	119	40	AV40	88.8	20.8	31.2	644	457	3,076	10.5	28.5	460
			STD	0.9	0.2	0.2	28	17	29	0.1	0.7	17
			MAX	91.1	21.4	31.5	702	491	3,157	10.8	30.0	497
1779	120	45	AV45	88.0	20.8	31.1	655	433	3,070	10.5	27.8	436
			STD	1.0	0.3	0.2	_24	15	39	0.1	0.5	14
1000	404	40	MAX	90.5	21.3	31.4	715	474	3,140	10.8	29.6	475
1822	121	43	AV43	88.0	20.7	31.1	663	437	3,053	10.5	28.0	442
			STD	0.9	0.3	0.1	29	12		0.2	0.4	13
1000	100	4.4	MAX	90.2	21.2	31.3	715		3,126	10.8	29.4	472
1866	122	44	AV44	87.4	20.8	31.1	682		3,071	10.5	27.8	446
			STD	8.0	0.4	0.1	28	14	56	0.2	0.7	13
1011	100	4 -	MAX	88.8	21.4	31.4	730	477	3,154	11.0	29.0	477
1911	123	45	AV45	87.0	20.7	31.1	669	436	3,057	10.4	26.8	441
			STD	1.1	0.5	0.1	27	13	67	0.3	0.7	14
10E4	104	42	MAX	90.2	21.6	31.5	739	461	3,195	11.1	28.2	473
1954	124	43	AV43	86.9	20.8	31.1	663	429	3,067	10.3	27.2	432
			STD	0.8	0.2 21.2	0.1	23 710	15 457	33	0.1	0.8	13
2005	125	51	MAX AV/51	88.4		31.3	710 660	457 435	3,128	10.6	28.6	461 440
2005	125	31	AV51	85.8 0.7	20.6	31.1	669 20	435		10.3	26.1	
			STD	0.7	0.2	0.1	29	18	34	0.1	0.9	16

KIWC, POA TPP - IP 1 (Loc. 5) PP48x1.0", APE 15-4												E 15-4
OP: RMDT Date: 07-June-2016												
BL#	Depth	BLC	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
			MAX	87.5	21.3	31.4	732	477	3,150	11.0	27.7	477
2059	126	54	AV54	85.2	20.6	30.3	680	432	3,044	10.3	24.5	441
			STD	2.7	0.5	4.4	39	19	68	0.2	8.0	18
			MAX	87.5	21.6	31.5	754	492	3,182	10.8	26.6	492
2115	127	56	AV56	86.1	20.7	31.1	681	445	3,053	10.4	23.9	447
			STD	1.0	0.2	0.2	21	14	28	0.1	0.4	12
			MAX	89.5	21.1	31.5	718	468	3,118	10.8	25.0	468
2169	128	54	AV54	89.0	20.8	30.5	711	455	3,068	10.6	24.0	459
			STD	1.7	0.3	0.3	19	11	38	0.1	0.4	11
			MAX	92.3	21.3	31.4	749	482	3,142	10.8	24.9	483
		A۱	verage	91.6	21.2	30.9	619	545	3,137	11.1	29.1	550
		Sto	d. Dev.	6.5	1.0	1.8	71	91	146	0.7	2.6	91
		Ma	ximum	105.0	23.5	37.8	1,364	1,357	3,468	12.4	33.1	1,357
Total number of blows analyzed: 2165												

Sensors
F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: off; ; F4: off; ; A1: off;
A2: [39150] 1075.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)
F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H278] 99.0 (1.00);
F4: [H324] 93.0 (1.00); A1: off; A2: [39150] 1075.0 (1.00);
A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)
F1: off; ; F2: off; ; F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: off;
A2: [39150] 1075.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)
F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H278] 99.0 (1.00);
F4: [H324] 93.0 (1.00); A1: off; A2: [39150] 1075.0 (1.00);
A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

BL# Comments

- 1 Begin PDA monitoring, near Tip El. -81 ft, 6/7/2016, 11:39:40 AM
- 911 Restart after 4 min pause including reset of strain sensor.
- 2016 Restart after 2 min pause to reset strain sensor.
- 2169 End Driving near Tip EI -150, 128 ft soil penetration, 6/7/20161:01:50 PM

Time Summary

Drive 5 seconds	11:39 AM - 11:39 AM (6/7/2016) BN 1 - 3
Stop 1 minute 7 seconds	11:39 AM - 11:40 AM
Drive 5 seconds	11:40 AM - 11:40 AM BN 4 - 6
Stop 1 minute 15 seconds	11:40 AM - 11:42 AM
Drive 5 seconds	11:42 AM - 11:42 AM BN 7 - 9
Stop 2 minutes 20 seconds	11:42 AM - 11:44 AM
Drive 6 minutes 25 seconds	11:44 AM - 11:51 AM BN 10 - 214
Stop 1 minute 3 seconds	11:51 AM - 11:52 AM
Drive 22 minutes 45 seconds	11:52 AM - 12:14 PM BN 215 - 910

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

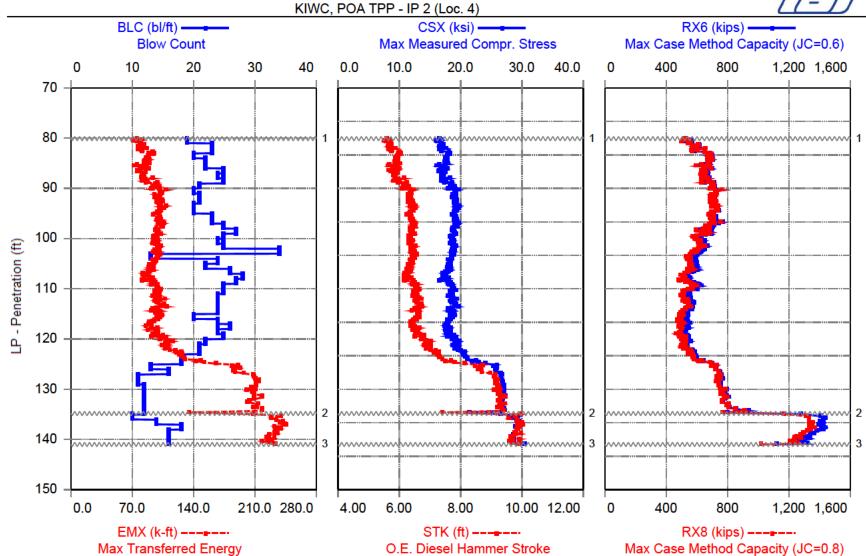
Page 6 PDIPLOT2 2016.1.999.0 - Printed 07-June-2016

KIWC, POA TPP - IP 1 (Loc. 5) OP: RMDT PP48x1.0", APE 15-4 Date: 07-June-2016

Stop 4 minutes 54 seconds 12:14 PM - 12:19 PM

Drive 35 minutes 27 seconds 12:19 PM - 12:55 PM BN 911 - 2015

Stop 1 minute 35 seconds 12:55 PM - 12:56 PM


Drive 4 minutes 56 seconds 12:56 PM - 1:01 PM BN 2016 - 2169

Total time [01:22:09] = (Driving [01:09:52] + Stop [00:12:17])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 19-May-2016 Test started: 19-May-2016

^{1 -} Begin monitoring near Tip El. -110 ft, 11:09:10 AM, 5/19/2016

3 - End of Driving, near Tip El. -170 ft, 141 ft soil penetration, 5/19/2016, 11:40:38 AM

^{2 -} Continue after a 4 min pause near Tip El. -164. 11:38:12 AM

	, POA T	PP - IP	2 (Loc	. 4)			PP48x1.0", APE D180-42 Date: 19-May-2016						
OP: R		: 2											
AR:	147.65									SP		2 k/ft³	
LE:	185.00										l: 31,05		
	<u>17,100.0</u>							001 1		JC:		5 []	
	Max Tra									or F2 C		tress	
	Max Me				3					m Force			
	O.E. Di							BPM: B				-	
	Max Ca							RA2: A	uto Ca	ipacity F	riction	Piles	
	Max Ca Depth		TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2	
DLπ	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips	
19	81.0	19	AV18	77.3	16.6	5.61	542	527	18.6	2,455	49.5	591	
13	01.0	13	STD	6.9	0.8	0.17	37	43	0.9	123	0.7	58	
			MAX	90.9	18.3	5.96	627	627	20.6	2,706	51.1	657	
42	82.0	23	AV23	80.7	17.0	5.72	595	588	19.0	2,700	49.1	597	
72	02.0	25	STD	5.3	0.6	0.14	40	49	0.7	90	0.6	37	
			MAX	91.4	18.1	6.01	684	684	20.3	2,667	50.4	663	
65	83.0	23	AV23	85.3	17.4	5.85	624	617	19.4	2,573	48.5	602	
00	00.0	20	STD	8.7	0.9	0.20	47	52	1.0	128	0.8	33	
			MAX	106.7	19.5	6.31	713	713	21.8	2,873	49.8	666	
85	84.0	20	AV20	89.3	17.9	5.97	687	683	20.1	2,646	48.1	600	
00	04.0	20	STD	7.1	0.8	0.18	37	40	1.0	123	0.7	33	
			MAX	102.7	19.4	6.25	738	737	21.8	2,859	49.8	664	
107	85.0	22	AV22	85.4	17.6	5.90	688	678	19.7	2,592	48.3	621	
107	00.0	22	STD	6.6	0.7	0.16	30	34	0.9	110	0.6	29	
			MAX	101.5	19.6	6.34	762	761	22.2	2,894	49.6	673	
129	86.0	22	AV22	81.8	17.2	5.84	664	653	19.2	2,534	48.6	601	
123	00.0	22	STD	8.2	0.9	0.19	37	42	1.1	132	0.8	31	
			MAX	97.0	19.0	6.23	712	712	21.2	2,808	50.0	666	
154	87.0	25	AV25	80.3	17.0	5.81	661	648	19.0	2,508	48.7	605	
104	07.0	25	STD	7.4	0.8	0.18	36	40	0.9	120	0.7	54	
			MAX	95.1	18.7	6.17	727	711	21.0	2,759	50.3	709	
178	88.0	24	AV24	82.9	17.2	5.89	661	645	19.3	2,540	48.4	627	
170	00.0	'	STD	5.9	0.7	0.15	25	31	0.8	100	0.6	41	
			MAX	98.8	18.7	6.28	709	709	21.0	2,756	49.4	710	
203	89.0	25	AV25	86.6	17.5	5.97	663	652		2,589	48.1	586	
200	00.0		STD	6.1	0.7	0.16	32	38	0.7	96	0.6	28	
			MAX	99.4	18.7	6.28	717	717		2,761	49.1	633	
224	90.0	21	AV21	97.7	18.7	6.23	711	707		2,756	47.1	595	
	00.0		STD	6.4	0.7	0.16	24	27	0.8	107	0.6	29	
			MAX	107.2	19.6	6.48	753	750		2,898	48.0	669	
244	91.0	20	AV20	102.3	19.1	6.35	731	727		2,824	46.7	606	
	01.0		STD	8.4	0.8	0.20	29	31	1.0	125	0.7	20	
			MAX	118.1	20.6	6.72	796	796	23.3	3,045	47.8	645	
265	92.0	21	AV21	99.0	19.0	6.32	711	707		2,802	46.8	605	
	30		STD	6.6	0.7	0.15	27	28	0.8	99	0.5	34	
			MAX	114.5	20.6	6.69	778	776	23.3		47.5	659	
286	93.0	21	AV21	102.3	19.2	6.39	715	709		2,842	46.5	596	
			STD	4.9	0.5	0.11	18	20	0.6	70	0.4	28	

KIWC, POA TPP - IP 2 (Loc. 4)

PP48x1.0", APE D180-42

OP: RMDT Date: 19-Ma												
		DI C	TVDE		CCV	CTI	DVC	DV0	001			
BL#	Depth		TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
000	0.4.0			112.0	20.3	6.63	747	744	22.9	3,001	47.2	646
306	94.0	20	AV20	104.6	19.5	6.46	725	719	21.9	2,878	46.3	600
			STD	5.3	0.5	0.12	23	27	0.6	77	0.4	30
			MAX	113.5	20.3	6.63	776	776	22.9	3,000	47.1	651
326	95.0	20	AV20	100.2	19.1	6.39	723	713	21.5	2,827	46.5	625
			STD	5.5	0.6	0.13	28	32	0.7	88	0.5	49
			MAX	108.9	20.1	6.60	768	764	22.5	2,963	47.5	702
349	96.0	23	AV23	99.5	19.1	6.37	711	701	21.4	2,814	46.6	639
			STD	5.2	0.5	0.11	17	21	0.6	78	0.4	50
			MAX	110.8	20.3	6.60	740	737	23.0	3,000	47.4	710
372	97.0	23	AV23	101.6	19.3	6.44	728	715	21.7	2,845	46.4	641
			STD	5.2	0.5	0.12	28	28	0.6	77	0.4	60
				110.8	20.1	6.63	786	775	22.6	2,969	47.2	766
397	98.0	25	AV25	102.3	19.3	6.46	705	681	21.8	2,847	46.3	677
			STD	4.3	0.4	0.10	25	29	0.5	62	0.4	63
			MAX	112.1	20.2	6.66	742	742	22.9	2,982	47.0	786
424	99.0	27	AV27	98.5	18.9	6.40	670	647	21.4	2,789	46.5	663
121	00.0	_,	STD	5.3	0.6	0.11	30	39	0.7	81	0.4	55
			MAX	112.1	20.4	6.69	717	714	23.2	3,010	47.4	731
110	100.0	25	AV25	97.9	18.8	6.38	643	615	21.3	2,772	46.6	636
443	100.0	23	STD	7.1	0.7	0.36	34	41	0.8	106	0.5	48
			MAX	118.4	20.7	6.82	744	730	23.5	3,052	47.9	738
472	101.0	24	AV24	96.1	20.7 18.6	6.36						
4/3	101.0	24	STD				637	610 27	21.1	2,744 93	46.6	595
				5.6	0.6	0.14	22		0.7		0.5	57
400	100.0	۵E	MAX	107.5	19.9	6.66	681	662	22.5	2,939	47.8	680
498	102.0	25	AV25	99.3	18.9	6.43	652	623	21.4	2,792	46.4	605
			STD	5.6	0.6	0.12	22	24	0.7	87	0.4	46
500	400.0	0.4	MAX	110.2	20.1	6.69	694	687	22.7	2,962	47.4	661
532	103.0	34	AV34	98.1	18.8	6.44	627	594	21.2	2,770	46.4	573
			STD	6.1	0.6	0.12	25	27	8.0	94	0.4	53
			MAX	108.9	20.0	6.66	677	667	22.8	2,960	47.3	662
545	104.0	13	AV13	100.4	18.7	6.50	594	550	21.1	2,767	46.2	608
			STD	4.5	0.5	0.09	24	29	0.6	77	0.3	31
				107.2	19.5	6.66	642	616		2,883	46.6	678
569	105.0	24		96.0	18.4	6.42	591	555		2,711	46.4	559
			STD	6.0	0.6	0.12	26	29	0.7	94	0.4	48
			MAX	108.8	19.5	6.63	636	617	22.0	2,879	47.3	619
591	106.0	22	AV22	91.7	18.1	6.34	592	558	20.3	2,675	46.7	503
			STD	4.1	0.5	0.09	23	21	0.5	66	0.3	29
			MAX	101.8	19.2	6.54	651	616	21.5	2,837	47.2	621
617	107.0	26	AV26	89.9	17.9	6.32	581	550	20.1	2,650	46.8	492
			STD	6.7	0.8	0.12	31	29	0.9	115	0.4	15
			MAX		19.2	6.54	651	614	21.6	2,837	47.6	520
645	108.0	28	AV28	86.9	17.5	6.26	542	514		2,585	47.0	475
-	-	-	STD	6.3	0.7	0.13	14	20	0.8	99	0.5	11
				102.3	19.3	6.54	576	575		2,851	47.8	510
					. 5.5		-, -			_,		٥.٥

KIWC, POA TPP - IP 2 (Loc. 4) PP48x1.0", APE D180-42 OP: RMDT Date: 19-May-2016 **EMX** CSX **STK** RX8 BL# Depth **BLC TYPE** RX6 CSI FMX **BPM** RA2 kips kips ft bl/ft k-ft ksi ft kips kips ksi bpm 672 109.0 27 AV27 89.1 554 19.7 2,598 46.7 485 17.6 6.34 522 STD 7.8 8.0 0.17 33 35 0.9 120 0.6 22 MAX 6.60 21.2 47.7 102.2 19.0 645 606 2,808 522 697 110.0 25 AV25 97.6 6.55 20.8 2,756 18.7 613 580 46.0 520 STD 7.9 8.0 0.16 26 25 0.9 122 0.6 16 MAX 113.9 20.4 6.88 666 632 22.9 3,011 47.8 547 722 111.0 25 AV25 99.7 18.8 6.56 564 529 21.0 2.769 45.9 494 STD 8.0 8.0 0.17 29 33 1.0 124 0.6 20 MAX 116.5 20.5 6.91 632 601 23.2 3,032 47.3 548 746 112.0 24 AV24 98.5 18.6 6.56 543 509 20.9 2,742 46.0 495 17 24 0.9 109 0.5 STD 7.1 0.7 0.15 15 576 47.1 MAX 111.7 19.9 6.82 575 22.3 2,936 513 21.1 24 AV24 100.4 18.7 6.60 2.768 45.8 770 113.0 561 529 501 **STD** 7.1 0.7 0.16 23 27 8.0 0.5 16 109 MAX 118.7 6.98 638 23.3 3,039 46.9 20.6 596 530 24 AV24 794 114.0 102.4 19.0 6.65 572 544 21.4 2.809 45.6 493 24 0.7 0.4 STD 6.6 0.6 0.13 18 89 13 MAX 117.2 20.5 6.95 600 583 23.3 3,028 46.4 516 24 AV24 97.4 6.57 20.8 2,727 45.9 818 115.0 18.5 545 512 489 STD 7.5 8.0 0.15 21 25 0.9 114 0.5 12 MAX 113.7 20.3 6.88 584 578 22.9 2,990 47.4 513 20 AV20 101.1 18.7 535 497 21.0 2,758 45.7 838 116.0 6.62 480 **STD** 6.2 0.6 0.12 15 20 8.0 96 0.4 15 MAX 116.2 20.1 6.88 567 532 22.7 2,968 46.4 506 862 117.0 24 AV24 94.2 18.0 6.47 527 493 20.3 2,664 46.3 472 STD 7.1 26 28 8.0 0.4 25 0.7 0.12 100 21.5 2,819 MAX 106.0 19.1 6.66 587 549 47.2 529 888 118.0 26 AV26 92.0 17.9 6.48 534 498 20.1 2,645 46.2 486 STD 7.0 0.7 0.15 20 21 0.8 99 0.5 13 MAX 105.3 19.1 6.79 578 21.4 2,817 47.2 508 537 912 119.0 24 AV24 95.0 18.1 6.55 521 487 20.3 2,673 46.0 477 STD 8.8 8.0 0.15 18 25 1.0 121 0.5 17 22.4 2,930 MAX 111.8 19.8 6.82 563 531 46.9 520 937 120.0 25 AV25 102.8 18.8 6.73 539 507 21.1 2,771 45.4 493 STD 8.3 0.8 0.17 18 28 0.9 119 0.5 40 MAX 114.9 20.1 7.04 569 552 22.6 2,970 46.4 626 22 AV22 110.0 959 121.0 19.4 6.90 542 21.8 2,858 44.9 515 505 STD 8.0 8.0 0.16 23 27 0.9 0.5 117 56 MAX 128.0 20.9 7.25 594 565 23.5 3,085 46.1 646 980 122.0 21 AV21 108.2 19.2 6.92 531 510 21.7 2,841 44.8 468 STD 4.0 0.5 0.11 12 18 0.6 70 0.3 17 MAX 115.5 20.0 7.11 551 536 22.6 2,954 45.5 523 1001 123.0 21 AV21 121.0 20.3 7.18 572 553 22.8 2,990 44.0 561 0.14 17 8.0 STD 7.1 0.7 22 97 0.4 60

MAX 130.5

18 AV18 126.9

1019 124.0

21.4

20.8

7.42

7.30

601

594

589

579

24.2 3,162

23.5 3,071

44.9

43.7

648

617

KIWC, POA TPP - IP 2 (Loc. 4)

PP48x1.0", APE D180-42

Date: 19 May 2016

OP: RMDT Date: 19-May-20												
	Depth	BI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DLπ	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
		Dirit	STD	6.0	0.6	0.12	21	24	0.7	82	0.3	70
			MAX		21.9	7.49	636	619	24.9	3,238	44.3	700
1037	125.0	18	AV18	150.5	22.8	7.76	661	651	25.8	3,362	42.4	652
1007	120.0	10	STD	11.6	1.0	0.27	37	44	1.2	147	0.7	80
			MAX	169.6	24.4	8.23	726	726	27.7	3,602	43.7	829
1050	126.0	13	AV13	189.7	25.8	8.63	720	715	29.2	3,807	40.3	799
1000	120.0	10	STD	4.8	0.5	0.14	33	35	0.5	67	0.3	72
			MAX	198.1	26.7	8.89	779	779	30.5	3,949	40.8	880
1066	127.0	16	AV16	189.4	26.0	8.77	748	743	29.5	3,845	40.0	722
1000	127.0		STD	8.0	0.7	0.23	24	26	0.8	111	0.5	112
				202.3	27.1	9.17	790	789	30.6	3,995	41.1	913
1077	128.0	11	AV11	210.5	26.7	9.11	761	749	30.2	3,938	39.2	896
1077	120.0	• • •	STD	4.7	0.5	0.11	22	26	0.5	71	0.2	22
				218.0	27.5	9.32	791	786	31.2		39.5	930
1088	129.0	11	AV11	214.2	26.8	9.19	740	731		3,961	39.1	914
1000	120.0	• • •	STD	6.5	0.6	0.12	19	18	0.7	84	0.3	20
			_	224.7	27.7	9.37	764	753	31.3	4,089	39.6	940
1100	130.0	12	AV12		27.0	9.25	771	761	30.5	3,985	38.9	875
	.00.0		STD	5.3	0.6	0.15	35	36	0.6	81	0.3	105
				219.2	28.1	9.52	819	810		4,145	39.4	997
1112	131.0	12	AV12		26.7	9.20	770	762	30.1	3,944	39.0	791
			STD	5.4	0.5	0.15	27	31	0.6	79	0.3	109
				213.3	27.7	9.47	838	838	31.2	4,096	39.5	990
1124	132.0	12	AV12		27.3	9.41	798	791	30.7	4,027	38.6	885
– .			STD	4.2	0.3	0.12	32	34	0.4	51	0.2	112
				223.8	28.0	9.67	832	832	31.3	4,131	38.9	1,003
1136	133.0	12		204.8	26.9	9.29	780	776	30.2	3,966	38.9	753
			STD	5.5	0.4	0.15	25	26	0.5	59	0.3	94
				217.0	27.4	9.52	834	834	30.8	4,052	39.5	969
1148	134.0	12	AV12		26.9	9.29	811	806	30.0	3,967	38.9	967
			STD	7.7	0.5	0.15	26	27	0.6	² 81	0.3	28
			MAX	224.3	27.8	9.57	871	869	31.2	4,109	39.5	1,007
1160	135.0	12	AV12	183.8	24.8	8.78	971	924	27.7	3,664	37.4	1,054
			STD	72.3	5.9	1.68	206	189	6.7	866	11.7	247
			MAX	262.2	30.6	10.33	1,326	1,258	34.2	4,521	53.6	1,530
1170	136.0	10	AV10	236.9	29.2	9.77	1,416	1,318	32.6	4,319	37.9	1,660
			STD	11.0	0.7	0.21	46	40	8.0	105	0.4	72
			MAX	260.8	30.7	10.22	1,482	1,397	34.4	4,533	38.4	1,785
1184	137.0	14	AV14	240.8	29.4	9.92	1,414	1,342	32.8	4,348	37.6	1,674
			STD	6.2	0.3	0.12	22	19	0.4	49	0.2	48
				251.6	30.0	10.11	1,452	1,383		4,434	38.1	1,765
1202	138.0	18	AV18		29.4		1,421			4,335	37.7	1,677
			STD	8.9	0.5	0.19	29	27	0.6	79	0.3	54
				254.5	30.2	10.22	1,489	1,413		4,459	38.3	1,774
1218	139.0	16	AV16		29.1	9.85	1,374			4,293	37.8	1,648
			STD	4.2	0.3	0.10	33	29	0.3	39	0.2	47

KIWC, POA TPP - IP 2 (Loc. 4) PP48x1.0", AF OP: RMDT Date: 19													
BL# D	epth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2	
	' ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips	
			MAX	239.5	29.5	10.00	1,444	1,377	32.9	4,352	38.1	1,721	
1234 1	40.0	16	AV16	227.6	28.7	9.74	1,325	1,260	32.0	4,236	38.0	1,581	
			STD	7.9	0.5	0.17	23	25	0.6	74	0.3	41	
			MAX	239.6	29.5	10.00	1,361	1,305	32.9	4,359	38.7	1,660	
1250 1	41.0	16	AV16	226.0	28.8	9.72	1,285	1,217	32.3	4,247	38.0	1,503	
			STD	5.9	0.6	0.16	51	57	0.7	87	0.3	97	
			MAX	236.8	30.6	10.05	1,357	1,285	34.5	4,520	38.5	1,582	
		A۱	verage	117.5	20.1	6.91	689	664	22.6	2,964	45.2	668	
Std. Dev. 47.5 3.7 1.21 210 201 4.1 543									543	3.5	293		
		Max	ximum	262.2	30.7	10.33	1,489	1,413	34.5	4,533	53.6	1,785	
	Total number of blows analyzed: 1249												

BL# Sensors

2-1250 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

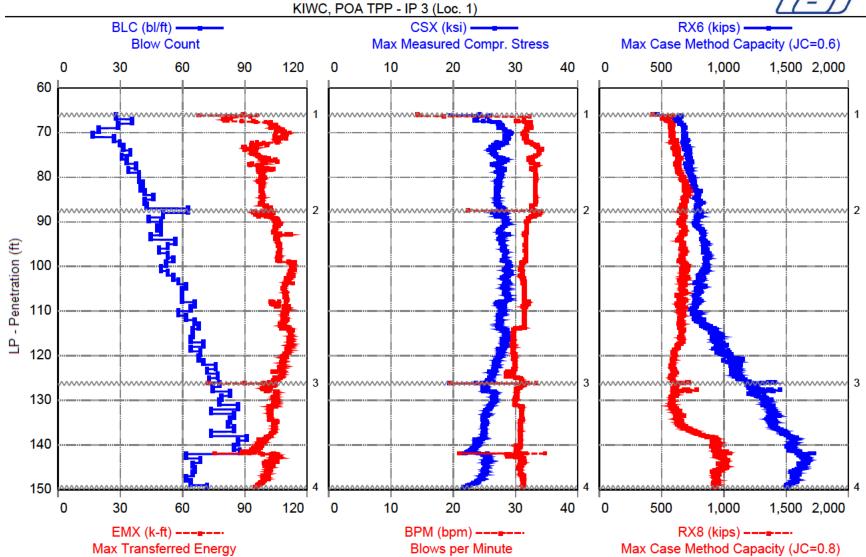
BL# Comments

- 2 Begin monitoring near Tip El. -110 ft, 11:09:10 AM, 5/19/2016
- 1158 Continue after a 4 min pause near Tip El. -164. 11:38:12 AM
- 1250 End of Driving, near Tip El. -170 ft, 141 ft soil penetration, 5/19/2016, 11:40:38 AM

Time Summary

Drive 25 minutes 16 seconds 11:09 AM - 11:34 AM (5/19/2016) BN 2 - 1157

Stop 3 minutes 45 seconds 11:34 AM - 11:38 AM


Drive 2 minutes 25 seconds 11:38 AM - 11:40 AM BN 1158 - 1250

Total time [00:31:27] = (Driving [00:27:41] + Stop [00:03:45])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 06-June-2016 Test started: 03-June-2016

- 1 Begin driving & monitoring, near Tip EI -92 ft, 6/3/2016, 10:33 AM
- 2 Restart after 4 minutes 4 seconds

- 3 Move PDA sensor up closer to top of pile. Restart @ 12:48:00 PM
- 4 End drivng, near Tip El -184 ft, soil penetration approx 149 ft, 2:02:12 PM

KIWC, POA TPP - IP 3 (Loc. 1) PP48x1.0", APE 15-4 OP: RMDT Date: 03-June-2016

147.65 in² SP: 0.492 k/ft³ AR: EM: 31,052 ksi 188.00 ft LE: WS: 17,100.0 f/s JC: 0.35 []

EMX: Max Transferred Energy FMX: Maximum Force CSX: Max Measured Compr. Stress VMX: Maximum Velocity

CSI: Max F1 or F2 Compr. Stress
PX7: Max Case Method Capacity (BPM: Blows per Minute

RX6:	Max Ca	ise Met	thod Ca	pacity (JC=0.6)	R	X7: Ma	ax Case	e Metho	d Capad	city (JC	=0.7)
	Max Ca				JC=0.8)							
BL#	Depth		TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
28	67.0	28	AV28	84.2	23.8	24.7	616	533	3,519	13.5	26.3	572
			STD	16.2	3.5	10.4	76	60	510	2.0	4.0	68
			MAX	108.0	28.1	33.0	698	621	4,146	15.6	31.5	654
64	68.0	36	AV36	89.7	25.2	31.5	639	556	3,724	14.3	26.9	589
			STD	9.3	1.6	0.7	21	21	234	1.0	2.2	21
			MAX	102.8	27.7	32.6	688	600	4,084	15.9	30.3	627
93	69.0	29	AV29	103.3	27.6	32.4	673	585	4,077	15.8	29.8	620
			STD	1.5	0.4	0.3	19	17	55	0.2	0.7	18
			MAX	109.4	28.8	32.8	711	631	4,252	16.5	31.4	660
113	70.0	20	AV20	106.8	28.4	31.8	687	586	4,197	16.3	30.8	628
			STD	1.9	0.4	0.2	13	14	55	0.2	0.6	14
			MAX	110.7	29.2	32.1	713	626	4,314	16.6	32.2	666
130	71.0	17	AV17	108.8	28.9	31.5	686	587	4,274	16.6	31.0	633
			STD	2.6	0.4	0.2	16	11	59	0.2	0.6	15
			MAX	113.4	29.6	31.9	716	612	4,374	17.1	31.9	663
157	72.0	27	AV27	105.9	28.6	31.8	693	602	4,221	16.4	30.6	641
			STD	2.5	0.3	0.2	19	20	38	0.3	0.5	22
			MAX	115.6	29.2	32.0	735	641	4,316	17.2	31.6	685
187	73.0	30	AV30	99.3	27.6	32.6	693	605	4,081	15.7	30.0	645
			STD	4.8	8.0	0.7	_18	20	115	0.4	0.9	19
			MAX	106.3	28.9	34.0	721	643	4,269	16.5	31.9	671
219	74.0	32	AV32	92.5	26.5	33.8	701	613	3,908	15.0	29.4	656
			STD	3.6	0.6	0.6	18	19	92	0.4	0.7	19
			MAX	100.2	27.9	35.1	733	645	4,116	15.7	30.6	688
254	75.0	35	AV35	94.5	26.5	33.8	722	630	3,911	15.1	29.2	672
			STD	1.4	0.2	0.1	17	18	37	0.2	0.7	18
005	70.0	0.4	MAX	97.5	27.0	34.2	752	661	3,985	15.4	30.5	705
285	76.0	31	AV31	97.8	27.2	33.0	718	637	4,014	15.5	29.3	669
			STD	2.2	0.5	0.5	16	16	71	0.3	1.0	14
040	77.0	00	MAX	104.8	28.3	33.8	753	677	4,173	16.2	32.0	702
318	77.0	33	AV33	101.2	27.9	32.6	729	641	4,119	15.8	30.8	680
			STD	2.8	0.5	0.3	22	14	76	0.2	0.9	18
050	70.0	0.0	MAX	107.5	29.1	33.4	770	667	4,298	16.4	32.6	714
356	78.0	38	AV38	95.7	27.0	33.3	711	627	3,986	15.3	29.9	663
			STD	3.9	0.6	0.5	_20	14	88	0.3	1.0	17
000	70.6	o .	MAX	101.7	28.1	34.8	755	651	4,149	16.0	31.7	703
390	79.0	34		99.9	27.7	33.0	727	640	4,086	15.6	30.8	680
			STD	2.9	0.5	0.3	19	15	72	0.2	0.6	16

KIWC, POA TPP - IP 3 (Loc. 1)

OP: RMDT

PP48x1.0", APE 15-4

Date: 03-, lune-2016

OP: RMDT									•	Date: 0	3-June	-2016
	Depth	BLC	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
	· ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
			MAX	105.3	28.6	33.6	759	668	4,219	16.1	32.0	713
429	80.0	39	AV39	98.8	27.6	33.3	739	663	4,074	15.5	31.1	697
			STD	0.6	0.2	0.1	15	17	31	0.1	0.5	16
			MAX	100.1	27.9	33.4	765	708	4,125	15.8	31.8	731
468	81.0	39	AV39	98.5	27.4	33.3	745	671	4,048	15.4	30.9	703
			STD	1.2	0.3	0.1	14	16	39	0.2	0.5	15
			MAX	101.7	28.0	33.5	785	701	4,131	15.8	31.7	738
509	82.0	41	AV41	98.4	27.3	33.3	763	694	4,037	15.4	30.7	721
			STD	0.7	0.3	0.1	14	19	40	0.1	0.6	18
			MAX	100.1	27.9	33.4	793	742	4,121	15.7	31.6	766
549	83.0	40	AV40	98.3	27.2	33.3	767	697	4,021	15.3	30.8	727
			STD	0.5	0.2	0.1	14	18	33	0.1	0.6	17
			MAX	99.7	27.8	33.6	793	747	4,098	15.6	31.6	766
591	84.0	42	AV42	98.5	27.1	33.3	795	717	4,004	15.3	30.5	752
			STD	0.4	0.2	0.1	18	20	30	0.2	0.5	20
			MAX	99.9	27.5	33.6	833	755	4,058	15.6	31.2	794
637	85.0	46	AV46	98.9	27.1	33.3	790	698	4,000	15.3	30.6	736
			STD	0.6	0.3	0.1	16	21	39	0.2	0.6	21
			MAX	100.1	27.7	33.7	825	740	4,096	15.6	31.3	782
679	86.0	42	AV42	98.4	27.1	33.3	809	689	4,005	15.3	30.6	733
			STD	0.5	0.2	0.1	18	17	30	0.1	0.6	15
700	07.0	40	MAX	100.0	27.5	33.6	858	724	4,055	15.6	31.6	766
722	87.0	43	AV43	99.6	27.3	33.0	795	676	4,037	15.5	30.9	714
			STD	1.8	0.4	0.3	21	17	58	0.3	8.0	18
705	00.0	00	MAX	106.1	28.4	33.5	840	715	4,187	16.0	32.8	748
785	88.0	63	AV63	99.2	27.6	32.7	793	669	4,071	15.6	30.8	708
			STD	3.8	0.7	4.0	19	22	100	0.3	1.0	22
020	00.0	Г4	MAX AV51	109.9	28.8	34.3	852	726	4,251	16.2	32.6	765
836	89.0	51	STD	99.0	27.5	33.3	807	676	4,064	15.5	30.6	709
			MAX	3.4 108.7	0.7 29.2	0.4 34.2	24 871	18 728	106	0.4 16.3	0.9 33.4	18 772
880	90.0	44	AV44	108.7	28.4	32.2	786	670	4,305	16.0	31.1	702
000	90.0	44	STD	1.3	0.3	0.2	15	17	4,186 39	0.3	0.7	19
				106.8	29.0	32.7	825		4,277	16.5	32.8	761
930	91.0	50		106.8	28.5	31.9	778		4,217	16.0	31.2	691
330	91.0	30	STD	0.8	0.2	0.1	13	16	33	0.2	0.7	13
			MAX	109.5	29.0	32.3	817	699	4,284	16.4	33.5	722
978	92.0	48		103.5	27.9	31.9	805	689	4,113	15.7	30.3	712
370	32.0	40	STD	0.4	0.3	0.0	21	16	4,113	0.2	0.6	14
			MAX	105.7	28.4	31.9	850	723	4,187	16.1	31.4	743
1028	93.0	50	AV50	106.1	27.8	31.7	836	683		15.6	30.2	719
1020	30.0	00	STD	2.7	0.6	0.2	17	17	82	0.3	0.9	11
			MAX	112.8	29.2	31.9	866	714	4,318	16.4	33.1	739
1073	94.0	45	AV45	105.7	27.9	31.7	835	657		15.6	30.1	706
.5,5	5 1.0	.0	STD	1.0	0.4	0.1	14	15	54	0.3	0.6	16
				110.4	28.9	31.8	871		4,267	16.4	31.8	751
									.,		•	

PDIPLOT2 2016.1.999.0 - Printed 06-June-2016 PP48x1.0", APE 15-4 Date: 03-June-2016 KIWC, POA TPP - IP 3 (Loc. 1) OP: RMDT BL# Depth BLC TYPE **EMX** CSX BPM RX6 RX8 FMX VMX CSI RX7 kips kips ft bl/ft k-ft f/s ksi ksi bpm kips kips 1130 95.0 57 AV57 106.0 27.8 31.7 850 660 4,108 15.5 30.0 713 02 STD 0.6 0.0 21 20 30 0.2 0.5 17

			STD	0.6	0.2	0.0	21	20	30	0.2	0.5	17
			MAX	107.6	28.3	31.8	899		4,175	15.8	31.2	757
1183	96.0	53	AV53	106.8	28.1	31.7	850	676	4,151	15.7	30.5	718
			STD	0.4	0.1	0.1	11	15	19	0.1	0.5	11
			MAX	108.1	28.4	31.8	881		4,191	16.0	31.6	739
1232	97.0	49	AV49	106.9	28.2	31.7	854		4,166	15.9	30.8	717
			STD	0.4	0.2	0.0	14	19	31	0.2	0.6	12
			MAX	107.8	28.8	31.8	897	725	4,246	16.2	32.2	749
1285	98.0	53	AV53	106.8	28.4	31.7	874	669	4,196	16.0	31.1	730
			STD	0.6	0.2	0.1	14	18	28	0.1	0.6	13
			MAX	109.0	28.9	31.8	902	713	4,266	16.2	32.6	757
1341	99.0	56	AV56	106.4	28.3	31.7	864	660	4,176	15.9	30.9	724
			STD	0.5	0.2	0.0	15	16	28	0.2	0.6	13
			MAX	107.5	28.7	31.7	896		4,238	16.2	32.7	753
1393	100.0	52	AV52	112.8	29.0	31.1	862		4,284	16.4	31.7	727
			STD	1.2	0.2	0.2	17	22	31	0.2	0.6	15
			MAX	114.7	29.4	31.8	893		4,345	16.8	33.0	765
1443	101.0	50	AV50	113.4	28.8	31.0	863		4,250	16.4	31.6	738
			STD	0.5	0.3	0.1	24	22	50	0.2	8.0	19
4 400	400.0		MAX	114.8	29.5	31.2	925		4,362	16.8	33.2	773
1496	102.0	53	AV53	112.1	28.9	31.2	829		4,266	16.4	32.0	723
			STD	0.5	0.3	0.1	21	19	46	0.2	1.0	18
1550	102.0	EG	MAX AV56	113.4	29.6	31.3	902		4,375	16.8	34.2	773
1552	103.0	90		111.7	28.5	31.2	825		4,213	16.2	31.3	747
			STD MAX	1.1 114.6	0.4 29.4	0.2 31.6	20	25 740	60	0.3	1.0 33.7	30
1610	104.0	50	AV58	114.6	29.4 28.7	31.4	871 797		4,345 4,231	16.8 16.3	31.8	805 713
1010	104.0	50	STD	1.0	0.3	0.1	18	16	42	0.2	0.8	15
			MAX	114.1	29.3	31.6	852		4,332	16.8	34.1	763
1672	105.0	62	AV62	109.3	28.3	31.5	813		4,183	16.1	31.1	714
1072	100.0	02	STD	0.4	0.2	0.1	23	17	37	0.2	0.6	17
			MAX	110.1	28.9	31.6	872		4,265	16.6	32.7	751
1732	106.0	60	AV60	109.4	28.4	31.5	797	675	4,201	16.1	31.2	712
			STD	0.5	0.2	0.1	19	18	33	0.2	0.6	17
			MAX	111.0	29.0	31.7	840	714		16.4	32.6	747
1792	107.0	60	AV60	109.9	28.6	31.5	783		4,224	16.1	31.5	692
			STD	0.4	0.3	0.1	17	24	40	0.2	0.6	20
				110.9	29.2	31.6	816		4,317	16.7	33.2	749
1852	108.0	60	AV60	110.0	28.7	31.5	798		4,241	16.2	31.6	711
			STD	1.5	0.3	0.1	19	21	46	0.2	0.8	16
			MAX	111.3	29.4	32.3	847	706	4,339	16.6	33.6	740
1918	109.0	66	AV66	104.3	27.5	32.0	781	645	4,056	15.4	29.9	680
			STD	1.4	0.3	0.2	21	14	50	0.3	0.6	13
			MAX	107.7	28.1	32.3	851	687	4,150	15.9	31.3	715
1982	110.0	64	AV64	109.9	27.9	31.5	763	669	4,116	15.6	30.0	706

KIWC, POA TPP - IP 3 (Loc. 1)

OP: RMDT

Peter 03- June-2016

OP: RMDT Date: 03-June-20												
	Depth	BI C	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
DLπ	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
	10	Dirit	STD	1.4	0.3	0.1	16	20	38	0.2	0.5	18
			MAX		28.9	31.9	798		4,262	16.1	32.1	741
2040	111.0	58	AV58	109.5	27.9	31.5	781	663	4,121	15.6	30.1	700
2040	111.0	00	STD	0.9	0.3	0.1	27	16	43	0.2	0.6	14
			MAX		28.7	31.6	850	696	4,234	16.2	31.8	728
2102	112.0	62	AV62	109.1	27.5	31.5	787	657	4,062	15.4	29.5	696
2102	112.0	02	STD	0.9	0.2	0.1	34	13	30	0.2	0.5	11
			MAX	111.4	28.0	31.6	847		4,131	15.7	30.4	732
2168	113.0	66	AV66	109.2	27.6	31.5	826		4,081	15.4	29.7	692
2100	110.0	00	STD	1.0	0.2	0.1	36	12	31	0.2	0.4	12
			MAX		28.2	31.7	891	687		15.8	30.5	726
2236	114.0	68	AV68	108.8	27.5	31.4	864	659		15.3	29.7	695
2200	111.0	00	STD	1.6	0.3	0.2	45	11	42	0.2	0.4	12
			MAX		28.2	31.7	954		4,167	16.0	31.0	728
2301	115.0	65	AV65	111.6	28.3	29.8	924	671	4,173	16.0	31.0	709
2001	110.0	00	STD	1.4	0.4	0.2	41	13	64	0.3	0.6	13
			MAX		28.9	30.8	997		4,264	16.5	32.0	738
2366	116.0	65	AV65	112.4	28.5	29.8	951	661	4,209	16.1	31.1	702
	1.0.0		STD	0.6	0.2	0.2	47	13	33	0.2	0.4	12
			MAX		29.0	30.1	1,017		4,275	16.6	31.9	736
2430	117.0	64	AV64	112.4	28.4	29.8	950	665	4,188	16.0	31.1	713
00	1 1 7 10	0.	STD	0.6	0.3	0.2	44	14	45	0.2	0.6	15
			MAX		29.0	30.0	1,031		4,288	16.3	32.5	741
2500	118.0	70	AV70	112.0	28.3	29.7	978	645	4,179	16.0	30.9	693
		. •	STD	0.7	0.4	0.2	54	16	55	0.2	0.7	16
			MAX		29.0	30.0	1,088	678	4,284	16.4	32.2	728
2564	119.0	64	AV64	111.3	27.8	29.7	969	621	4,111	15.7	30.2	664
			STD	1.0	0.5	0.2	48	14	70	0.3	1.0	18
			MAX		28.9	30.1	1,056	645	4,274	16.3	32.5	693
2633	120.0	69	AV69	110.5	27.7	29.8	1,014	606	4,093	15.5	30.0	637
			STD	1.0	0.4	0.2	[′] 56	10	² 57	0.3	8.0	12
			MAX	112.4	28.6	30.1	1,150	631	4,225	16.1	31.6	698
2701	121.0	68	AV68	109.1	27.3	29.9	1,072	603	4,035	15.3	29.1	657
			STD	0.8	0.3	0.1	57	11	39	0.2	0.7	32
			MAX	110.7	28.1	30.0	1,184	620	4,155	15.8	31.0	749
2771	122.0	70	AV70	108.3	27.0	29.9	1,085	597	3,981	14.9	28.3	665
			STD	0.7	0.3	0.1	51	8	41	0.2	0.7	39
			MAX	110.0	27.6	30.0	1,182	622	4,072	15.4	30.1	753
2847	123.0	76	AV76	108.0	26.9	29.9	1,103	589	3,976	14.9	28.0	678
			STD	8.0	0.2	0.1	38	9	28	0.2	0.4	34
			MAX	109.7	27.6	30.0	1,158	617	4,077	15.4	29.5	734
2919	124.0	72	AV72	107.9	26.7		1,100		3,940	14.8	28.1	681
			STD	1.6	0.3	0.5	37	10	47	0.3	0.7	28
			MAX		27.1	30.0	1,159	639	4,006	15.3	29.4	726
2996	125.0	77		107.8	26.3	28.9	1,110		3,881	14.5	27.1	698
			STD	1.0	0.2	0.7	32	13	28	0.2	0.3	31

KIWC, POA TPP - IP 3 (Loc. 1)

OP: RMDT

PP48x1.0", APE 15-4

Date: 03- June-2016

OP: RMDT Date: 03-June-2												
	# Depth	BI C	TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
DL.	ft	bl/ft		k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
		5,,,,,	MAX	109.1	26.7	30.6	1,188		3,941	15.0	28.3	772
3069	9 126.0	73	AV73	105.1	26.0	31.0	1,179	600	3,836	14.3	27.1	784
500.	120.0	70	STD	0.9	0.2	0.1	71	39	36	0.2	0.6	85
			MAX	106.6	26.6	31.1	1,451	782	3,927	14.7	28.5	1,115
314	7 127.0	78		100.8	25.0	30.9	1,250	639	3,686	13.5	26.6	887
517	127.0	70	STD	10.3	2.0	3.4	96	43	298	1.1	2.2	91
			MAX	105.0	26.0	34.2	1,441	777	3,841	14.2	27.8	1,108
322	2 128.0	75	AV75	100.9	25.2	30.5	1,282	634		13.6	26.7	929
JZZZ	2 120.0	75	STD	1.4	0.2	0.3	83	63	37	0.2	0.3	90
			MAX	103.3	25.7	31.2	1,458	796	3,797	13.9	27.7	1,127
3301	5 129.0	83	AV83	104.9	26.6	30.3	1,263	618		14.8	28.0	852
5500	3 123.0	00	STD	1.4	0.5	0.1	51	41	70	0.4	0.6	68
			MAX	106.5	27.1	30.5	1,481	829		15.2	29.1	1,155
338/	4 130.0	79	AV79	100.5	26.7	30.3	1,323		3,936	14.8	28.6	914
330-	+ 130.0	73	STD	0.9	0.2	0.2	47	14	33	0.2	0.5	46
			MAX		27.2	30.5	1,403	627	4,011	15.1	29.6	994
3/16	2 131.0	78	AV78	107.1	26.5	30.0	1,342	589	3,917	14.7	28.2	936
3402	2 131.0	70	STD	0.8	0.3	0.1	33	10	44	0.2	0.6	33
			MAX		27.1	30.3	1,394		4,003	15.2	29.6	996
35/0	9 132.0	27	AV87	107.0	26.0	30.8	1,373	593	3,836	14.4	27.5	979
3343	132.0	07	STD	1.3	0.2	0.5	31	22	3,030	0.1	0.4	31
			MAX		26.6	31.3	1,421	636	3,922	14.6	28.4	1,028
362	3 133.0	7/	AV74	100.3	25.5	31.0	1,389	624		14.0	26.8	1,026
302.	3 133.0	/4	STD	0.4	0.2	0.1	1,369	23	24	0.1	0.3	22
			MAX	103.3	25.9	31.1	1,433	677	3,821	14.3	27.6	1,055
3709	3 134.0	25	AV85	103.5	25.3	31.0	1,403	646	3,736	13.9	27.1	1,033
3700	3 134.0	00	STD	0.4	0.2	0.1	29	24	3,730	0.2	0.3	26
			MAX	103.4	25.8	31.1	1,463	695	3,807	14.3	27.8	1,079
379 ⁻	1 135.0	83	AV83	103.4	25.1	31.0	1,382	638	3,699	13.6	27.0	1,079
3/3	1 133.0	00	STD	1.4	0.2	0.1	30	25	32	0.2	0.5	27
			MAX		25.5	31.3	1,450	697		14.1	28.0	1,073
3873	3 136.0	82	AV82	104.6	25.1	30.9	1,396	654		13.6	27.2	1,075
307	3 130.0	02	STD	0.5	0.2	0.1	25	28	28	0.2	0.3	26
				105.6	25.6		1,463		3,776	14.0		1,104
3959	3 137.0	85	AV85	104.5	25.1		1,441		3,703	13.7		1,079
3330	3 137.0	00	STD	0.4	0.1	0.1	31	33	19	0.1	0.2	32
			MAX		25.4	31.0	1,509	790		14.0	28.3	1,150
403	2 138.0	74	AV74		25.1		1,489		3,704	13.7	27.8	1,142
7002	2 100.0	7 -	STD	0.6	0.1	0.1	24	26	20	0.1	0.3	25
			MAX		25.3	31.0	1,540			14.0	28.5	1,198
112	3 139.0	91		100.7	24.7		1,558		3,647	13.4	27.8	1,233
712	3 100.0	31	STD	1.1	0.2	0.1	25	36	36	0.2	0.2	30
			MAX		25.1	31.0	1,601		3,707	13.8	28.5	1,287
421	0 140.0	27	AV87	97.9	24.0		1,563		3,545	12.9	27.3	1,252
74 1	J 17U.U	07	STD	1.3	0.3	0.1	21	24	47	0.2	0.5	22
				102.7	24.6	31.0	1,605		3,633	13.4	28.3	1,290
			IVI	102.7	2-7.0	51.0	1,000	JU -1	5,555	10.7	20.0	1,230

F	P48x1.0)", APE	15-4
	Date: 03	3-June	-2016
X	VMX	CSI	RX7

OP: RMDT	, ,	,						Date: 0	3-June	-2016
BL# Depth	BLC TYPE	EMX	CSX	BPM	RX6	RX8	FMX	VMX	CSI	RX7
ft	bl/ft	k-ft	ksi	bpm	kips	kips	kips	f/s	ksi	kips
4295 141.0	85 AV85	96.9	23.6	30.5	1,551	935	3,482	12.6	26.0	1,243
	STD	1.2	0.3	0.3	23	27	42	0.1	0.7	25
	MAX	100.3	24.0	31.0	1,612	1,011	3,551	12.9	27.5	1,312
4383 142.0	88 AV88	92.6	22.9	30.2	1,583	973	3,384	12.2	24.5	1,278
	STD	5.2	0.8	3.2	58	53	122	0.4	1.2	55
	MAX		26.1	38.8	-	1,089	3,847	13.5	28.7	1,410
4445 143.0	62 AV62	104.7	25.4	29.7	1,646	980	3,753	13.2	28.1	1,313
	STD	2.0	0.3	0.9	35	35	49	0.2	0.4	35
	MAX		26.2	31.4		1,065	3,870	13.5	28.8	1,396
4514 144.0	69 AV69	104.2	25.6	31.0		1,018	3,780	13.1	28.2	1,345
	STD	2.0	0.3	0.2	22	23	46	0.2	0.5	22
	MAX		26.2	31.8	1,708	1,066	3,871	13.4	29.2	1,386
4579 145.0	65 AV65	101.5	25.3	31.0	1,637	1,002	3,735	13.0	27.7	1,320
	STD	1.4	0.2	0.3	21	25	36	0.1	0.3	22
	MAX		25.9	31.6	1,681	1,040	3,826	13.3	28.3	1,360
4645 146.0	66 AV66	101.7	25.2	30.8	1,611	979	3,715	13.1	28.4	1,295
	STD	0.7	0.2	0.2	29	34	31	0.1	0.6	31
	MAX	103.8	25.7	31.1	1,663	1,039	3,794	13.4	30.1	1,349
4710 147.0	65 AV65	100.8	25.0	31.0	1,578	941	3,685	13.1	29.7	1,260
	STD	1.0	0.3	0.2	27	28	41	0.1	0.6	28
	MAX	102.7	25.6	31.5	1,632	1,024	3,777	13.4	30.8	1,326
4772 148.0	62 AV62	100.0	24.6	31.2	1,570	938	3,632	13.1	30.0	1,254
	STD	0.9	0.3	0.1	23	20	38	0.1	0.6	21
	MAX	102.4	25.2	31.4	1,636	990	3,727	13.3	31.0	1,313
4836 149.0	64 AV64	98.4	23.7	31.3	1,557	941	3,496	12.6	29.2	1,249
	STD	0.9	0.4	0.1	30	24	60	0.3	8.0	26
	MAX	100.2	24.2	31.5	1,607	992	3,578	13.0	30.6	1,298
4872 149.5	72 AV36	96.2	22.4	31.3	1,517	929	3,312	11.9	27.6	1,223
	STD	0.9	0.3	0.1	14	12	50	0.3	0.6	12
	MAX	98.4	23.2	31.5	1,547	957	3,421	12.2	28.8	1,251
	Average	104.4	26.7	31.1	1,083		3,944	14.8	29.2	853
	Std. Dev.	5.9	1.7	1.6	322	125	245	1.2	1.9	228
	Maximum	115.6	29.6	38.8	1,746	1,089	4,375	17.2	34.2	1,410
	-	Total nu	mhar of	hlows						

Total number of blows analyzed: 4872

BL# Sensors

F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00); 1-754

F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

755-4872 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 7 PDIPLOT2 2016.1.999.0 - Printed 06-June-2016

KIWC, POA TPP - IP 3 (Loc. 1) PP48x1.0", APE 15-4 OP: RMDT Date: 03-June-2016

BL# Comments

1 Begin driving & monitoring, near Tip EI -92 ft, 6/3/2016, 10:33 AM

755 Restart after 4 minutes 4 seconds

3085 Move PDA sensor up closer to top of pile. Restart @ 12:48:00 PM

4373 LE = 196.00 ft

4872 End driving, near Tip EI -184 ft, soil penetration approx 149 ft, 2:02:12 PM

Time Summary

Drive 27 minutes 38 seconds 10:33 AM - 11:01 AM (6/3/2016) BN 1 - 754

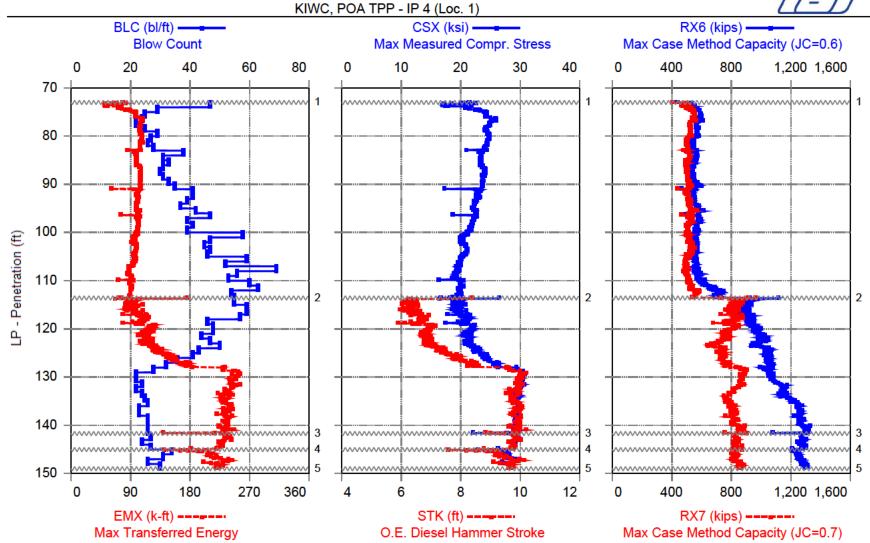
Stop 4 minutes 4 seconds 11:01 AM - 11:05 AM

Drive 1 hour 15 minutes 6 seconds 11:05 AM - 12:20 PM BN 755 - 3084

Stop 27 minutes 15 seconds 12:20 PM - 12:48 PM

Drive 41 minutes 51 seconds 12:48 PM - 1:29 PM BN 3085 - 4372

Stop 16 minutes 12 seconds 1:29 PM - 1:46 PM


Drive 16 minutes 6 seconds 1:46 PM - 2:02 PM BN 4373 - 4872

Total time [03:28:16] = (Driving [02:40:43] + Stop [00:47:33])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 17-May-2016 Test started: 12-May-2016

^{1 -} Begin Driving, APE 15-4, pile tip near -92 ft, 5/12/2016 2:56:23 PM 2 - Halt APE 15-4, 4:10 PM 5/12/2016. D180-42 5/13/2016 7:40:14 AM

^{116 2:56:23} PM 4 - 14 min pause, install water resistant PDA sensors, continue 8:32:29 AM 5 - End of driving, tip near -175 ft, 5/13/2016 8:35:35 AM

^{3 -} Stop and restart D180-42

KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42 OP: RMDT Date: 12-May-2016 0.492 k/ft³ 147.65 in² AR: SP: LE: 189.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) RX8 CSI **FMX BPM** RA2 BL# Depth BLC TYPE **EMX** CSX STK RX6 ft bl/ft k-ft ksi ft kips kips ksi kips bpm kips ** 47 74.0 47 64.1 511 454 32.9 433 AV47 19.4 20.5 2,868 ** STD 12.8 2.2 36 32 2.3 325 11.8 88 ** MAX 93.6 24.3 563 498 25.7 3,582 41.6 616 75.0 29 AV29 82.7 22.3 ** 23.3 76 562 487 3,290 32.2 397 ** 25 0.9 **STD** 8.8 1.2 17 1.2 171 53 ** MAX 98.8 24.2 595 516 25.4 3,579 33.5 522 ** 101 76.0 25 AV25 98.6 24.4 596 514 25.4 3.596 30.8 447 ** 0.1 8 0.1 0.1 27 STD 0.6 8 22 ** MAX 99.3 24.6 613 531 25.6 3,630 30.9 535 24 AV24 106.5 ** 125 77.0 25.5 598 26.6 3,768 30.3 481 508 ** STD 4.2 0.6 12 12 0.7 90 0.4 22 ** 27.3 3,861 30.9 MAX 110.1 26.2 620 526 532 ** 22 AV22 571 25.9 3,687 29.9 427 147 78.0 105.8 25.0 490 ** **STD** 0.2 10 8 0.2 0.1 8.0 29 11 ** MAX 107.1 25.4 591 509 26.2 3,757 30.2 450 ** 172 79.0 25 AV25 103.8 24.3 572 25.4 3,587 29.9 445 494 ** STD 0.7 0.2 8 0.2 0.1 41 6 23 ** 25.7 3,643 MAX 105.5 24.7 589 517 30.0 578 201 0.08 29 AV29 106.3 24.7 ** 576 499 25.9 3,644 29.6 563 ** STD 1.7 0.2 8 6 0.3 33 0.2 65 ** MAX 108.8 594 26.3 3.694 30.0 25.0 509 628 ** 228 81.0 27 AV27 107.4 24.8 554 483 26.1 3,664 29.5 478 ** 0.3 0.0 STD 0.7 0.1 11 9 22 47 ** 29.6 MAX 108.7 25.0 577 509 26.5 3.697 609 ** 254 82.0 26 AV26 106.1 24.5 547 25.6 3.615 29.5 483 478 ** STD 1.2 0.1 0.2 0.1 42 6 7 17 ** MAX 109.2 24.8 556 494 26.1 3,662 29.6 545 ** 282 83.0 28 AV28 102.5 23.7 547 481 24.9 3,500 28.4 513 ** 2.2 31 2.3 5.1 STD 13.8 20 327 68 MAX 108.0 24.6 ** 584 494 25.8 3,628 29.7 619 ** 320 84.0 38 AV38 99.3 23.6 560 491 24.7 3,481 30.1 514 ** **STD** 2.9 0.3 11 10 0.4 49 0.5 49 ** MAX 108.3 24.5 588 514 26.1 3,624 30.8 626 ** 351 85.0 31 AV31 100.2 24.9 3,467 29.9 23.5 564 497 537 ** STD 0.6 0.1 9 0.3 0.2 30 8 15 ** MAX 101.0 23.7 579 516 25.3 3,504 30.2 586 ** 384 86.0 33 AV33 100.1 23.4 538 476 25.6 3,462 29.7 525

**

15

11

0.5

STD

0.9

0.1

0.4

20

41

KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42

OP: F	RMDT	1 1 - 11	4 (LUC	. 1)					1170	Date:	12-May	
	Depth	BI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DLπ	ft	bl/ft	· · · · L	k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
	10	Dirit	MAX	101.7	23.7	**	575	501	26.4	3,503	30.3	614
415	87.0	31	AV31	104.2	23.8	**	539	489	26.1	3,513	28.1	518
413	07.0	31	STD	2.3	0.3	**	10	16	0.3	38	0.3	9
			MAX	106.8	24.3	**	564	518	26.7	3,588	29.0	536
445	88.0	30	AV30	106.3	24.1	**	540	484	26.4	3,560	27.8	516
770	00.0	50	STD	0.7	0.2	**	11	14	0.3	23	0.1	15
			MAX	107.4	24.4	**	565	521	26.9	3,600	27.9	536
476	89.0	31	AV31	105.7	23.8	**	548	488	25.7	3,521	27.7	521
470	03.0	01	STD	0.6	0.2	**	9	11	0.5	26	0.1	24
			MAX	106.8	24.3	**	569	510	26.9	3,582	27.8	558
509	90.0	33	AV33	104.9	23.8	**	554	489	25.4	3,511	27.7	530
000	50.0	00	STD	0.9	0.1	**	17	9	0.2	20	0.1	56
			MAX	108.1	24.1	**	602	512	25.8	3,560	27.8	599
544	91.0	35	AV35	100.1	23.0	**	560	483	24.5	3,391	27.4	477
044	31.0	00	STD	17.0	2.5	**	46	31	2.7	372	5.0	54
			MAX	106.6	24.0	**	610	516	25.6	3,538	42.7	585
585	92.0	41	AV41	101.3	23.1	**	542	483	24.6	3,412	28.3	488
000	02.0	• • •	STD	3.1	0.4	**	15	12	0.6	63	0.3	47
			MAX	106.5	23.9	**	571	512	25.8	3,527	29.5	569
626	93.0	41	AV41	101.1	23.0	**	545	506	24.8	3,389	28.4	502
020	30.0	71	STD	1.9	0.3	**	10	14	0.3	42	0.2	18
			MAX	106.2	23.6	**	573	536	25.7	3,487	28.7	559
665	94.0	39	AV39	100.2	22.6	**	550	509	24.4	3,331	28.2	505
000	0 1.0	00	STD	0.9	0.2	**	7	12	0.4	35	0.1	20
			MAX	102.3	23.1	**	572	540	25.1	3,417	28.5	567
702	95.0	37	AV37	99.8	22.3	**	567	506	23.5	3,291	28.1	510
, 02	00.0	0,	STD	0.7	0.1	**	14	11	0.3	20	0.1	12
			MAX	101.1	22.6	**	597	544	24.1	3,342	28.4	540
744	96.0	42	AV42	101.8	22.4	**	581	528	23.4	3,314	28.0	514
			STD	2.1	0.3	**	18	19	0.2	41	0.2	14
			MAX	104.9	22.9	**	623	574	23.9	3,386	28.3	537
791	97.0	47	AV47	99.8	22.2	**	575	503	22.9	3,281	27.6	512
		• •	STD	11.1	1.6	**	34	30	1.6	235	4.0	27
					23.0	**	612	553		3,394	37.1	547
830	98.0	39	AV39	102.0	22.2	**	586	498	23.1	3,277	28.7	529
			STD	1.1	0.1	**	12	9	0.2	20	0.2	14
				103.7	22.5	**	610	514	23.5	3,323	29.0	553
871	99.0	41	AV41	102.6	21.9	**	569	491	22.7	3,239	29.2	531
			STD	0.7	0.2	**	10	8	0.2	29	0.1	19
			MAX		22.3	**	588	516	23.2	3,289	29.4	562
910	100.0	39		100.9	21.5	**	566	485	22.6	3,181	29.3	534
			STD	0.7	0.3	**	11	9	0.3	37	0.1	14
			MAX		22.0	**	591	509	23.1	3,247	29.4	554
968	101.0	58	AV58	99.3	20.9	**	559	498	22.1	3,081	30.0	511
	-		STD	1.8	0.3	**	12	12	0.6	51	0.5	15
			MAX	102.6	21.5	**	588	526	23.1	3,173	30.5	541
										•		

1847 117.0

59 AV59

96.5

19.9

6.37

886

756

21.5 2,932

46.6

882

KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42 OP: RMDT Date: 12-May-2016 **EMX** CSX STK RX8 BL# Depth **BLC TYPE** RX6 CSI FMX **BPM** RA2 kips bpm kips ft bl/ft k-ft ksi ft kips kips ksi 1015 102.0 47 AV47 20.2 561 21.2 2,983 30.3 488 95.9 501 ** **STD** 1.7 0.2 8 11 0.2 36 0.1 16 ** MAX 20.7 585 21.8 3,054 30.5 99.1 526 520 ** 1060 103.0 45 AV45 97.8 20.5 568 21.3 3,033 30.2 511 493 ** **STD** 3.2 0.4 13 13 0.4 66 0.3 13 MAX 101.7 21.1 ** 591 536 22.0 3,121 30.5 519 ** 47 AV47 22.0 3.112 1107 104.0 99.5 21.1 570 520 30.2 518 ** STD 1.0 0.1 7 19 0.2 0.2 9 MAX 100.7 21.4 ** 586 556 22.6 3,154 30.4 534 ** 21.6 3,066 1153 105.0 46 AV46 97.0 20.8 561 506 30.2 518 ** STD 1.1 0.3 10 0.3 0.1 10 38 8 ** MAX 99.1 590 22.2 3,123 30.4 534 21.2 532 ** 59 AV59 97.6 20.1 21.6 2,962 29.9 1212 106.0 557 498 508 ** **STD** 0.2 9 14 0.3 29 3.7 10 1.1 ** MAX 99.4 20.5 579 526 22.0 3,025 30.9 531 ** 52 AV52 21.8 2.933 1264 107.0 94.7 19.9 565 472 30.6 516 0.2 ** 0.4 0.1 23 STD 1.3 9 25 11 ** MAX 97.6 20.2 605 494 23.4 2,982 30.8 563 ** 69 AV69 89.0 21.8 2,885 30.0 479 1333 108.0 19.5 565 465 ** STD 1.6 0.3 12 10 0.3 37 0.2 23 ** MAX 94.5 20.1 604 521 22.7 2,975 30.8 550 ** 56 AV56 22.2 2.844 109.0 87.3 19.3 576 471 29.8 490 1389 ** **STD** 1.0 0.3 18 11 0.5 42 0.2 29 ** MAX 89.8 19.9 615 492 23.2 2,932 30.1 563 1442 110.0 53 AV53 90.3 19.0 ** 493 22.9 2,810 29.2 525 586 ** **STD** 8.6 1.3 22 23 1.3 4.2 33 191 ** MAX 94.5 20.3 671 534 24.1 3,005 42.6 572 ** 1502 111.0 60 AV60 90.5 20.1 611 499 23.9 2,967 29.4 531 ** STD 1.7 0.3 18 10 0.3 38 0.2 20 ** 24.5 3,047 29.9 MAX 95.2 20.6 651 591 528 ** 24.2 2,955 1565 112.0 63 AV63 91.6 20.0 664 509 28.9 543 ** **STD** 1.1 0.3 25 11 0.3 49 0.1 34 ** MAX 24.8 3,052 29.3 93.5 20.7 723 534 655 ** 1619 113.0 54 AV54 728 24.0 2,953 28.9 90.6 20.0 548 632 ** STD 0.7 0.2 19 13 0.3 29 0.1 63 MAX 91.9 20.4 ** 771 573 24.8 3,006 29.2 711 1674 114.0 55 AV55 93.9 19.6 850 643 23.2 2,894 30.4 747 6.86 40.1 13.7 STD 3.5 1.87 184 158 3.8 510 193 MAX 348.1 37.7 13.41 1,267 1,083 40.3 5,569 51.7 1,357 1729 115.0 55 AV55 91.2 19.5 6.29 902 779 21.3 2,884 46.9 887 8.0 0.19 STD 9.2 42 47 8.0 117 0.7 70 MAX 111.8 21.3 6.72 1.012 907 23.2 3,143 48.1 1.141 1788 116.0 59 AV59 93.4 19.7 6.35 880 759 21.5 2,904 46.7 880 STD 10.3 0.20 0.9 0.7 8.0 36 39 123 65 MAX 124.2 21.9 6.91 981 877 23.9 3,227 48.2 1,145

KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42

	OP: RMDT Date: 12-May											
	Depth	DI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DL#	bepin ft		IIPE	⊏lVI∧ k-ft								
	IL	bl/ft	CTD		ksi	ft	kips	kips	ksi	kips	bpm	kips
			STD	10.2	0.9	0.22	31	30	0.9	134	0.8	55
1004	1100		MAX	120.9	22.1	6.95	977	843	23.7	3,259	48.2	1,030
1904	118.0	57	AV56	108.4	20.9	6.68	918	767	22.6	3,083	45.0	913
			STD	13.9	1.5	0.26	40	53	1.6	216	4.3	74
4050	440.0	40	MAX	131.0	22.8	7.18	1,028	878	24.6	3,359	49.7	1,105
1950	119.0	46	AV46	103.7	20.4	6.53	930	732	22.0	3,011	46.1	886
			STD	12.8	1.2	0.31	33	53	1.3	182	1.1	77
4000			MAX	131.4	22.5	7.08	1,012	814	24.3	3,327	48.8	1,137
1998	120.0	48	AV48	121.1	22.0	6.97	957	761	23.7	3,243	44.7	990
			STD	11.5	0.9	0.24	35	44	0.9	131	0.8	86
			MAX	144.3	23.9	7.53	1,041	916	25.7	3,534	47.6	1,115
2046	121.0	48	AV48	115.9	21.6	6.87	979	718	23.2	3,185	44.9	961
			STD	7.5	0.7	0.17	29	29	0.7	98	0.5	88
			MAX	131.8	23.0	7.25	1,046	790	24.7	3,402	46.7	1,089
2090	122.0	44	AV44	111.7	21.2	6.81	1,006	716	22.8	3,132	45.1	940
			STD	8.2	0.7	0.19	23	25	0.7	102	0.6	89
			MAX	129.4	22.7	7.21	1,056	781	24.5	3,357	46.5	1,082
2137	123.0	47	AV47	115.8	21.5	6.92	1,013	684	23.0	3,168	44.8	957
			STD	7.5	0.5	0.14	30	32	0.6	79	0.4	78
			MAX	134.6	22.2	7.14	1,091	755	23.8	3,278	46.0	1,094
2187	124.0	50	AV50	120.9	21.8	7.05	978	626	23.2	3,213	44.4	927
			STD	9.0	0.7	0.20	42	39	0.7	99	0.6	75
			MAX	143.7	23.3	7.49	1,065	723	24.7	3,438	45.4	1,084
2230	125.0	43	AV43	132.1	22.9	7.39	1,044	678	24.3	3,376	43.4	1,018
			STD	7.4	0.6	0.16	26	26	0.6	88	0.5	77
			MAX	150.3	24.2	7.75	1,097	745	25.7	3,580	44.3	1,138
2271	126.0	41	AV41	146.8	24.0	7.77	1,053	685	25.4	3,541	42.4	1,045
	120.0	• • •	STD	8.4	0.6	0.20	31	25	0.6	90	0.5	64
			MAX	162.8	25.4	8.19	1,102	754	27.0	3,751	43.4	1,159
2307	127.0	36	AV36	158.5	24.8	8.05	1,054	680	26.2	3,661	41.7	1,077
2007	127.0	00	STD	11.6	0.8	0.25	32	24	0.8	121	0.6	55
			MAX	189.5	26.6	8.61	1,142	746	28.1	3,935	42.9	1,193
2330	128.0	32	AV32	179.7	26.3	8.53	1,065	707	27.7	3,878		1,141
2000	120.0	32	STD		1.2	0.41	36	34		184	0.9	55
				247.1	30.4	9.89		799		4,486	42.1	1,264
2267	129.0	20	AV28		29.7		1,124	795 795		4,393		1,257
2307	129.0	20	STD									-
				10.2	0.5	0.20	33	21	0.6	80 4 5 92	0.4	46
2200	120.0	22		257.5	31.0	10.16	1,103	832	32.8	4,583	38.6	1,343
2369	130.0	22	AV22		30.6	10.09		806		4,521		1,300
			STD	8.8	0.5	0.17	34	15	0.5	76	0.3	32
2444	101.0	00	MAX		31.5	10.39	1,128	830	33.3	4,655	38.2	1,336
2411	131.0	22	AV22		30.3		1,076	797		4,477	37.5	1,288
			STD	9.6	0.6	0.19	36	13	0.6	83	0.3	25
0.40=	400.0	٠.		270.7	31.5	10.39	1,165	822		4,645	38.3	1,329
2435	132.0	24	AV24		30.2		1,135	785		4,463	37.5	1,250
			STD	7.9	0.4	0.15	34	18	0.4	64	0.3	37

STD

34 AV34 187.7

31 AV31 216.0

STD

STD

2794 146.0

2825 147.0

MAX 235.9

MAX 221.6

MAX 234.4

9.4

28.5

8.2

0.5

29.7

26.2

2.1

28.6

28.0

29.2

0.6

0.18

9.94

8.74

0.68

9.40

0.22

51

26

22

1,340

1.230

1.258

9.52 1,275

9.83 1,306

0.5

2.2

0.6

30.9 4,389

26.8 3,874

29.3 4,220

28.7 4,128

30.0 4,305

68

303

82

0.3

39.1

40.1

1.6

44.6

38.6

0.4

39.5

103

928

766

877

835

887

21

65

30

542

467

626

450

509

19

48

KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42 OP: RMDT Date: 12-May-2016 BL# Depth **EMX** CSX RX8 BLC TYPE STK RX6 CSI FMX BPM RA2 ksi kips kips bpm kips ft bl/ft k-ft ft kips ksi 1,191 32.6 4,592 38.2 1,305 MAX 263.1 31.1 10.28 828 22 AV22 237.7 9.83 1,156 31.4 4,393 37.8 1,246 2457 133.0 29.8 747 STD 10.3 0.6 0.23 26 23 0.7 94 0.4 28 1,204 38.8 1,285 MAX 251.0 30.6 10.16 789 32.3 4,522 2481 134.0 24 AV24 234.9 29.5 9.77 1,153 712 31.1 4,361 37.9 1,199 **STD** 11.5 8.0 0.26 37 29 8.0 112 0.5 38 MAX 252.9 30.5 10.16 1,211 757 32.1 4,507 39.1 1,247 1.190 30.9 4,330 2506 135.0 25 AV25 232.1 29.3 9.76 684 37.9 1.167 STD 8.5 0.6 0.18 40 18 0.7 95 0.3 41 32.7 4,570 38.6 1,261 MAX 254.4 31.0 10.22 1,259 727 26 AV26 237.5 1.242 2532 136.0 29.6 9.89 676 31.2 4.374 37.7 1.151 STD 7.3 0.4 0.15 27 11 0.5 65 0.3 22 38.2 1,190 MAX 250.0 30.3 10.16 1,290 32.1 4,474 702 2555 137.0 23 AV23 240.7 29.8 9.99 1,256 661 31.5 4,404 37.5 1,137 56 STD 6.9 0.4 0.15 18 16 0.4 0.3 24 38.3 1.180 MAX 255.7 30.6 10.28 1,291 696 32.6 4.521 2578 138.0 23 AV23 231.7 29.3 9.80 1,266 30.8 4,320 37.9 1,101 612 STD 8.2 0.5 0.18 29 24 0.6 75 0.3 20 MAX 250.9 30.4 10.28 1,325 32.4 4,493 38.4 1,144 656 31.1 4,373 2604 139.0 26 AV26 238.5 29.6 9.98 1.260 619 37.5 1,080 STD 5.4 0.4 0.12 35 28 0.4 56 0.2 20 MAX 247.8 32.2 4.483 30.4 10.28 1,323 671 37.9 1.126 26 AV26 235.5 2630 140.0 29.5 9.95 1,263 582 30.9 4,349 37.6 1,019 STD 6.6 0.4 0.12 30 21 0.4 62 0.2 18 MAX 247.3 30.2 10.22 1,314 627 31.8 4,466 38.1 1,054 2656 141.0 26 AV26 232.7 29.3 9.90 1,302 563 30.7 4,325 37.7 998 STD 11.3 0.6 0.22 35 31 0.6 94 0.4 20 MAX 252.3 30.4 10.33 1,392 673 31.9 4,494 38.4 1,030 26 AV26 215.5 2682 142.0 27.9 9.54 1,272 564 29.2 4,123 37.3 904 118 4.9 STD 59.1 4.6 1.35 72 686 8.0 173 34.1 11.72 MAX 311.1 1,393 808 35.6 5,028 53.3 1,069 2709 143.0 27 AV27 238.7 29.7 9.92 1,278 533 30.9 4,380 37.6 943 6.6 0.4 0.14 25 STD 19 0.5 62 0.3 15 MAX 251.8 10.28 1,331 38.2 30.5 574 31.8 4,496 975 29.2 30.3 4,311 2733 144.0 24 AV24 229.3 9.79 1,270 509 37.9 891 STD 8.2 0.5 0.17 27 24 0.5 71 0.3 29 MAX 245.4 30.1 10.11 1,329 546 31.3 4,449 38.3 958 27 AV27 223.9 1.284 30.2 4.281 38.0 2760 145.0 29.0 9.73 489 871

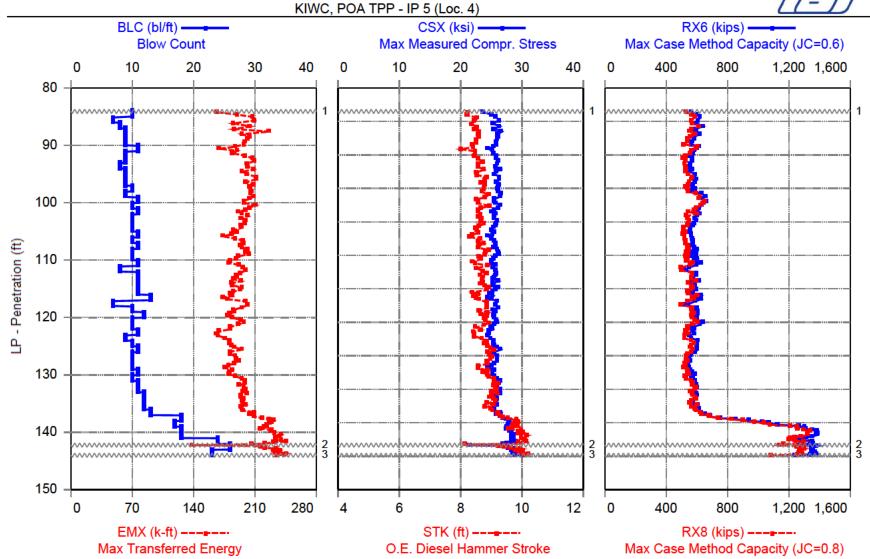
KIWC, POA TPP - IP 4 (Loc. 1) PP48x1.0", APE D180-42												80-42
OP: F	RMDT		•							Date:	12-May	-2016
BL#	Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	· ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
2851	148.0	26	AV26	227.0	28.5	9.70	1,271	482	29.4	4,211	38.1	835
			STD	18.6	1.2	0.44	25	33	1.2	173	0.9	47
			MAX	258.4	30.6	10.45	1,312	566	31.6	4,524	39.8	910
2881	149.0	30	AV30	225.7	28.5	9.71	1,300	464	29.4	4,211	38.0	831
			STD	6.0	0.4	0.14	30	17	0.4	63	0.3	27
			MAX	236.5	29.2	9.94	1,341	495	30.1	4,309	38.9	878
Average 126.8 23.1 8.19 791 572 24.7 3,405 34										34.6	715	
		Sto	d. Dev.	53.7	3.5	1.52	270	115	3.4	521	7.2	260
Maximum 348.1 37.7 13.41 1,393 1,083 40.3 5,569 53.3											1,357	
	Total number of blows analyzed: 2880											

BL#	Sensors
1-1298	F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)
1299-2760	F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: [28243] 1025.0 (1.00); A2: [34329] 1085.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)
2761-2881	F1: [E021] 92.0 (1.00); F2: [E022] 94.0 (1.00); A1: [30602] 1130.0 (1.00); A2: [30603] 1120.0 (1.00)

BL# Comments

Begin Driving, APE 15-4, pile tip near -92 ft, 5/12/2016 2:56:23 PM
Halt APE 15-4, 4:10 PM 5/12/2016. D180-42 5/13/2016 7:40:14 AM
Stop and restart D180-42
14 min pause, install water resistant PDA sensors, continue 8:32:29 AM
End of driving, tip near -175 ft, 5/13/2016 8:35:35 AM

Time Summary


Drive 59 minutes 57 seconds	2:56 PM - 3:56 PM (5/12/2016) BN 1 - 1429
Stop 6 minutes 19 seconds	3:56 PM - 4:02 PM `
Drive 7 minutes 31 seconds	4:02 PM - 4:10 PM BN 1430 - 1650
Stop 15 hours 30 minutes 3 seconds	4:10 PM - 7:40 AM
Drive 37 minutes 17 seconds	7:40 AM - 8:17 AM BN 1651 - 2760
Stop 14 minutes 57 seconds	8:17 AM - 8:32 AM
Drive 3 minutes 5 seconds	8:32 AM - 8:35 AM BN 2761 - 2881

Total time [17:39:12] = (Driving [01:47:52] + Stop [15:51:19])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 18-May-2016 Test started: 18-May-2016

^{1 -} Begin PDA Monitoring near Tip El. -114, 5/18/2016, 12:08:37 PM

^{3 -} End of Drive, Near Tip El. -173, 144 ft depth below mudline. 5/18/2016, 12:31:38 PM

^{2 -} Pause for 6 minutes, Continue.12:30:30 PM

STD

8.1

0.4

0.16

12

0.5

63

0.3

18

KIWC, POA TPP - IP 5 (Loc. 4) PP48x1.0", APE D180-42 OP: RMDT Date: 18-May-2016 147.65 in² 0.492 k/ft³ AR: SP: LE: 185.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) RX8 CSI **BPM** RA2 BL# Depth BLC TYPE **EMX** CSX STK RX6 FMX ft bl/ft k-ft ksi ft kips kips ksi kips bpm kips AV10 183.6 3,630 37.3 10 85.0 24.6 8.24 590 26.9 10 562 602 27.6 STD 1.9 0.12 67 1.9 275 11.8 51 66 MAX 209.8 25.7 8.48 651 615 28.1 3,802 41.6 667 7 AV7 205.8 17 86.0 26.0 8.51 611 28.4 3,844 40.6 628 566 STD 13.1 0.6 0.19 48 59 0.6 85 0.4 51 MAX 225.6 26.6 8.66 676 29.1 3,926 41.5 685 636 25 87.0 AV8 196.2 25.9 8.45 611 584 28.3 3,819 40.7 605 STD 10.0 0.6 0.18 39 0.6 0.4 40 82 53 MAX 210.2 26.5 8.66 693 659 29.1 3,908 41.3 695 AV9 204.8 34 0.88 26.1 8.53 594 28.5 3,847 40.5 647 556 STD 23.4 8.0 0.24 18 26 0.9 112 0.6 55 MAX 241.0 622 41.6 27.0 8.89 586 29.6 3.983 704 AV9 202.5 43 89.0 9 26.1 8.56 598 572 28.4 3,849 40.4 614 STD 11.3 0.5 0.13 56 59 0.5 0.3 35 69 MAX 219.9 8.70 700 673 29.0 3.929 40.9 690 26.6 52 90.0 AV9 198.0 8.51 567 525 28.3 3,817 40.6 25.8 617 13.7 STD 0.5 0.17 29 41 0.6 79 0.4 62 MAX 212.0 26.4 8.70 594 576 29.2 3,902 41.5 768 63 91.0 11 AV11 182.1 25.0 8.28 601 589 27.3 3,689 41.1 614 STD 16.4 0.7 0.21 29 41 0.9 109 0.5 55 MAX 200.7 657 41.8 26.2 8.61 657 28.8 3.866 708 72 92.0 AV9 190.8 25.6 8.47 566 546 27.9 3,775 40.6 576 STD 11.6 0.15 31 32 0.5 0.3 0.5 68 55 MAX 213.8 41.2 26.6 8.79 615 595 29.1 3.925 701 81 93.0 AV9 208.7 563 512 28.4 3.848 40.3 648 26.1 8.61 STD 12.4 0.6 46 42 0.7 92 0.4 46 0.19MAX 224.4 26.9 8.89 642 586 29.5 3,977 40.9 733 28.2 3,821 89 94.0 AV8 200.9 25.9 8.58 565 530 40.4 619 **STD** 27 0.5 7.8 0.6 0.20 32 8.0 94 75 MAX 209.8 26.9 8.93 605 29.4 3,974 41.1 719 575 AV9 199.6 98 95.0 25.9 8.61 568 534 28.2 3,829 40.3 577 STD 21 30 0.6 0.4 10 8.1 0.5 0.16 81 MAX 210.6 26.9 8.89 602 580 29.3 3,970 40.9 593 107 96.0 AV9 209.5 28.5 3.864 40.0 26.2 8.75 591 563 642 21 STD 0.5 0.17 0.6 0.4 48 8.0 18 78 MAX 225.2 27.3 9.07 627 594 29.9 4,031 40.6 753 AV9 205.7 116 97.0 9 26.2 8.75 579 548 28.6 3.872 40.0 604 17

KIWC, POA TPP - IP 5 (Loc. 4)

PP48x1.0", APE D180-42

	, POA 1 RMDT	PP - IF	5 (LOC	. 4)					PP40	Data:	18-May	
		DI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DL#	Depth		ITPE									
	ft	bl/ft	MAN	k-ft	ksi	ft	kips	kips	ksi	kips	bpm 40.6	kips
400	00.0	40	MAX		26.8	8.98	614	564	29.4	3,964	40.6	636
126	98.0	10	AV10	205.3	26.1	8.75	583	535	28.4	3,857	40.0	607
			STD	8.2	0.3	0.12	19	19	0.4	48	0.3	42
				223.4	26.6	8.93	631	567	28.9	3,924	40.4	718
135	99.0	9	AV9	204.5	26.3	8.79	627	590	28.7	3,889	39.9	653
			STD	8.5	0.5	0.14	33	40	0.6	73	0.3	32
			MAX	220.3	27.2	9.07	672	656	29.8	4,012	40.4	718
146	100.0	11	AV11	201.5	25.7	8.62	647	633	28.0	3,801	40.3	676
			STD	7.9	0.6	0.18	22	30	0.7	88	0.4	28
			MAX	216.1	27.0	9.03	679	672	29.4	3,983	40.8	745
156	101.0	10	AV10	205.1	26.1	8.74	630	619	28.6	3,857	40.0	641
			STD	12.2	0.7	0.25	34	39	0.8	107	0.5	18
				226.8	27.3	9.12	672	660	30.0	4,035	40.7	671
167	102.0	11	AV11	194.3	25.4	8.56	602	573	27.6	3,746	40.4	619
107	102.0		STD	5.8	0.4	0.12	23	27	0.5	56	0.3	16
			MAX		25.9	8.70	636	623	28.3	3,827	40.9	644
177	103.0	10	AV10	200.0	25.8	8.68	596	545	28.1	3,806	40.9	611
1//	103.0	10										
			STD	9.3	0.5	0.15	18	28	0.6	75	0.3	15
407	1010	40	MAX		26.5	8.93	622	602	29.1	3,920	40.7	633
187	104.0	10	AV10	197.8	25.8	8.70	582	544	28.2	3,813	40.1	621
			STD	4.2	0.4	0.14	18	17	0.5	66	0.3	11
			MAX		26.5	8.98	617	570	29.0	3,917	40.5	638
197	105.0	10	AV10	190.2	25.3	8.53	561	520	27.6	3,729	40.5	622
			STD	9.6	0.7	0.21	30	37	8.0	101	0.5	19
			MAX	206.0	26.2	8.89	598	561	28.6	3,863	41.2	653
208	106.0	11	AV11	180.7	25.0	8.43	558	515	27.3	3,692	40.7	631
			STD	7.6	0.6	0.17	18	23	0.7	89	0.4	24
			MAX	195.5	26.1	8.66	581	545	28.4	3,849	41.3	687
218	107.0	10	AV10	192.1	25.3	8.58	572	520	27.6	3,740	40.4	639
			STD	8.4	0.4	0.14	15	21	0.5	66	0.3	16
			MAX		25.8	8.75	596	567	28.3	3,816	41.2	656
229	108.0	11	AV11	195.5	25.6	8.63	582	542	27.9	3,774	40.3	642
			STD	8.7	0.4	0.13	23	21	0.5	62	0.3	25
				217.1	26.2	8.84	607	582		3,874	40.8	690
230	109.0	10	AV10		26.2	8.86	591	544		3,872	39.8	637
200	105.0	10	STD	6.4	0.4	0.12	25	21	0.5	60	0.3	29
				209.7	26.8	9.07	640	582	29.4	3,960	40.1	674
240	110.0	10							27.8		40.1	
249	110.0	10		189.9	25.5	8.67	583	529		3,771		611
			STD	6.9	0.5	0.15	27	27	0.5	67	0.3	15
000	444.0		MAX		26.2	8.89	624	561	28.6	3,865	40.8	649
260	111.0	11		185.3	25.3	8.58	604	561	27.6	3,738	40.4	630
			STD	10.8	1.0	0.30	30	30	1.0	142	0.7	24
		_		209.0	27.3	9.22	667	614	29.8	4,037	41.2	662
268	112.0	8	AV8	198.1	25.4	8.65	535	497	27.6	3,754	40.2	583
			STD	10.5	0.7	0.23	31	32	8.0	108	0.5	7
			MAX	213.4	26.5	8.98	595	532	28.9	3,920	41.2	591

435 128.0

10 AV10 188.3

25.7

8.92

551

534

28.0 3,801

39.6

681

KIWC, POA TPP - IP 5 (Loc. 4) PP48x1.0", APE D180-42 OP: RMDT Date: 18-May-2016 CSX STK RX8 BL# Depth **BLC TYPE EMX** RX6 **CSI** FMX **BPM** RA2 kips kips bpm kips ft bl/ft k-ft ksi ft kips ksi 191.0 593 3,794 40.0 627 279 113.0 11 AV11 25.7 8.74 569 27.9 STD 6.9 0.7 0.22 39 34 8.0 106 0.5 22 MAX 202.9 26.9 9.12 3,975 40.7 661 613 29.3 689 AV11 187.0 27.6 290 114.0 11 25.5 8.69 587 569 3,760 40.1 636 STD 9.2 8.0 0.18 32 36 0.9 117 0.4 31 MAX 207.5 27.0 9.07 657 651 29.2 3,985 40.8 681 28.0 301 115.0 11 AV11 189.4 25.8 8.80 584 568 3,808 39.9 649 STD 6.1 0.5 0.15 16 20 0.6 69 0.3 36 MAX 197.2 26.4 8.98 610 601 28.8 3,898 40.5 712 11 AV11 27.3 40.3 312 116.0 186.2 25.1 8.60 573 547 3,713 670 8.0 0.25 27 28 8.0 108 0.6 STD 0.7 33 MAX 197.2 8.93 623 41.2 26.2 593 28.6 3,875 726 13 AV13 179.3 25.0 8.52 27.1 3.692 40.5 325 117.0 618 590 662 STD 7.2 0.7 0.21 21 28 8.0 97 0.5 35 MAX 190.6 25.9 8.79 654 3,824 41.7 650 28.3 711 AV7 203.5 612 332 118.0 7 25.8 8.83 544 503 28.0 3.812 39.8 STD 5.4 0.4 29 25 0.5 0.2 22 0.10 58 MAX 211.9 26.4 8.98 604 539 28.7 3,895 40.2 643 10 AV10 189.1 25.5 27.7 3,772 40.0 342 119.0 8.76 597 561 663 STD 7.4 0.7 0.21 22 19 8.0 101 0.5 30 MAX 201.3 26.7 9.07 627 597 29.2 3,946 40.5 716 120.0 12 AV12 181.6 25.6 8.80 604 577 27.8 3,782 39.9 354 600 **STD** 7.5 0.7 0.17 13 18 8.0 96 0.4 28 MAX 197.2 26.8 9.12 628 615 29.2 3,962 40.5 656 364 121.0 10 AV10 193.7 25.8 8.86 613 28.0 3,812 39.8 593 677 0.6 STD 6.1 0.5 31 23 0.3 28 0.15 75 MAX 201.4 26.5 9.07 665 644 28.8 3,916 40.3 713 374 122.0 10 AV10 186.5 25.2 8.68 594 553 27.4 3,727 40.2 668 STD 7.8 0.7 0.18 35 27 8.0 107 0.4 24 MAX 195.6 41.0 26.4 8.98 643 28.8 3,894 708 584 385 123.0 11 AV11 169.0 24.7 8.47 578 539 26.7 3,642 40.6 587 STD 5.6 0.5 0.14 19 19 0.5 71 0.3 20 8.84 3,810 41.0 MAX 184.4 25.8 606 568 27.9 624 394 124.0 AV9 9 175.1 24.9 8.60 569 526 27.0 3,681 40.3 632 STD 6.0 0.5 0.17 24 22 0.6 79 0.4 38 MAX 182.9 25.7 8.89 616 577 27.8 3,792 41.0 711 404 125.0 10 AV10 181.6 8.82 601 27.6 3,757 39.8 631 25.4 573 STD 0.6 0.16 21 20 0.7 0.3 52 6.0 95 MAX 187.5 26.1 9.03 629 602 28.3 3,854 40.6 736 415 126.0 AV11 187.8 26.0 8.98 597 567 28.2 3,839 39.5 602 11 21 **STD** 8.8 0.7 0.21 20 0.7 100 0.4 30 MAX 201.2 27.1 9.37 631 610 29.4 4,000 40.4 680 425 127.0 10 AV10 186.5 25.9 9.02 562 539 28.2 3,826 39.4 598 0.20 STD 8.1 8.0 18 17 0.9 112 0.4 15 MAX 195.1 26.6 9.32 602 562 29.1 3,928 40.4 624

KIWC, POA TPP - IP 5 (Loc. 4)

PP48x1.0", APE D180-42

	RMDT	PP - IF	5 (LOC	. 4)					PP40	Data:	18-May	
		DI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DL#	Depth ft	bl/ft	IIPE	⊏ivi∧ k-ft								
	11	DI/IL	STD	6.4	ksi 0.6	ft 0.19	kips	kips	ksi	kips	bpm	kips
							18	25	0.7	86	0.4	56 740
445	120.0	10	MAX		26.9	9.22	601	601	29.3	3,969	40.4	749
445	129.0	10		179.3	24.9	8.63	547	518	27.0	3,675	40.3	652
			STD	4.4	0.5	0.17	14	20	0.6	68	0.4	39
450	100.0	4.4	MAX	188.9	25.9	9.03	573	544	28.3	3,827	40.7	724
456	130.0	11		181.6	25.4	8.83	573	546	27.6	3,750	39.8	607
			STD	5.6	0.5	0.18	21	17	0.6	81	0.4	14
400	404.0	40		189.4	26.1	9.07	617	575	28.4	3,858	40.6	627
466	131.0	10	AV10	193.3	26.0	9.01	573	535	28.3	3,837	39.5	663
			STD	5.9	0.5	0.17	14	22	0.6	74	0.4	39
4	400.0			202.9	26.9	9.27	591	574	29.2	3,973	40.1	711
4//	132.0	11	AV11	195.9	26.2	9.14	596	571	28.4	3,867	39.2	689
			STD	4.4	0.5	0.12	19	17	0.5	67	0.2	_66
				203.9	26.9	9.37	635	606	29.3	3,969	39.6	772
488	133.0	11		197.4	26.1	9.12	588	579	28.4	3,858	39.2	726
			STD	4.6	0.5	0.16	22	30	0.6	78	0.3	54
			MAX		26.8	9.32	626	626	29.2	3,959	39.8	813
500	134.0	12	AV12	196.2	26.0	9.08	596	579	28.2	3,844	39.3	732
			STD	3.6	0.4	0.13	14	19	0.5	56	0.3	46
				202.2	26.7	9.32	617	614	29.0	3,949	39.7	820
512	135.0	12	AV12	196.5	25.9	9.01	581	570	28.0	3,825	39.4	727
			STD	6.5	0.6	0.21	24	28	8.0	95	0.4	37
			MAX	208.8	27.2	9.37	629	629	29.2	4,010	40.1	785
524	136.0	12	AV12	196.6	25.6	8.96	601	584	27.8	3,784	39.6	715
			STD	5.4	0.5	0.17	20	22	0.6	74	0.4	35
			MAX	203.8	26.3	9.22	631	611	28.4	3,883	40.2	758
537	137.0	13	AV13	204.1	26.0	9.13	634	622	28.3	3,846	39.2	778
			STD	6.9	0.5	0.20	19	25	0.6	75	0.4	38
			MAX	213.0	26.8	9.42	666	661	29.3	3,958	40.0	834
555	138.0	18	AV18	219.0	27.1	9.56	782	763	29.5	4,005	38.3	984
			STD	11.5	0.7	0.25	97	84	0.8	105	0.5	53
			MAX	240.9	28.5	10.00	960	915	31.1	4,214	39.0	1,107
572	139.0	17	AV17		27.8	9.78	1,113	1,066	30.1		37.9	1,195
			STD	9.4	0.6	0.20	100	91	0.7	92	0.4	123
				239.2	28.8		1,293			4,249	38.8	1,410
590	140.0	18	AV18		27.8		1,341			4,111		1,541
			STD	8.0	0.5	0.18	36	37	0.5	74	0.3	42
				239.7	28.8	10.11		1,354		4,259	38.5	1,617
608	141.0	18	AV18		28.5			1,294		4,203	37.5	1,564
000			STD	6.0	0.4	0.14	35	41	0.4	60	0.2	45
				249.4				1,384		4,349	38.0	1,649
632	142.0	24	AV24		28.4	10.20		1,240	30.7		37.5	1,511
002	174.0	4	STD	8.8	0.5	0.20	41	35	0.6	78	0.4	64
				247.5	29.4			1,313	31.7		38.3	1,625
652	143.0	26	AV26		26.8			1,236		3,952	37.6	1,493
000	170.0	20	STD	45.2	3.4	1.00	97	110	3.8	503	7.6	1,493
			טוט	43.2	3.4	1.00	97	110	ა.ბ	505	7.0	143

KIWC OP: R	•	PP - IP 5 (Lo	oc. 4)					PP48	3x1.0", <i>A</i> Date:	APE D1 18-May	
BL#	Depth	BLC TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	ft	bl/ft	k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
		MAX	241.2	29.4	10.16	1,440	1,332	32.2	4,342	50.7	1,617
681	144.0	23 AV23	3 238.7	28.8	10.01	1,356	1,267	31.3	4,254	37.5	1,596
		STE	7.4	0.5	0.18	34	43	0.6	76	0.3	70
		MAX 253.3 30.0 10.33 1,410 1,308								38.3	1,648
Average 200.0 26.1 8.94 726 688 28.4 3,857 39.5											809
	Std. Dev. 21.0 1.4 0.55 284 269 1.5 203 2.4										
		Maximum	253.3	30.0	10.33	1,440	1,384	32.8	4,430	50.7	1,649
Total number of blows analyzed: 681											

BL# Sensors

1-681 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: [28243] 1025.0 (1.00); A2: [34329] 1085.0 (1.00);

A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

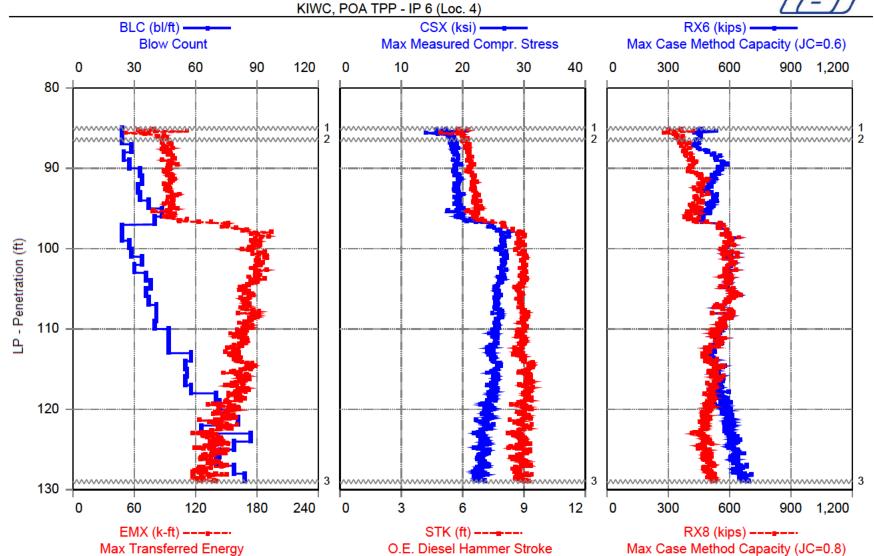
BL# Comments

- 1 Begin PDA Monitoring near Tip El. -114, 5/18/2016, 12:08:37 PM
- 638 Pause for 6 minutes, Continue.12:30:30 PM
- 681 End of Drive, Near Tip El. -173, 144 ft depth below mudline. 5/18/2016, 12:31:38 PM

Time Summary

Drive 15 minutes 59 seconds 12:08 PM - 12:24 PM (5/18/2016) BN 1 - 637

Stop 5 minutes 54 seconds 12:24 PM - 12:30 PM


Drive 1 minute 7 seconds 12:30 PM - 12:31 PM BN 638 - 681

Total time [00:23:01] = (Driving [00:17:07] + Stop [00:05:54])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 02-June-2016 Test started: 01-June-2016

^{1 -} Begin PDA monitoring near Tip El. -108 ft. 6/1/2016, 9:45:26 AM

^{3 -} End of driving, near Tip EI -156, 129 ft soil penetration, 6/1/2016, 10:37:30 AM

^{2 -} Approx time at which the bearing plate reached the external mudline.

KIWC, POA TPP - IP 6 (Loc. 4) PP48x1.0", APE D180-42 OP: RMDT Date: 01-June-2016 0.492 k/ft³ AR: 147.65 in² SP: 185.00 ft EM: 31,052 ksi LE: WS: 17,100.0 f/s JC: 0.35 [] EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress CSX: Max Measured Compr. Stress RX6: Max Case Method Capacity (JC=0.6) STK: O.E. Diesel Hammer Stroke RX7: Max Case Method Capacity (JC=0.7) **BPM: Blows per Minute** RX8: Max Case Method Capacity (JC=0.8) FMX: Maximum Force STK **BPM** RX8 BL# Depth **BLC TYPE EMX** CSX **FMX** CSI RX6 RX7 ft bl/ft k-ft ksi ft bpm kips ksi kips kips kips 45.1 24 86.0 24 AV24 77.8 17.0 5.80 464 2,516 18.1 360 342 13.4 STD 28.0 3.1 0.87 461 3.4 49 61 63 MAX 174.4 27.3 8.98 54.3 4.033 29.2 658 587 515 48 24 AV24 47.4 2,717 87.0 89.6 18.4 6.16 19.4 446 372 369 STD 6.8 8.0 0.19 0.7 111 8.0 41 42 17 MAX 104.9 20.2 6.63 48.6 2,987 21.5 498 497 495 77 0.88 29 AV29 92.7 18.7 6.26 47.0 2,765 19.8 455 391 382 0.6 0.5 0.7 26 21 23 STD 6.2 0.15 91 MAX 103.9 20.0 6.57 48.0 2,959 21.2 518 450 450 25 AV25 102 89.0 95.3 6.36 46.6 2,809 412 402 19.0 20.1 530 STD 6.2 0.6 0.16 0.6 95 0.7 20 25 25 47.8 2.976 MAX 107.0 20.2 6.66 21.3 590 444 439 28 AV28 46.5 2,817 428 130 90.0 95.8 19.1 6.40 20.2 566 418 **STD** 5.9 0.6 0.5 0.7 23 0.16 92 17 21 MAX 107.4 20.3 47.6 2.998 21.6 613 475 458 6.72 33 AV33 93.1 18.9 6.39 46.5 2,798 543 434 428 163 91.0 20.1 STD 4.2 0.5 0.14 0.5 0.6 20 27 30 77 MAX 100.5 20.0 6.69 47.6 2,954 21.2 576 501 499 197 92.0 34 AV34 95.9 19.4 6.58 45.9 2,863 515 471 468 20.6 STD 4.6 0.6 0.14 0.5 84 0.6 27 23 23 MAX 103.6 20.5 6.88 46.7 3.022 21.8 583 528 526 229 93.0 32 AV32 92.7 19.0 6.53 46.1 2,799 20.1 495 460 450 3.7 0.5 21 32 STD 0.5 0.14 80 0.6 29 MAX 101.3 20.0 6.79 47.1 2.957 21.1 533 513 513 262 94.0 33 AV33 98.3 19.4 6.69 45.5 2.869 525 464 458 20.6 STD 4.9 0.6 0.5 34 34 0.14 87 0.6 17 MAX 108.6 20.7 6.91 47.0 3,052 21.7 560 544 542 299 95.0 37 AV37 95.4 19.4 6.72 45.4 2,861 20.4 513 449 439 0.5 27 STD 4.8 0.5 0.14 75 0.5 24 31 MAX 103.3 20.2 7.01 46.4 2,984 21.3 504 567 504 343 96.0 44 AV44 92.9 19.3 6.61 45.8 2,849 20.0 485 436 427 **STD** 8.8 1.0 0.24 8.0 146 1.0 23 30 30 MAX 105.5 20.5 7.01 47.6 3,029 21.7 526 498 495 383 97.0 40 AV40 115.2 44.2 3,180 21.5 7.15 22.4 481 453 451 21.0 286 STD 1.9 0.55 1.6 2.1 41 59 60 MAX 158.8 25.3 8.36 46.6 3,735 26.5 574 574 574 407 98.0 24 AV24 163.4 25.5 8.36 40.9 3,766 26.7 572 570 570 29 STD 15.6 1.1 0.39 0.9 161 1.2 34 34

BL# Depth	KIWC OP: R	, POA T RMDT	PP - IF	9 6 (Loc	. 4)					PP48	3x1.0", A Date: 0		
MAX 2022 28.3 93.2 42.2 4,175 29.4 657	BL#	Depth	BLC	TYPE	EMX	CSX	STK	BPM	FMX	CSI	RX6	RX7	RX8
A31 99.0 24 AV24 181.8 26.8 8.88 39.7 3,985 28.0 601 600 600 STD 8.3 27.9 9.22 40.7 4.118 29.2 686 686 686 686 A59 100.0 28 AV28 178.6 26.6 8.82 39.8 3,924 27.9 594 594 594 STD 7.4 0.6 0.19 0.4 87 0.6 26 26 26 26 MAX 193.0 27.6 9.22 40.5 4,073 29.1 643 643 643 A88 101.0 29 AV29 179.5 26.6 8.90 39.7 3,923 28.0 594 593 593 STD 9.8 0.7 0.23 0.5 103 0.8 39 39 39 39 MAX 192.5 27.5 9.17 40.6 4,061 29.0 671 671 671 522 102.0 34 AV34 183.2 26.8 9.01 39.4 3,961 28.3 609 608 608 STD 6.5 0.5 0.16 0.3 77 0.6 34 36 36 MAX 194.7 27.7 9.27 40.1 4,089 29.2 661 661 661 552 103.0 30 AV30 181.7 26.6 9.03 39.4 3,951 28.1 606 601 600 STD 7.2 0.6 0.18 0.4 85 0.6 44 52 52 MAX 195.7 27.6 9.32 40.5 4,081 29.2 682 682 682 588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 592 STD 6.8 0.5 0.16 0.3 77 0.6 44 52 52 STD 7.6 0.6 0.21 0.5 92 0.7 44 44 45 AV34 193.8 27.6 9.37 40.4 4,082 29.2 675 675 675 662 106.0 36 AV36 171.0 25.8 8.81 39.9 3,810 27.2 622 622 622 G62 622 6		ft	bl/ft		k-ft	ksi	ft	bpm	kips	ksi	kips	kips	kips
STD 8.3 0.6 0.19 0.4 95 0.7 34 35 35				MAX	202.2	28.3	9.32	42.2	4,175	29.4	657	657	
STD 8.3 0.6 0.19 0.4 95 0.7 34 35 35	431	99.0	24	AV24	181.8	26.8	8.88	39.7	3,958	28.0	601	600	600
MAX 196.3 27.9 9.22 40.7 4.118 29.2 686				STD	8.3	0.6		0.4		0.7		35	
STD 100.0 28 AV28 178.6 26.6 8.82 39.8 3,924 27.9 594 594 594 594 643 644 645													
STD 7.4 0.6 0.19 0.4 87 0.6 26 26 26 26 MAX 193.0 27.6 9.22 40.5 4,073 29.1 64.3	459	100.0	28										
MAX 193.0 27.6 9.22 40.5 4,073 29.1 643 643 643 643 643 844 844 844 845 84													
Name													
STD 9.8 0.7 0.23 0.5 103 0.8 39 39 39	488	101 0	29										
MAX 192.5 27.5 9.17 40.6 4,061 29.0 671 67	100	101.0											
522 102.0 34 AV34 183.2 26.8 9.01 39.4 3,961 28.3 609 608 608 STD 6.5 0.5 0.5 0.16 0.3 77 0.6 34 36 36 552 103.0 30 AV30 181.7 26.6 9.03 39.4 3,925 28.1 606 601 600 STD 7.2 0.6 0.18 0.4 85 0.6 44 52 52 MAX 195.7 27.6 9.32 40.5 4,081 29.2 682 682 682 588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 592 592 595 592 592 592 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 <td></td>													
STD 6.5 0.5 0.16 0.3 77 0.6 34 36 36	522	102.0	34										
MAX 194.7 27.7 9.27 40.1 4,089 29.2 661 661 661 661 552 103.0 30 AV30 181.7 26.6 9.03 39.4 3,925 28.1 606 601 600	522	102.0	J-T										
552 103.0 30 AV30 181.7 26.6 9.03 39.4 3,925 28.1 606 601 600 STD 7.2 0.6 0.18 0.4 85 0.6 44 52 52 MAX 195.7 27.6 9.32 40.5 4,081 29.2 682 682 682 588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 592 STD 6.8 0.5 0.16 0.3 77 0.6 45 48 49 MAX 193.8 27.6 9.37 40.4 4,082 29.2 675 675 675 675 626 105.0 38 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 585 585 585 584 626 106.0 36 AV36 171.0 25.8 <				_									
STD 7.2 0.6 0.18 0.4 85 0.6 44 52 52 588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 592 STD 6.8 0.5 0.16 0.3 77 0.6 45 48 49 MAX 193.8 27.6 9.37 40.4 4,082 29.2 675 675 675 626 105.0 38 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 585 584 MAX 185.2 27.0 9.17 41.0 3,982 28.5 682	552	102.0	30										
588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 675 <	332	103.0	30										
588 104.0 36 AV36 179.9 26.5 9.03 39.4 3,910 28.0 595 592 592 STD 6.8 0.5 0.16 0.3 77 0.6 45 48 49 MAX 193.8 27.6 9.37 40.4 4,082 29.2 675 675 675 626 105.0 38 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 585 584 621 0.6 0.6 0.21 0.5 92 0.7 44 44 45 MAX 185.2 27.0 9.17 41.0 3,982 28.5 682													
STD 6.8 0.5 0.16 0.3 77 0.6 45 48 49	EOO	1040	26						•				
626 105.0 38 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 585 584 626 106.0 36 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 585 584 662 106.0 36 AV36 171.0 25.8 8.81 39.9 3,810 27.2 62	200	104.0	30										
626 105.0 38 AV38 171.9 25.8 8.84 39.8 3,816 27.3 585 584 STD 7.6 0.6 0.21 0.5 92 0.7 44 44 45 MAX 185.2 27.0 9.17 41.0 3,982 28.5 682 682 682 662 106.0 36 AV36 171.0 25.8 8.81 39.9 3,810 27.2 622				_									
STD 7.6 0.6 0.21 0.5 92 0.7 44 44 45	000	405.0	00										
662 106.0 36 AV36 171.0 25.8 8.81 39.9 3,810 27.2 622 <	626	105.0	38										
662 106.0 36 AV36 171.0 25.8 8.81 39.9 3,810 27.2 622 622 622 STD 6.9 0.6 0.17 0.4 84 0.6 30 30 30 699 107.0 37 AV37 169.0 25.5 8.83 39.8 3,771 26.9 591 591 590 STD 5.6 0.5 0.14 0.3 75 0.6 37 38 38 MAX 179.1 26.5 9.07 40.4 3,916 28.0 662 622 82 88													
STD 6.9 0.6 0.17 0.4 84 0.6 30 30 30 30 MAX 185.9 27.1 9.12 40.9 3,994 28.5 687 687 687 687 699 107.0 37 AV37 169.0 25.5 8.83 39.8 3,771 26.9 591 591 590 STD 5.6 0.5 0.14 0.3 75 0.6 37 38 38 MAX 179.1 26.5 9.07 40.4 3,916 28.0 660 660 660 660 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 STD 7.0 0.6 0.17 0.4 85 0.7 48 48 49 MAX 185.1 26.7 9.32 40.5 3,937 28.2 642 642 642 781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 676 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33													
699 107.0 37 AV37 169.0 25.5 8.83 39.8 3,771 26.9 591 591 590 STD 5.6 0.5 0.14 0.3 75 0.6 37 38 38 MAX 179.1 26.5 9.07 40.4 3,916 28.0 660 660 660 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 STD 7.0 0.6 0.17 0.4 85 0.7 48 48 49 MAX 185.1 26.7 9.32 40.5 3,937 28.2 642 642 642 781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4	662	106.0	36										
699 107.0 37 AV37 169.0 25.5 8.83 39.8 3,771 26.9 591 591 590 STD 5.6 0.5 0.14 0.3 75 0.6 37 38 38 MAX 179.1 26.5 9.07 40.4 3,916 28.0 660 660 660 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 STD 7.0 0.6 0.17 0.4 85 0.7 48 48 49 MAX 185.1 26.7 9.32 40.5 3,937 28.2 642 642 642 781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4													
STD 5.6 0.5 0.14 0.3 75 0.6 37 38 38 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 821 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 821 110.0 40 AV40 171.0 25.7									-				
740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 740 108.0 41 AV41 172.4 25.8 8.97 39.5 3,808 27.1 575 574 574 781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 81 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 821 111.0 47	699	107.0	37						-				
740 108.0													
STD 7.0 0.6 0.17 0.4 85 0.7 48 48 49 MAX 185.1 26.7 9.32 40.5 3,937 28.2 642 642 642 781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4									•				
781 109.0 41 AV41 175.6 26.0 9.07 39.3 3,833 27.2 582 580 579 STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	740	108.0	41	AV41			8.97	39.5	3,808	27.1		574	574
781 109.0				STD		0.6		0.4	85	0.7	48	48	
STD 7.6 0.6 0.17 0.4 95 0.7 51 52 53 MAX 190.4 27.0 9.42 40.1 3,993 28.4 676 676 676 676 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33				MAX		26.7	9.32	40.5	3,937	28.2	642	642	642
821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 28.4 676 676 567 821 110.0 40 AV40 171.0 25.7 8.99 39.5 3,793 26.9 569 567 567 STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 <td>781</td> <td>109.0</td> <td>41</td> <td>AV41</td> <td>175.6</td> <td>26.0</td> <td>9.07</td> <td>39.3</td> <td>3,833</td> <td>27.2</td> <td>582</td> <td></td> <td>579</td>	781	109.0	41	AV41	175.6	26.0	9.07	39.3	3,833	27.2	582		579
821 110.0				STD	7.6	0.6	0.17	0.4	95	0.7	51	52	53
STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33				MAX	190.4	27.0	9.42	40.1	3,993	28.4	676	676	676
STD 6.5 0.5 0.18 0.4 81 0.6 39 41 41 MAX 184.0 26.7 9.32 40.4 3,941 28.1 634 634 634 634 868 111.0 47 AV47 164.1 25.3 8.84 39.8 3,729 26.4 538 537 536 STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	821	110.0	40	AV40	171.0	25.7	8.99	39.5	3,793	26.9	569	567	567
868 111.0				STD	6.5	0.5	0.18			0.6	39	41	41
868 111.0				MAX	184.0	26.7	9.32	40.4	3,941	28.1	634	634	634
STD 7.3 0.6 0.18 0.4 90 0.7 35 35 35 MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	868	111.0	47										
MAX 180.2 26.4 9.22 40.6 3,900 27.6 606 606 606 915 112.0 47 AV47 166.6 25.4 8.95 39.6 3,749 26.5 558 555 555 STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33													
915 112.0													
STD 7.3 0.6 0.18 0.4 90 0.7 36 37 37 MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	915	112 0	47										
MAX 178.2 26.5 9.22 40.6 3,915 27.8 622 622 622 962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	5.5		• •										
962 113.0 47 AV47 159.4 24.9 8.81 39.9 3,673 26.0 522 508 507 STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33													
STD 7.8 0.7 0.20 0.4 101 0.7 29 32 33	962	113 0	47						-				
	302	5.0	.,										

2077 129.0

84 AV83 131.7

22.9

8.92

39.6 3,387

23.7

673

517

516

KIWC, POA TPP - IP 6 (Loc. 4) PP48x1.0", APE D180-42 OP: RMDT Date: 01-June-2016 STK **BPM** BL# Depth **BLC TYPE EMX** CSX **FMX** CSI RX6 RX7 RX8 bl/ft kips kips kips ft k-ft ksi ft bpm kips ksi 58 AV58 158.9 39.7 3,672 490 490 1020 114.0 24.9 8.90 25.8 506 STD 7.4 0.7 0.20 0.4 97 0.7 28 31 31 MAX 173.8 26.1 9.22 40.7 3,854 27.0 594 594 594 1075 115.0 55 AV55 171.1 9.31 38.8 3,798 537 531 530 25.7 26.6 **STD** 7.4 0.6 0.19 0.4 82 0.6 36 39 39 MAX 184.5 26.7 9.62 39.8 3,935 27.7 617 617 617 56 AV56 39.3 3,723 1131 116.0 163.1 25.2 9.10 26.1 538 525 524 STD 8.9 0.7 0.22 0.5 99 0.7 29 30 30 MAX 177.7 26.4 9.47 40.4 3,904 27.5 626 626 626 55 AV55 9.23 1186 117.0 164.5 25.3 39.0 3,733 26.2 550 532 531 **STD** 8.2 0.6 0.21 0.4 94 0.7 26 26 26 MAX 180.6 40.3 3,922 26.6 9.62 27.8 609 609 609 58 AV58 162.5 25.1 9.21 39.0 3,702 1244 118.0 26.0 546 519 518 **STD** 9.1 0.7 0.22 0.4 101 0.7 27 22 23 40.1 625 MAX 179.6 26.6 3,930 27.7 562 9.62 562 1314 119.0 70 AV70 160.6 24.9 9.20 39.0 3.682 25.8 565 514 514 0.6 0.3 18 STD 7.0 0.17 85 0.6 31 18 MAX 173.7 26.1 9.52 39.8 3,859 27.0 644 558 557 72 AV72 150.3 24.2 8.97 39.5 3,575 575 1386 120.0 25.1 502 501 STD 11.6 0.9 0.29 0.6 132 0.9 31 24 23 MAX 172.0 25.9 9.47 41.4 3,819 26.9 654 591 588 76 AV76 149.8 24.2 9.04 39.4 3,570 25.1 591 487 1462 121.0 485 **STD** 9.1 0.7 0.23 0.5 109 8.0 28 21 21 MAX 168.2 25.7 9.47 40.7 3,792 26.7 651 540 540 1543 122.0 81 AV81 145.2 23.9 8.94 39.6 3,526 24.8 603 483 482 STD 11.3 0.31 0.7 0.9 24 25 25 0.9 128 3,781 MAX 165.6 25.6 9.47 41.9 26.5 661 540 540 142.0 1606 123.0 63 AV63 23.6 8.90 39.7 3,491 24.5 599 471 470 STD 11.1 0.9 0.29 0.6 126 0.9 26 25 26 3,728 MAX 165.1 25.3 9.42 41.5 26.1 673 525 525 87 AV87 39.8 3,439 1693 124.0 136.7 23.3 8.83 24.2 618 477 477 STD 9.8 8.0 0.27 0.6 117 8.0 33 24 24 MAX 155.5 41.8 3,696 25.0 9.42 26.2 688 539 539 1772 125.0 79 AV79 137.7 39.8 3,450 477 23.4 8.85 24.2 615 478 STD 10.5 0.8 0.30 0.7 123 0.9 27 27 28 MAX 162.7 25.1 9.52 41.5 3,711 26.0 679 545 545 1844 126.0 72 AV72 139.6 23.5 8.97 39.5 3,476 24.2 635 493 492 STD 8.0 0.29 0.6 114 8.0 19 19 9.8 26 MAX 160.9 25.2 9.47 41.1 3,726 26.0 690 547 546 1914 127.0 70 AV70 135.4 23.2 8.85 39.8 3,422 23.9 632 499 498 20 STD 9.7 8.0 0.30 0.7 115 8.0 32 20 MAX 158.3 25.0 9.47 41.2 3,690 25.8 712 539 539 1993 128.0 79 AV79 129.2 22.8 8.72 40.1 3,360 23.3 643 498 496 11.3 STD 0.30 0.7 28 0.9 132 1.0 26 26 MAX 160.4 24.9 9.52 41.1 3,672 25.5 713 560 559 Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 4 PDIPLOT2 2016.1.999.0 - Printed 02-June-2016

KIWC, POA	TPP -	- IP 6	(Loc.	4)
OP: RMDT			`	,

KIWC, POA TPP - IP 6 (Loc. 4) PP48x1.0", A OP: RMDT Date: 0										
BL# Depth	th BLC TYPE EMX CSX STK BPM FMX CSI RX6 RX7									
ft	bl/ft	k-ft	kips	ksi	kips	kips	kips			
	STD	123	0.9	28	23	23				
	MAX	155.5	25.0	9.47	41.2	3,695	25.8	735	559	559
	Average 144.6 23.7 8.51 40.7 3,493 24.7 573									
	Std. Dev.	29.4	2.5	0.99	2.9	375	2.6	60	64	66
	Maximum	202.2	28.3	9.62	54.3	4,175	29.4	735	687	687
Total number of blows analyzed: 2076										

BL# Sensors

1-2076 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

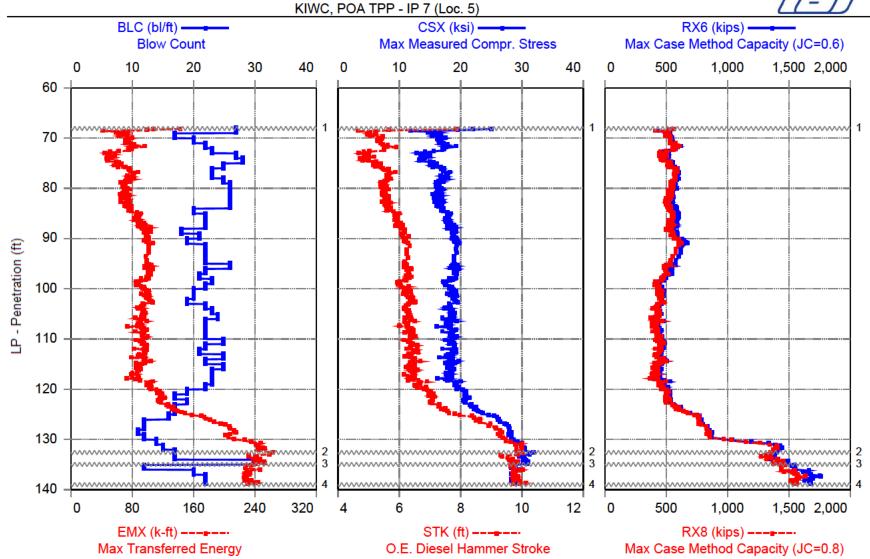
A4: [K3259] 365.0 (1.00)

BL# Comments

1 Begin PDA monitoring near Tip El. -108 ft. 6/1/2016, 9:45:26 AM

Approx time at which the bearing plate reached the external mudline. 35

2077 End of driving, near Tip EI -156, 129 ft soil penetration, 6/1/2016, 10:37:30 AM


Time Summary

Drive 52 minutes 4 seconds 9:45 AM - 10:37 AM BN 1 - 2077

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 25-May-2016 Test started: 25-May-2016

^{1 -} Begin Monitoring near Tip Elevation -93, 1:37:05 PM, 5/25/2016

- 2 Pause for 9 minutes near tip elevation -159 ft, 2:18:41 PM
- 3 Pause, change PDA sensors to water resistant units, near tip el -161, 2:34:33 PM
- 4 End of Driving, near Tip Elevation -165, 139 ft soil penetration, 2:36:35 PM, 5/25/2016

KIWC, POA TPP - IP 7 (Loc. 5) PP48x1.0", APE D180-42 OP: RMDT Date: 25-May-2016 147.65 in² 0.492 k/ft³ AR: SP: LE: 185.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) RX8 CSI **FMX BPM** RA2 BL# Depth BLC TYPE **EMX** CSX STK RX6 ft bl/ft k-ft ksi ft kips kips ksi kips bpm kips 27 69.0 27 AV25 88.7 18.4 5.74 523 40.3 514 19.7 2,722 562 46.5 STD 5.6 1.59 70 5.8 820 19.8 78 71 10.63 MAX 242.0 33.9 652 646 35.2 5,010 56.3 780 17 AV17 17.3 2,379 44 70.0 69.8 16.1 5.22 523 515 51.2 533 **STD** 28 1.3 9.6 1.3 0.25 27 1.1 26 186 MAX 89.8 18.4 5.71 576 19.7 2,723 53.1 564 581 64 71.0 20 AV20 74.1 16.7 5.36 544 537 17.9 2,467 50.6 545 STD 4.5 0.5 0.6 0.5 0.11 17 16 81 20 MAX 87.5 18.4 5.71 585 583 19.6 2,713 51.4 592 22 AV22 86 72.0 81.1 17.6 5.59 580 573 18.8 2,599 49.6 579 STD 10.0 1.1 0.24 33 34 1.2 161 1.0 25 6.28 51.3 MAX 110.5 20.6 686 673 21.9 3,040 628 23 AV23 65.9 5.25 16.8 2,348 109 73.0 15.9 537 517 51.1 579 **STD** 13.4 1.7 0.33 46 56 1.9 250 1.5 32 MAX 84.2 18.3 626 19.2 2.699 54.1 657 5.71 602 74.0 27 AV27 52.1 14.1 4.96 510 479 14.8 2,083 52.5 136 587 1.2 STD 7.4 1.1 0.18 22 33 156 0.9 22 MAX 72.7 16.7 5.45 568 568 17.9 2,461 54.9 650 164 75.0 28 AV28 52.4 14.2 5.00 521 491 14.9 2,093 52.3 600 1.2 STD 7.8 1.1 0.20 26 36 169 1.0 30 MAX 66.5 578 17.0 2.393 54.4 16.2 5.38 566 667 189 76.0 25 AV25 64.5 15.9 5.33 551 531 16.8 2,348 50.7 617 6.9 0.9 8.0 STD 0.9 0.17 16 20 129 27 667 MAX 78.5 17.9 5.68 567 18.8 2.648 52.1 587 212 77.0 23 AV23 78.8 17.4 5.66 594 582 18.4 2.576 49.3 629 STD 8.1 0.9 0.19 21 23 1.1 138 8.0 23 MAX 96.3 19.3 6.04 636 630 20.5 2,848 50.8 679 235 78.0 23 AV23 78.4 17.4 5.65 591 571 18.5 2,576 49.4 618 7.0 21 0.9 0.7 STD 8.0 0.16 16 125 32 MAX 91.5 18.7 5.96 630 20.1 2,766 50.6 710 607 260 79.0 25 AV25 74.0 17.0 5.58 579 561 18.1 2,503 49.6 634 1.2 **STD** 8.9 1.1 0.21 23 24 0.9 40 166 MAX 92.6 19.1 6.04 629 612 20.4 2,827 51.5 745 286 0.08 26 AV26 17.5 2.421 69.9 16.4 5.49 572 555 50.0 631 STD 5.4 0.7 0.13 16 8.0 111 0.6 18 37 MAX 82.0 5.83 600 593 19.4 2,677 51.2 728 18.1 312 81.0 26 AV26 72.5 16.7 5.57 557 539 17.8 2,463 49.7 617 23 STD 4.9 0.7 0.13 18 0.7 98 0.5 36

KIWC, POA TPP - IP 7 (Loc. 5)

PP48x1.0", APE D180-42

OP: RMDT

Date: 25-May-2016

OP: F	ŔMDT		(-,						Date:	25-May-	2016
	Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	· ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
			MAX	81.4	18.0	5.80	619	590	19.2	2,655	50.8	704
338	82.0	26	AV26	71.0	16.4	5.56	552	527	17.4	2,421	49.7	646
			STD	8.0	1.0	0.18	19	23	1.1	148	8.0	36
			MAX	84.8	18.2	5.88	605	569	19.4	2,688	51.3	726
364	83.0	26	AV26	72.9	16.7	5.60	540	513	17.8	2,459	49.5	619
			STD	7.4	0.9	0.17	19	21	1.0	131	0.7	43
			MAX	84.5	18.0	5.88	591	548	19.3	2,663	51.1	691
390	84.0	26	AV26	74.3	16.6	5.61	555	518	17.9	2,448	49.5	571
			STD	6.2	0.7	0.14	29	25	0.8	109	0.6	31
			MAX	83.9	17.8	5.88	615	571	19.2	2,623	50.4	647
410	85.0	20	AV20	79.5	17.3	5.73	580	540	18.6	2,547	49.0	563
			STD	6.8	8.0	0.15	23	24	8.0	113	0.6	24
			MAX	91.9	18.7	6.04	618	582	20.1	2,754	50.5	626
432	86.0	22	AV22	88.1	18.1	5.92	598	554	19.5	2,669	48.2	569
			STD	4.7	0.6	0.10	18	19	0.6	83	0.4	20
			MAX	94.0	18.9	6.06	644	602	20.3	2,793	49.2	607
454	87.0	22	AV22	88.8	18.0	5.93	586	545	19.4	2,661	48.2	553
			STD	5.6	0.6	0.12	18	18	0.6	84	0.5	44
			MAX	103.3	19.4	6.20	626	594	20.9	2,858	49.2	745
476	88.0	22	AV22	94.5	18.3	6.03	571	533	19.7	2,706	47.8	626
			STD	7.8	0.9	0.17	25	34	0.9	126	0.6	82
			MAX	111.1	20.3	6.45	634	615	22.0	3,002	48.9	770
494	89.0	18	AV18	100.2	18.9	6.18	562	532	20.4	2,783	47.3	610
			STD	6.7	0.7	0.14	31	32	0.8	105	0.5	54
			MAX	113.5	20.0	6.40	612	585	21.6	2,957	48.3	715
515	90.0	21	AV21	99.7	19.0	6.16	581	560	20.6	2,803	47.3	642
			STD	6.1	0.6	0.14	26	31	0.7	92	0.5	61
			MAX	111.6	20.3	6.45	637	630	21.9	2,994	48.3	733
534	91.0	19	AV19	100.4	19.2	6.23	645	606	20.8	2,841	47.1	625
			STD	6.9	0.7	0.14	30	27	8.0	111	0.5	49
			MAX	108.9	20.2	6.42	699	657	22.0	2,982	48.1	782
556	95.0	22	AV22	100.3	19.2	6.25	610	568	20.7	2,832	47.0	635
			STD	5.2	0.5	0.12	29	25	0.6	81	0.4	68
			MAX	112.2	20.3	6.51	677	623	21.9	3,001	47.9	836
582	96.0	26	AV26	100.2	18.9	6.22	554	509		2,788	47.1	708
			STD	6.3	0.7	0.14	30	29	0.8	108	0.5	54
			MAX	107.7	19.9	6.42	605	568	21.6	2,937	48.5	773
604	97.0	22	AV22	103.2	19.3	6.34	534	505	20.8	2,847	46.7	643
			STD	5.6	0.6	0.14	23	23	0.7	95	0.5	72
			MAX	112.9	20.4	6.63	610	565	22.1	3,009	47.8	755
625	98.0	21	AV21	101.2	19.2	6.33	506	484	20.7	2,835	46.8	582
			STD	5.8	0.7	0.15	26	24	8.0	106	0.5	61
			MAX	107.1	20.2	6.51	564	526	21.7	2,976	47.9	658
648	99.0	23	AV23	90.8	18.0	6.09	464	444	19.5	2,663	47.6	543
			STD	6.3	8.0	0.16	25	28	0.7	112	0.6	66
			MAX	104.2	19.7	6.48	508	486	21.2	2,907	48.9	666

KIWC, POA TPP - IP 7 (Loc. 5) PP48x1.0", APE D180-42 OP: RMDT Date: 25-May-2016 CSX **STK** RX8 BL# Depth **BLC TYPE EMX** RX6 CSI FMX **BPM** RA2 bl/ft kips kips ft k-ft ksi ft kips kips ksi bpm 670 100.0 22 AV22 90.8 452 19.5 2,650 47.6 570 17.9 6.11 430 STD 7.7 1.1 0.21 34 40 1.2 158 8.0 56 MAX 20.6 6.63 521 22.4 48.7 106.8 506 3,042 642 690 101.0 20 AV20 20.5 2,781 98.8 18.8 6.31 468 450 46.8 541 STD 5.6 0.9 0.17 25 32 0.9 127 0.6 67 MAX 108.9 20.4 6.63 542 519 22.0 3,011 48.1 652 710 102.0 20 AV20 97.5 18.7 6.28 465 449 20.4 2.763 46.9 554 STD 5.3 0.7 0.17 16 22 8.0 108 0.6 57 MAX 106.9 20.1 6.54 501 501 21.8 2,962 47.8 636 19 AV19 729 103.0 102.3 19.1 6.45 473 463 20.8 2,820 46.3 559 8.0 STD 6.5 8.0 0.16 26 116 0.6 34 32 MAX 112.6 20.7 548 22.5 3,053 47.2 6.72 548 608 22 AV22 92.4 6.22 436 19.7 2.679 47.1 751 104.0 18.1 426 517 **STD** 7.8 0.9 0.16 23 28 1.0 131 0.6 64 MAX 102.1 19.2 6.45 478 2,840 48.1 478 21.1 624 23 AV23 774 105.0 94.4 18.5 6.28 440 429 20.1 2.728 46.9 500 5.0 8.0 8.0 0.5 STD 0.14 19 22 115 46 MAX 102.0 19.6 6.51 481 468 21.3 2,898 48.2 612 24 AV24 92.1 6.29 436 19.9 2,710 46.9 798 106.0 18.4 427 492 STD 5.2 0.9 0.12 28 35 0.9 130 0.4 43 MAX 101.0 19.6 6.48 491 486 21.2 2,901 47.7 636 22 AV22 92.7 18.3 6.33 435 414 19.9 2.709 46.7 820 107.0 512 **STD** 6.3 1.0 0.16 28 39 1.1 146 0.6 53 MAX 102.9 20.0 6.63 514 514 21.7 2,947 47.7 625 842 108.0 22 AV22 88.6 17.8 6.25 426 407 19.3 2,629 47.0 513 STD 11.2 0.22 29 1.5 207 8.0 1.4 32 68 MAX 106.8 20.5 6.76 474 463 22.3 3,020 49.1 630 864 109.0 22 AV22 94.2 18.7 6.38 440 426 20.2 2,762 46.6 495 STD 5.6 0.9 24 29 1.0 139 0.6 30 0.17 MAX 104.5 20.6 6.76 505 492 22.2 3,041 47.8 551 886 110.0 22 AV22 95.8 18.8 6.43 462 444 20.3 2,770 46.4 501 **STD** 5.4 0.9 0.18 18 27 0.9 131 0.6 43 MAX 47.4 106.4 20.4 6.76 495 481 22.1 3,012 624 911 111.0 25 AV25 19.8 2,706 91.7 18.3 6.32 461 446 46.8 480 STD 4.7 0.6 0.12 27 33 0.7 96 0.423 MAX 98.5 19.2 6.54 532 532 20.7 2,841 47.9 522 933 112.0 22 AV22 94.3 6.40 463 20.1 2,749 46.5 484 18.6 451 7.8 23 STD 0.19 28 29 1.2 0.7 1.1 161 MAX 107.7 20.3 6.76 506 499 22.0 2,998 47.9 534 954 113.0 21 AV21 97.3 19.0 6.54 463 452 20.7 2,810 46.0 501 38 STD 3.9 0.6 0.13 17 17 0.7 92 0.4 MAX 103.5 20.1 6.72 487 485 21.9 2,975 46.9 624 979 114.0 25 AV25 90.4 18.0 6.36 451 434 19.6 2,665 46.7 507

30

513

472

STD

22 AV22

1001 115.0

MAX 103.1

9.2

96.5

1.2

20.1

18.7

0.21

6.69

6.47

36

513

455

1.2

21.8 2,965

20.4 2,768

182

0.7

49.0

46.3

69

661

528

KIWC, POA TPP - IP 7 (Loc. 5)

PP48x1.0", APE D180-42

OP: R	RMDT		7 (LUC	. 5)					1170	Date:	25-May	
	Depth	BL C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DLII	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
		5,710	STD	7.5	1.0	0.17	29	35	1.2	154	0.6	59
			MAX	108.8	20.6	6.82	524	521	22.4	3,042	47.2	662
1026	116.0	25	AV25	88.6	18.3	6.39	440	421	19.9	2,705	46.5	488
1020	110.0	20	STD	4.6	0.8	0.15	22	29	0.8	112	0.5	29
			MAX	95.6	19.9	6.57	468	464	21.4	2,945	47.7	534
1049	117.0	23	AV23	87.8	18.5	6.48	444	424	20.1	2,733	46.2	496
1043	117.0	20	STD	7.6	1.1	0.40	39	46	1.2	164	0.7	31
			MAX	100.9	20.3	6.85	509	500	22.1	2,993	47.8	536
1072	118.0	23		82.8	17.9	6.39	427	404	19.5	2,644	46.5	477
1072	110.0	20	STD	8.4	1.3	0.33	37	44	1.4	194	0.7	29
			MAX		20.5	6.88	528	528	22.2	3,031	47.8	524
1005	119.0	23	AV23	97.0	18.8	6.60	485	452		2,776	45.8	515
1095	119.0	23	STD	10.7	1.3	0.00	37	46	1.3	193	0.9	70
				119.6	21.8	7.25	580	580	23.4	3,218	47.4	690
1117	120.0	22			19.4	6.65	488	455	20.7	2,858	45.7	521
1117	120.0	22	STD	6.3		0.03	30	405	1.0	130		39
				119.1	0.9 21.7	7.14	607	598	23.5	3,201	0.6 46.9	625
1126	121.0	19	AV19		20.7	6.99						
1130	121.0	19	STD	3.6			519 22	509	22.3	3,053 73	44.6	535
				3.0 119.2	0.5 21.5	0.14 7.21	556	29 553	0.6 23.1	3,169	0.4 45.3	40 644
1150	122.0	17										644 541
1155	122.0	17			21.0	7.11	528	509	22.8	3,096	44.2	541
			STD	4.9 128.8	0.6 22.2	0.13 7.39	35	34	0.7	85 2 275	0.4	39
1170	100.0	10					598	580	23.9	3,275	45.1	618
11/2	123.0	19	AV19 STD	116.4	20.7	7.07	528	512	22.4	3,063	44.3	540
				5.5	0.7	0.15 7.53	32	40	0.7	100	0.5	40
1100	124.0	17		130.4	22.2		605	600	24.1	3,285	45.1	687
1169	124.0	17	AV17	129.9	22.0	7.34	584	577	23.8	3,255	43.5	568
			STD	5.2 137.2	0.6	0.14	48 650	50	0.7	91	0.4	20
1206	10E 0	17			23.0	7.57	659	649	24.9	3,392	44.4	624
1206	125.0	17	AV17	142.1	23.0	7.59	652	644	24.7	3,402	42.8	605
			STD	6.1	0.6	0.13	49 750	51	0.6	84	0.4	24
1000	100.0	10		154.4	24.0	7.79	750 767	741	26.0	3,550	43.5	650
1222	126.0	10	AV16	169.8	25.6	8.33	767	759		3,775	41.0	685
			STD	11.2	1.2	0.35	28	34		180	0.8	35
1004	127.0	10		191.1	27.9	9.03	824	824	30.2	4,126	42.4	758 606
1234	127.0	12	AV12		26.6	8.65	781	769	28.8	3,929	40.2	696
			STD	8.6	0.7	0.24	48	50	1.0	110	0.5	25
1040	100.0	10		200.2	27.7	9.03	896	887	30.1	4,091	41.2	753
1246	128.0	12	AV12		27.8	9.08	826	818		4,110	39.3	753
			STD	5.5	0.5	0.15	28	31	0.6	68	0.3	25
1057	100.0	4.4		215.3	28.5	9.37	872	865	30.9	4,203	39.9	819
125/	129.0	11		212.9	28.1	9.28	856	844		4,154	38.9	793
			STD	4.1	0.4	0.12	25	23	0.3	56	0.3	47
1000	120.0	40		221.0	28.9	9.52	883	871	30.9	4,268	39.4	905
1269	130.0	12	AV12		28.1	9.34	883	877		4,149	38.8	781
			STD	5.9	0.5	0.11	53	55	0.5	71	0.2	44

KIWC, POA TPP - IP 7 (Loc. 5) PP48x1.0", APE D180-42 OP: RMDT Date: 25-May-2016											
BL# Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
ft	bl/ft	–	k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
	-	MAX		29.1	9.57	1,041	1,040	31.9	4,290	39.1	896
1283 131.0	14	AV14	236.9	29.4	9.67	1,196	1,156	31.9	4,337	38.1	1,143
00 .0		STD	11.4	0.7	0.23	134	113	0.8	107	0.4	161
		MAX	257.1	30.7	10.05	1,394	1,346	33.4	4,535	38.8	1,390
1298 132.0	15	AV15	247.4	30.2	9.90	1,428	1,391	33.0	4,457	37.7	1,555
		STD	7.5	0.5	0.13	26	30	0.6	68	0.2	68
		MAX		31.0	10.16	1,476	1,431	33.8	4,572	38.2	1,649
1315 133.0	17	AV11	255.6	31.2	9.96	1,407	1,361	34.2	4,601	37.6	1,464
		STD	14.4	1.0	0.27	72	64	1.2	150	0.5	94
		MAX	286.1	33.2	10.63	1,509	1,454	36.6	4,895	38.2	1,617
1332 134.0	17	AV17	239.3	30.2	9.49	1,347	1,315	33.2	4,453	38.5	1,464
		STD	9.4	0.6	0.20	33	36	0.7	94	0.4	64
		MAX	255.3	31.4	9.89	1,420	1,394	34.6	4,637	39.3	1,597
1362 135.0	30	AV30	244.5	30.6	9.72	1,456	1,428	33.7	4,512	38.0	1,647
		STD	7.5	0.7	0.15	58	60	0.9	97	0.3	89
		MAX	256.9	31.5	10.00	1,575	1,516	34.6	4,647	38.8	1,789
1374 136.0	12	AV12	232.7	28.7	9.72	1,539	1,441	30.6	4,240	38.0	1,664
		STD	7.9	0.5	0.20	19	17	0.5	71	0.4	54
		MAX	247.3	29.7	10.16	1,575	1,469	31.7	4,387	38.5	1,726
1394 137.0	20	AV20	232.1	28.8	9.82	1,644	1,520	30.9	4,257	37.8	1,748
		STD	8.4	0.5	0.19	45	53	0.6	75	0.4	91
		MAX	247.7	29.8	10.16	1,730	1,592	31.9	4,394	38.4	1,982
1416 138.0	22	AV22	228.6	28.6	9.79	1,710	1,598	30.5	4,221	37.9	1,811
		STD	10.9	0.5	0.14	70	79	0.6	70	0.3	127
		MAX	245.4	29.5	10.05	1,914	1,826	31.5	4,356	38.5	2,207
1438 139.0	22	AV22	235.7	28.8	9.92	1,668	1,542	30.7	4,250	37.6	1,732
		STD	7.6	0.5	0.18	26	27	0.5	73	0.3	30
		MAX	250.5	29.8	10.28	1,728	1,593	31.9	4,401	38.3	1,798
	A	verage	110.6	19.8	6.63	643	616	21.3	2,921	46.1	691
		d. Dev.	53.9	4.4	1.39	327	310	4.8	648	4.8	346
	Ma	ximum_	286.1	33.9	10.63	1,914	1,826	36.6	5,010	56.3	2,207

BL#	Sensors
2-1360	F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);
	F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);
	A4: [K3259] 365.0 (1.00)
1361-1438	F1: [E021] 92.0 (1.00); F2: [E022] 94.0 (1.00); A1: [30602] 1130.0 (1.00);
	A2: [30603] 1120.0 (1.00)

Total number of blows analyzed: 1430

BL# Comments

- Begin Monitoring near Tip Elevation -93, 1:37:05 PM, 5/25/2016
- 1308 Pause for 9 minutes near tip elevation -159 ft, 2:18:41 PM
- 1361 Pause, change PDA sensors to water resistant units, near tip el -161, 2:34:33 PM

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 6 PDIPLOT2 2016.1.999.0 - Printed 25-May-2016

KIWC, POA TPP - IP 7 (Loc. 5) PP48x1.0", APE D180-42 OP: RMDT Date: 25-May-2016

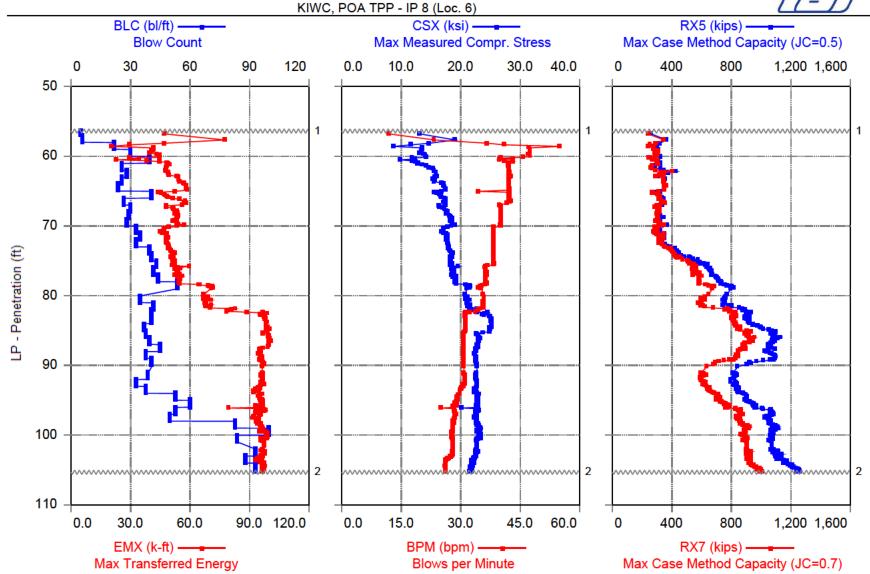
1438 End of Driving, near Tip Elevation -165, 139 ft soil penetration, 2:36:35 PM, 5/25/2016

Time Summary

Drive 32 minutes 18 seconds 1:37 PM - 2:09 PM (5/25/2016) BN 2 - 1307

Stop 9 minutes 17 seconds 2:09 PM - 2:18 PM

Drive 1 minute 21 seconds 2:18 PM - 2:20 PM BN 1308 - 1360


Stop 14 minutes 29 seconds 2:20 PM - 2:34 PM

Drive 2 minutes 1 second 2:34 PM - 2:36 PM BN 1361 - 1438

Total time [00:59:29] = (Driving [00:35:42] + Stop [00:23:47])

Printed: 08-May-2016 Test started: 03-May-2016

^{1 -} Begin driving with APE 15-4 impact hammer, near tip -84 ft, 8:07:34 PN 2 - End driving, near tip -133 ft, 5/3/2016, 9:29:38 PM

KIWC, POA TPP - IP 8 (Loc. 6) PP48x1.0", APE 15-4 OP: RMDT Date: 03-May-2016 SP: 0.492 k/ft³ AR: 147.65 in² 174.00 ft EM: 31,052 ksi LE: WS: 17,100.0 f/s JC: 0.70 [] CSX: Max Measured Compr. Stress VMX: Maximum Velocity CSI: Max F1 or F2 Compr. Stress BPM: Blows per Minute EMX: Max Transferred Energy RX5: Max Case Method Capacity (JC=0.5)

ETR: Energy Transfer Ratio - Rated RX6: Max Case Method Capacity (JC=0.6) FMX: Maximum Force TYPE CSX CSI EMX ETR FMX VMX BPM RX5 RX6 BL# Depth **BLC** (%) kips f/s kips ft bl/ft ksi ksi k-ft bpm kips 12.3 36.1 14.4 227 5 5 AV4 15.6 43.3 1,812 6.6 237 57.00 **STD** 1.7 8.5 7.1 287 1.9 1.0 12.1 49 40 2,189 7.9 MAX 18.2 55.6 46.4 26.8 316 286 14.8 58.00 6 AV6 22.5 74.9 9.9 19.8 344 11 18.6 62.4 2,751 362 STD 1.6 1.8 9.8 8.2 234 8.0 8.1 9 24 MAX 21.0 25.4 90.0 75.0 3.095 11.1 25.1 379 379 33 59.00 22 AV22 12.4 14.9 35.4 29.5 1,824 6.6 45.2 283 272 STD 3.2 3.8 16.3 13.6 467 1.7 17.2 52 44 MAX 378 21.3 25.6 89.0 74.2 3,151 11.3 84.9 416 7.2 60.00 30 AV30 13.6 16.6 42.1 35.1 2,010 47.4 306 297 63 0.4 1.9 1.6 0.2 STD 0.4 52 0.3 12 13 14.2 2,100 324 MAX 17.4 45.4 37.8 47.8 324 7.6 AV40 32.2 42.5 302 103 61.00 40 12.4 16.1 38.6 1,830 6.6 292 STD 2.1 3.1 9.5 307 34 11.4 1.1 8.6 31 MAX 16.3 19.5 52.4 43.7 2,400 8.6 63.0 343 325 AV26 308 129 62.00 26 14.4 17.9 48.5 40.4 2.130 7.7 42.2 287 STD 1.0 8.0 1.2 1.0 149 0.6 0.2 38 39 MAX 15.9 19.0 51.2 42.6 2.348 42.6 411 401 8.5 AV28 2,335 63.00 49.7 42.4 364 344 157 28 15.8 18.7 41.4 8.4 STD 0.3 0.3 2.4 2.0 37 0.1 0.3 57 59 MAX 16.4 19.5 54.9 45.7 2,416 8.7 42.9 460 457 183 64.00 26 AV26 15.9 18.8 55.1 45.9 2,348 8.5 42.2 350 347 14 STD 8.0 0.6 1.3 1.1 111 0.4 0.2 14 9.2 MAX 17.4 19.9 58.2 48.5 2,563 42.8 383 370 17.3 48.5 9.2 42.3 207 65.00 24 AV24 19.9 58.2 2,557 353 353 0.2 0.3 0.5 0.1 STD 0.6 35 0.2 11 11 2,629 374 374 MAX 17.8 20.4 59.6 49.6 9.5 42.7 248 66.00 AV41 16.4 17.7 47.4 39.5 2.421 8.7 41.3 305 301 STD 0.6 0.6 3.1 2.6 0.3 6.2 31 32 83 MAX 17.7 19.8 58.5 48.7 2,612 9.4 42.9 421 405 275 67.00 27 AV27 17.4 19.4 56.5 47.1 2.568 9.2 41.9 347 339 0.3 0.6 2.4 2.0 46 0.2 18 18 STD 1.2 2,693 MAX 18.2 20.6 61.0 50.8 9.6 43.2 386 372 40.2 305 68.00 30 AV30 17.1 18.0 50.8 42.3 2,523 9.1 311 308 STD 0.6 0.3 2.3 1.9 91 0.3 0.2 18 17 MAX 18.3 18.8 55.7 46.4 2.703 9.8 40.4 346 346 322 334 69.00 29 AV29 18.1 18.3 53.4 44.5 2,671 9.6 40.2 311 STD 0.4 0.3 1.1 0.9 60 0.2 0.1 23 17 MAX 18.7 18.9 56.1 46.8 2.767 10.0 40.5 388 364 362 70.00 28 AV28 18.6 18.8 53.7 44.8 2,743 9.9 40.2 324 317 2.6 STD 0.4 0.4 2.1 59 0.2 0.2 34 30 MAX 19.6 19.8 60.6 50.5 2,893 10.6 40.5 404 403 395 AV33 17.4 17.5 47.7 39.8 2,565 9.3 38.5 318 301 71.00 33 STD 0.6 3.1 2.6 0.3 22 21 0.6 90 0.7

2,851

48.0

10.2

40.4

353

384

MAX

19.3

19.4

57.6

KIWC, POA TPP - IP 8 (Loc. 6) PP48x1.0", APE 15-4 Date: 03-May-2016 OP: RMDT CSX CSI ETR BL# BLC **TYPE EMX FMX VMX BPM** RX5 RX6 Depth bl/ft ksi ksi k-ft (%) kips f/s bpm kips kips ft 430 72.00 35 AV35 17.7 17.9 48.2 4Ò.Ź 2,612 9.4 38.3 338 328 STD 0.2 0.2 1.2 1.0 34 0.1 0.2 26 30 MAX 18.6 51.6 43.0 2,698 9.8 412 411 18.3 38.6 463 73.00 33 AV33 17.9 18.1 48.7 40.6 2,640 9.5 38.3 347 335 STD 0.3 1.3 1.1 38 0.1 0.2 19 18 0.3 18.7 52.2 43.5 2.730 9.9 38.7 393 372 MAX 18.5 74.00 AV40 503 40 18.3 18.5 50.5 42.1 2,696 9.7 38.3 427 410 STD 0.4 0.4 1.8 1.5 53 0.2 0.2 20 19 MAX 19.1 19.5 54.5 45.4 2.823 10.2 38.7 480 460 544 75.00 AV41 51.4 42.8 2,724 9.8 38.3 507 459 41 18.4 18.7 STD 0.2 0.2 1.2 1.0 32 0.1 0.2 47 29 10.2 595 MAX 19.2 19.3 54.2 45.1 2.831 38.6 527 587 76.00 43 AV43 18.6 18.9 53.0 44.2 2,747 9.9 37.6 613 548 STD 0.6 3.8 3.2 0.3 1.0 31 26 0.6 93 53.3 2,986 MAX 20.6 64.0 10.7 38.7 672 599 20.2 629 77.00 42 53.8 44.8 36.4 AV42 18.7 19.0 2,768 10.0 663 584 0.5 2.8 2.3 STD 0.3 0.2 13 14 0.5 80 MAX 20.3 61.1 50.9 2,951 10.7 36.8 688 20.0 613 673 78.00 44 AV44 19.1 19.3 54.9 45.7 2.813 10.2 36.4 702 620 STD 0.3 0.3 1.6 1.3 48 0.2 0.1 19 16 MAX 19.9 58.0 48.3 2.911 10.6 36.6 740 656 19.7 727 79.00 54 AV54 20.6 64.0 53.3 3,035 35.7 769 679 20.8 11.0 STD 1.2 1.2 7.8 6.5 174 0.7 8.0 33 28 MAX 22.9 23.5 79.7 66.4 3,383 12.5 36.9 836 736 728 35 AV1 67.9 56.6 3,064 80.03 20.8 21.3 11.2 35.7 762 666 **STD** 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 MAX 20.8 21.3 67.9 56.6 3,064 11.2 35.7 762 666 762 81.00 35 AV34 21.1 21.4 68.4 57.0 3,111 11.4 35.8 756 660 0.4 2.3 1.9 0.2 STD 0.4 55 0.2 18 17 MAX 22.1 22.2 73.6 61.4 3,258 11.8 36.3 795 700 804 82.00 42 AV42 21.5 21.9 71.2 59.3 3.177 11.7 35.6 805 711 STD 0.7 0.7 5.8 4.9 99 0.4 0.5 54 51 MAX 23.7 24.0 86.6 72.2 3,500 12.8 36.2 904 818 845 83.00 41 AV41 23.2 24.1 90.8 75.6 3,428 12.6 32.2 910 836 STD 1.3 1.3 8.3 6.9 195 0.8 1.4 24 27 MAX 25.0 25.7 100.7 83.9 3,690 13.7 34.8 956 896 AV41 886 98.3 81.9 3,709 31.3 910 84.00 41 25.1 25.7 13.6 835 STD 0.2 0.2 0.7 0.6 0.1 25 0.1 18 13 25.4 99.8 83.2 3,753 13.8 31.5 943 MAX 26.0 865 923 AV37 25.1 98.8 82.4 3,706 31.2 996 85.00 25.6 13.6 889 STD 0.2 0.2 1.0 0.8 29 0.1 0.1 43 40 3.759 975 MAX 25.5 26.0 100.6 83.8 13.9 31.5 1.085 961 86.00 38 AV38 23.4 25.1 98.7 82.3 3.459 12.7 30.8 1.092 997 STD 0.8 0.3 1.4 1.1 122 0.5 0.2 25 26 1,152 MAX 25.0 25.5 101.4 84.5 3.694 13.6 31.5 1,070 1001 40 AV40 23.0 24.7 100.1 83.4 3.402 12.5 30.8 1,087 998 87.00 STD 0.2 8.0 25 0.2 27 25 0.3 1.0 0.1 MAX 23.6 25.3 102.4 85.4 3,485 12.8 31.0 1,128 1,035 1046 AV45 97.5 3,352 12.2 1,057 88.00 45 22.7 24.8 81.3 30.8 964 STD 0.2 0.2 2.1 1.8 27 0.1 0.1 19 17 995 MAX 23.0 25.2 100.6 83.9 3,392 12.4 31.0 1,103 1084 89.00 38 AV38 22.5 24.6 95.7 79.7 3,327 12.1 30.8 1,080 952 STD 0.1 0.2 0.9 8.0 17 0.1 0.1 21 13

KIWC, POA TPP - IP 8 (Loc. 6) PP48x1.0", APE 15-4 OP: RMDT Date: 03-May-2016 CSX CSI ETR BL# Depth **BLC TYPE EMX FMX VMX BPM** RX5 RX6 ft bl/ft ksi ksi k-ft (%) kips f/s bpm kips kips MAX 22.8 24.9 97.4 81.2 3,361 12.3 31.1 1,112 978 1125 90.00 41 AV41 22.6 24.9 96.3 80.3 3,344 12.2 30.8 977 847 72 **STD** 0.1 0.3 1.0 8.0 0.1 79 15 0.1 MAX 22.8 25.5 98.1 81.7 3,373 12.3 31.0 1,105 971 3,369 12.3 1126 91.03 39 AV1 22.8 25.1 97.0 8.08 30.7 828 720 STD 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 22.8 MAX 25.1 97.0 8.08 3,369 12.3 30.7 828 720 1164 92.00 39 AV38 22.6 24.5 96.7 80.5 3,335 12.2 31.0 822 707 STD 0.1 0.2 0.8 0.7 18 0.1 0.2 15 18 MAX 22.9 98.1 81.7 3,381 12.3 31.4 857 756 25.1 12.3 1197 93.00 33 AV33 22.8 25.1 96.5 80.5 3,362 30.9 816 711 STD 0.1 0.2 0.8 0.6 13 0.1 0.2 22 22 MAX 22.9 25.5 98.2 81.9 3,385 12.4 31.2 857 750 1235 94.00 AV38 22.5 24.8 93.8 78.2 3,323 12.2 30.1 849 747 38 STD 0.2 0.4 1.6 1.4 0.1 0.3 19 36 15 MAX 22.9 25.6 97.3 12.4 81.1 3.387 30.7 901 807 AV53 22.9 95.4 79.5 3,380 29.4 1288 95.00 53 25.0 12.4 899 801 STD 0.9 0.8 0.3 0.2 0.4 26 0.1 15 16 MAX 23.3 25.8 97.3 81.1 3.446 12.6 30.0 937 843 1348 96.00 60 AV₆₀ 22.8 25.0 95.9 79.9 3,374 12.4 28.8 940 844 0.2 1.4 22 0.1 0.3 25 27 STD 0.1 1.6 3,424 MAX 25.5 98.3 81.9 12.6 29.2 998 902 23.2 AV53 3,325 1,044 1401 97.00 53 22.5 24.2 94.1 78.4 12.2 28.2 940 STD 1.3 8.2 6.8 191 0.7 3.9 54 49 1.3 MAX 99.7 38.6 1,109 1,003 23.2 25.2 83.0 3,431 12.6 50 AV50 22.6 94.0 78.3 3,344 12.2 28.5 1,052 1451 98.00 24.1 943 STD 0.3 0.3 1.7 1.4 37 0.1 0.2 22 22 3,413 1,096 MAX 23.1 24.8 96.9 80.7 12.5 28.9 989 83 AV83 22.9 24.0 95.2 79.4 3,385 12.4 28.2 1,077 973 1534 99.00 STD 0.2 0.3 1.2 1.0 27 0.1 0.1 26 30 1,158 MAX 23.4 24.9 98.5 82.1 3.452 12.7 28.4 1.047 1634 100.00 100 AV100 23.1 24.0 97.4 81.1 3,415 12.5 28.0 1,082 983 STD 0.2 0.3 1.6 1.3 36 0.1 0.2 22 17 MAX 23.6 24.9 100.0 83.3 3,485 12.8 28.3 1,150 1.037 1718 101.00 84 AV84 23.1 23.8 97.6 81.4 3,404 12.4 28.0 1,069 978 STD 0.3 0.3 1.4 1.2 47 0.2 0.2 12 11 MAX 23.6 100.1 83.4 3,482 28.3 1,103 1,008 24.6 12.8 AV1 23.0 97.1 80.9 3,395 12.4 28.1 1,066 995 1719 102.01 93 23.8 0.0 0.0 STD 0.0 0.0 0.0 0.0 0 0 0 995 MAX 23.0 97.1 80.9 3,395 28.1 1,066 23.8 12.4 1811 103.00 93 AV92 22.7 23.7 97.0 80.9 3.348 12.2 28.1 1.106 993 STD 0.2 0.4 0.8 0.7 29 0.1 0.1 26 15 MAX 23.2 24.6 99.1 82.6 3,430 12.5 28.3 1,165 1.044 1899 104.00 88 AV88 22.3 22.9 95.4 79.5 3.290 12.0 26.7 1.135 1.010 STD 0.2 0.3 1.4 1.1 35 0.1 0.6 27 17 3,383 MAX 22.9 23.7 98.1 12.3 27.8 1,192 1.048 81.7 1992 105.00 AV93 22.0 96.9 8.08 3,246 11.9 1,209 1.061 93 23.1 26.1 0.5 29 0.2 0.3 0.6 28 0.1 0.1 30 STD 22.4 99.2 26.3 1,278 MAX 23.8 82.7 3,307 12.1 1,126 93 AV31 21.8 23.3 96.8 80.7 3,217 11.8 26.2 1,254 1,111 2023 105.33 STD 0.2 0.3 0.5 0.4 24 0.1 0.1 20 20 MAX 22.1 23.9 98.3 82.0 3,259 11.9 26.3 1,295 1,153 20.8 22.0 79.1 65.9 3,067 11.2 33.0 813 734 Average

KIWC	, POA TP	P - IP 8	(Loc. 6)							PP48x	(1.0", AP	E 15-4	
OP: R	MDT		` ,							Date	e: 03-Ma	y-2016	
BL#	Depth	BLC	TYPE	CSX	CSI	EMX	ETR	FMX	VMX	BPM	RX5	RX6	
	ft	ft bl/ft ksi ksi k-ft (%) kips f/s bpm kips Std. Dev. 3.1 3.0 22.2 18.5 459 1.7 6.3 317											
	Std. Dev. 3.1 3.0 22.2 18.5 459 1.7 6.3											276	
		Ma	aximum	25.5	26.0	102.4	85.4	3,759	13.9	84.9	1,295	1,153	
				Total n	umber c	of blows a	nalyzed	: 2022					

BL# Sensors

2-2023 F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

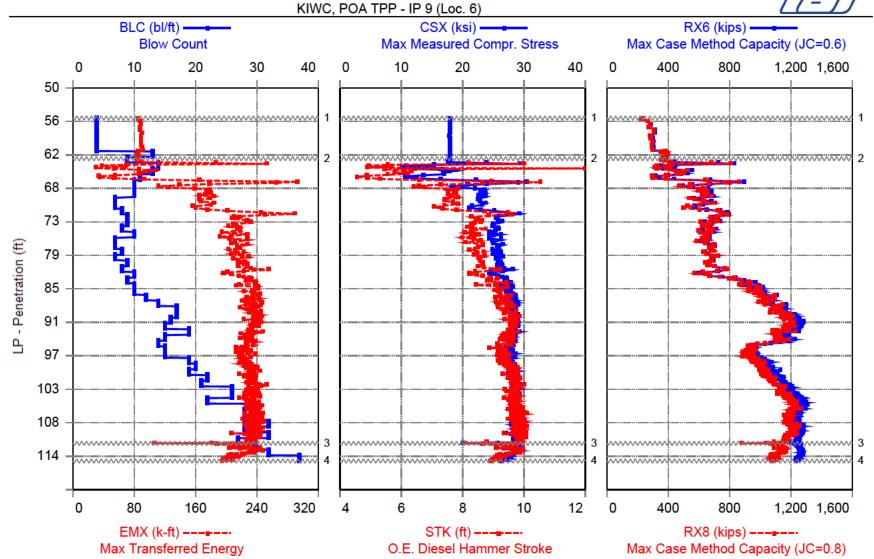
BL# Comments

2 Begin driving with APE 15-4 impact hammer, near tip -84 ft, 8:07:34 PM, 5/3/2016 2023 End driving, near tip -133 ft, 5/3/2016, 9:29:38 PM

Time Summary

Drive 8 minutes 43 seconds 8:07 PM - 8:16 PM (5/3/2016) BN 2 - 209

Stop 4 minutes 3 seconds 8:16 PM - 8:20 PM
Drive 33 minutes 32 seconds 8:20 PM - 8:53 PM BN 210 - 1353


Stop 11 minutes 29 seconds 8:53 PM - 9:05 PM

Drive 24 minutes 13 seconds 9:05 PM - 9:29 PM BN 1354 - 2023

Total time [01:22:03] = (Driving [01:06:30] + Stop [00:15:33])

Printed: 08-May-2016 Test started: 06-May-2016

^{1 -} Begin driving with D180-42, tip near -81, 10:38:09 AM, 5/6/2016

^{3 -} Pause, continue. 11:17:32 AM

^{2 - 5/6/2016, 11:01:34} AM remove D180, 5/6/2016, 11:01:34 AM continue. 4 - End of Driving, Tip near -140, 115 ft depth, 11:20:09 AM, 5/7/2016

STD

28.3

2.2

0.61

69

2.2

322

1.8

96

68

KIWC, POA TPP - IP 9 (Loc. 6) PP48x1.0", APE D180-42 OP: RMDT Date: 06-May-2016 0.492 k/ft³ 147.65 in² AR: SP: LE: 173.40 ft EM: 29,972 ksi WS: 16,800.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) RX8 CSI **BPM** RA2 BL# Depth BLC TYPE **EMX** CSX STK RX6 FMX ft bl/ft k-ft ksi ft kips kips ksi kips bpm kips 252 4 56.0 4 AV4 87.1 18.0 254 247 19.4 2,665 1.9 ** STD 1.2 0.2 35 39 0.1 24 0.0 25 ** MAX 88.4 18.3 277 272 19.6 2,699 1.9 281 8 88.7 ** 287 279 19.4 2,666 272 57.0 AV4 18.1 1.9 **STD** ** 0.0 0.0 1.4 0.0 8 11 12 ** MAX 90.2 18.1 296 291 19.5 2,668 1.9 284 ** 12 58.0 4 AV4 88.9 18.0 312 306 19.4 2,661 1.9 290 ** STD 1.0 0.0 8 0.0 0.0 9 2 ** 90.1 19.5 2,665 MAX 18.0 321 315 1.9 292 ** 16 59.0 AV4 89.5 17.9 300 288 19.4 2,650 2.0 268 ** **STD** 0.5 0.0 5 6 0.0 0.0 3 ** 19.4 2,655 306 293 2.0 273 MAX 90.0 18.0 ** AV4 19.4 2,654 2.0 20 60.0 4 88.9 18.0 304 296 272 ** **STD** 8.0 0.0 11 12 0.0 0.0 6 ** MAX 90.0 18.0 322 314 19.4 2,658 2.0 278 18.0 ** 24 AV4 90.7 306 299 19.4 2,658 2.0 262 61.0 ** STD 1.3 0.0 16 19 0.0 0.0 10 ** MAX 92.1 18.0 328 323 19.5 2,662 2.0 277 37 62.0 13 AV13 84.9 18.0 ** 386 386 19.4 2,656 2.0 315 ** STD 1.0 0.1 16 16 0.1 0.0 4 ** 19.5 2,671 86.6 408 408 2.0 324 MAX 18.1 AV9 ** 17.9 46 63.0 86.7 392 374 19.2 2,643 1.9 367 **STD** 4.2 0.2 ** 35 31 0.2 0.0 25 81 ** 97.8 2.0 MAX 18.1 457 411 19.5 2.677 560 60 64.0 14 AV14 102.1 17.1 506 479 18.4 2,526 45.7 489 6.40 STD 82.0 6.8 2.00 192 189 7.4 1,010 9.7 136 MAX 276.6 30.2 10.28 944 904 32.4 4,456 55.0 756 73 65.0 13 AV13 88.4 16.7 7.08 477 449 18.0 2,467 46.2 483 17.6 2.1 5.7 STD 3.62 61 67 2.4 316 58 MAX 112.4 18.9 19.56 20.4 2,792 51.1 573 544 550 84 66.0 11 AV11 56.7 13.1 5.16 382 350 14.1 1,935 51.7 420 STD 22.8 2.5 61 67 2.7 366 2.4 54 0.53 MAX 110.9 18.1 6.31 500 496 19.5 2.668 54.7 517 67.0 10 AV10 208.4 721 27.2 3.736 41.1 94 25.3 8.45 701 599 63.2 129 3.2 STD 4.0 1.39 126 4.3 594 149 MAX 305.9 936 34.0 4,662 45.1 849 31.6 10.81 914 104 68.0 10 AV10 149.8 21.4 7.13 601 579 22.9 3.153 44.3 544

KIWC, POA TPP - IP 9 (Loc. 6)

PP48x1.0", APE D180-42

	RMDT	11 - 11	3 (LUC	<i>.</i> . 0)					1170	Date:	06-May	
	Depth	BI C	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DLπ	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
		Dirit	MAX	188.4	24.3	7.99	727	690	26.0	3,592	46.8	699
114	69.0	10	AV10	176.4	23.4	7.72	675	647	25.1	3,455	42.5	564
117	03.0	10	STD	8.4	0.6	0.20	24	31	0.6	89	0.5	78
			MAX	188.1	24.4	8.07	719	700	26.1	3,599	43.1	732
121	70.0	7	AV7	171.5	22.9	7.54	636	601	24.4	3,377	43.0	540
121	70.0	,	STD	8.4	0.4	0.15	58	65	0.5	64	0.4	32
			MAX	187.8	23.6	7.83	718	716	25.3	3,488	43.5	594
128	71.0	7	AV7	169.4	22.3	7.40	604	565	23.9	3,295	43.4	615
120	71.0	,	STD	13.5	1.1	0.33	53	70	1.2	162	0.9	56
			MAX	191.0	24.1	7.91	693	680	25.8	3,561	44.5	677
136	72.0	8	AV8	228.4	26.2	8.67	741	710	28.1	3,873	40.3	673
130	72.0	0	STD	43.6	2.4	0.83	70	82	2.7	357	1.9	115
				291.2	29.6	9.83	851	831	31.9	4,366	42.9	873
145	73.0	9	AV9	223.4	26.2	8.64	726	713	28.2	3,868	40.3	635
145	73.0	9	STD	18.4	1.1	0.38	51	63	1.2	166	0.8	69
				263.2	28.8	9.52	825	815	30.9	4,259	41.1	770
154	74.0	9	AV9	203.2	26.6 25.7	9.52 8.46	688	673	27.5	3,792	40.7	684
154	74.0	9	STD	10.8	0.6	0.40	52	63	0.7	90	0.4	54
			MAX		26.9	8.84	774	773	28.7	3,970	41.2	744
160	75.0	8	AV8	213.3					27.3	3,763	40.8	
162	75.0	0		12.2	25.5	8.39	663	647 63	0.8	101		660
			STD MAX		0.7 26.7	0.23	51 732	732	28.7		0.5 41.5	68
170	76.0	10	AV10		25.0	8.79				3,941		762
172	76.0	10	STD	206.2 13.5		8.28	660	650	26.8	3,695 120	41.1 0.6	641
			MAX		0.8 26.9	0.25 8.84	36 705	41 698	0.9 28.8		42.0	58 708
170	77.0	7	AV7	212.8		8.33				3,968		
179	77.0	/	STD	12.5	25.2		633	619	26.9	3,716 129	41.0	638
				229.6	0.9	0.27	34 701	38 701	1.0		0.6	31
106	70 A	7	MAX AV7	219.6	26.6	8.75	701		28.5	3,926	41.7	680
186	78.0	,	STD	6.9	26.0	8.60 0.15	695 32	690 34	27.9 0.5	3,841 70	40.3	719
				231.0	0.5 26.7	0.15 8.84	32 746	746	28.7		0.3	28 757
104	70.0	8	AV8	211.5					27.2	3,944 3,767	40.8	757
194	79.0	0			25.5	8.43	670	664			40.7	691 56
			STD	10.2	0.6	0.21	31	34	0.7	92	0.5	56 740
201	90 O	7		228.0	26.4	8.75	729	729 700		3,896	41.4	749
201	80.0	7		218.6	26.0	8.59	702	700	27.7	3,839	40.4	691
			STD	9.7	0.5	0.17	32 725	33	0.6	77	0.4	95
210	01.0	0		233.0	26.6	8.79	735	735	28.4	3,929	41.1	779
210	81.0	9		221.3	26.1	8.62	669	665	27.9	3,850	40.3	705
			STD	5.8	0.3	0.09	20	26	0.3	47	0.2	69
210	00.0	0		230.8	26.5	8.75	697	697	28.4	3,909	40.7	749
218	82.0	8		231.7	26.9	8.91	747	744	28.8	3,965	39.7	703
			STD	16.1	0.9	0.32	42	46	1.1	138	0.7	122
220	02.0	10	MAX		28.6	9.57	815	813	30.7	4,216	40.4	870
228	83.0	10	AV10	209.0	25.3	8.42	661	652	27.1	3,739	40.8	670
			STD	10.3	0.8	0.24	61 705	62 775	0.9	114	0.6	78 702
			WAX	223.8	26.7	8.84	795	775	28.5	3,937	41.5	792

465

99.0

20 AV20 230.2

28.3

9.55 1,052 1,008

30.6 4,183

38.3 1,063

KIWC, POA TPP - IP 9 (Loc. 6) PP48x1.0", APE D180-42 OP: RMDT Date: 06-May-2016 RX8 CSX STK BL# Depth **BLC TYPE EMX** RX6 **CSI** FMX **BPM** RA2 kips bpm kips ft bl/ft k-ft ksi ft kips ksi kips 233.8 877 4,025 39.3 740 237 84.0 9 AV9 27.3 9.06 867 29.3 **STD** 0.24 9.9 0.7 55 50 0.7 99 0.5 39 MAX 252.0 28.6 9.52 30.6 4,221 40.2 956 929 802 247 85.0 10 AV10 229.3 9.07 959 39.3 27.3 931 29.4 4,038 853 STD 16.4 1.0 0.36 50 55 1.1 153 8.0 38 MAX 249.0 28.6 9.52 1,052 1,036 30.9 4,228 40.7 931 257 86.0 10 AV10 233.3 27.7 9.19 997 969 29.8 4.087 39.1 935 STD 7.3 0.4 0.13 35 40 0.4 53 0.3 26 MAX 239.5 28.0 9.27 1,068 1,051 30.3 4,132 39.8 982 12 AV12 239.3 9.41 269 87.0 28.2 1,061 1,043 30.4 4,169 38.6 1.038 10.6 0.23 43 0.5 STD 0.7 48 0.7 97 35 1,110 MAX 259.0 9.78 29.4 1,123 31.6 4,338 39.8 1,120 283 14 AV14 233.3 28.2 9.37 1.083 1.058 30.4 4,167 38.7 1,080 0.88 STD 10.4 0.7 0.22 55 55 0.7 98 0.4 87 MAX 249.6 29.3 9.73 1,173 31.7 4,330 39.3 1,234 1,156 234.1 300 89.0 17 AV17 28.4 9.45 1,142 1,107 30.5 4.188 38.5 1.065 9.9 0.19 28 STD 0.6 31 0.6 84 0.4 74 MAX 250.3 29.4 9.78 1,187 1,162 31.7 4,338 39.7 1,255 17 AV17 240.3 38.2 317 90.0 28.8 9.60 1,185 1,165 31.1 4,257 1.120 STD 7.2 0.5 0.17 48 51 0.5 69 0.3 71 MAX 253.3 29.8 9.94 1,294 1,257 32.1 4,393 38.8 1,236 333 16 AV16 238.3 28.8 9.65 1,248 1.190 31.1 38.2 91.0 4,257 1.245 **STD** 7.3 0.4 0.16 41 32 0.5 60 0.3 47 MAX 247.0 29.4 9.83 1,301 1,238 31.7 4,343 39.0 1,397 348 92.0 15 AV15 235.5 28.7 9.63 1,250 1,189 31.0 4,244 38.2 1,210 STD 4.5 0.3 21 32 45 0.2 0.12 0.4 39 MAX 243.5 31.6 4,320 29.3 9.83 1,283 1,229 38.6 1,285 367 93.0 19 AV19 233.6 28.5 9.57 1,178 1,134 30.9 4,213 38.3 1,145 STD 0.5 0.16 51 0.5 0.3 43 7.7 41 68 1,259 MAX 251.8 29.4 9.89 1,245 31.8 4,340 39.0 1,213 1,129 382 94.0 15 AV15 226.8 28.1 9.42 1,183 30.4 4,152 38.6 1,159 STD 7.7 0.5 0.18 34 32 0.6 72 0.4 31 31.4 4,292 MAX 241.0 29.1 9.78 1,271 1,208 39.2 1,208 396 14 AV14 230.0 1,070 1,042 95.0 28.2 9.45 30.4 4,157 38.5 1,059 STD 8.0 0.5 0.1994 93 0.6 75 0.4 82 MAX 247.7 29.2 9.83 1,221 1,200 31.5 4,310 39.2 1,189 411 15 AV15 221.0 9.23 955 941 29.8 4,075 39.0 96.0 27.6 977 STD 9.0 0.5 0.18 26 25 0.6 76 0.4 105 MAX 233.2 28.2 9.52 1,010 993 30.5 4,160 40.0 1.200 426 97.0 15 AV15 221.7 27.8 9.28 961 923 30.0 4,098 38.9 988 7.7 **STD** 0.5 0.17 34 70 0.3 22 30 0.5 MAX 239.6 29.0 9.73 1,013 973 31.3 4,275 39.4 1.024 445 98.0 19 AV19 224.1 27.9 9.37 1,019 970 30.1 4,123 38.7 1,030 STD 6.5 0.5 0.16 32 38 0.5 67 0.3 34 MAX 232.8 28.6 9.57 1,116 1,085 30.9 4,221 39.4 1,116

KIWC, POA TPP - IP 9 (Loc. 6) PP48x1.0", APE D180-42
OP: RMDT Date: 06-May-2016

OP: F	ŔMDT		(,						Date:	06-May	-2016
_	Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	· ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
			STD	7.5	0.4	0.16	21	27	0.5	64	0.3	36
			MAX	246.3	29.1	9.83	1,085	1,046	31.6	4,302	38.9	1,143
484	100.0	19	AV19	232.5	28.5	9.64	1,077	1,019	30.9	4,214	38.2	1,125
			STD	7.9	0.5	0.19	31	24	0.6	76	0.4	31
				246.7	29.4	9.94	1,164	1,074	31.9	4,341	39.4	1,196
506	101.0	22	AV22		28.5	9.67	1,125	1,059	30.9	4,215	38.1	1,186
			STD	7.9	0.5	0.15	31	29	0.6	75	0.3	47
				246.0	29.4	9.89	1,185	1,111		4,335	38.7	1,298
527	102.0	21		238.7	28.8	9.75	1,165	1,096	31.1	4,245	38.0	1,247
			STD	7.8	0.4	0.15	26	26	0.4	55	0.3	29
				261.7	29.6	10.11		1,135	31.9	4,371	38.4	1,297
553	103.0	26	AV26	234.3	28.6	9.68	1,199	1,141	30.9	4,225	38.1	1,310
000	100.0	20	STD	8.2	0.5	0.17	14	21	0.5	71	0.3	36
				250.1	29.5	10.05	1,231	1,189	32.0	4,362	38.7	1,366
570	104.0	26	AV26	233.8	28.6	9.70	1,225	1,162	30.9	4,221	38.1	1,368
373	104.0	20	STD	9.2	0.5	0.20	28	31	0.6	81	0.4	40
				247.9	29.4	10.00	1,290	1,225	32.0	4,346	39.0	1,438
601	105.0	22	AV22		28.5	9.68	1,270		30.8		38.1	1,412
001	105.0	22						1,202		4,206		-
			STD	7.2	0.3	0.13	22	22	0.4	49	0.2	38
C24	1000	20		244.8	29.0	9.89	1,312	1,245	31.4	4,280	38.6	1,477
631	106.0	30	AV30	237.0	28.7	9.79	1,279	1,225	31.1	4,237	37.9	1,404
			STD	6.8	0.4	0.15	21	20	0.5	66	0.3	31
050	407.0	00		248.4	29.6	10.11	1,326	1,276	32.2	4,377	38.6	1,467
659	107.0	28	AV28	236.7	28.7	9.79	1,247	1,202	31.1	4,241	37.9	1,396
			STD	7.8	0.5	0.19	19	19	0.6	72	0.4	37
007	400.0	00		250.7	29.7	10.11	1,292	1,250	32.2	4,378	38.5	1,465
687	108.0	28		235.2	28.7	9.78	1,237	1,182	31.1	4,234	37.9	1,436
			STD	8.8	0.6	0.19	13	23	0.7	83	0.4	25
				248.9	29.5	10.05	1,268	1,227	32.2	4,361	38.7	1,477
/19	109.0	32		238.4	28.9	9.90	1,249	1,199	31.5	4,265	37.7	1,439
			STD	8.6	0.5	0.20	18	30	8.0	78	0.4	24
			MAX		29.6	10.22	1,302	1,271	32.8	4,374	38.7	1,499
747	110.0	28	AV28		28.8	9.86		1,212		4,252		1,426
				8.6			12			78		21
				252.6			1,299			4,398		1,463
779	111.0	32	AV32		28.7			1,196		4,236		1,413
				10.8	0.7	0.25	14	30	0.9	97	0.5	24
			MAX	252.8	29.9		1,290	1,268	33.2	4,414	39.2	1,469
806	112.0	27	AV27	220.0	27.9	9.66	1,238	1,129	30.3	4,112	36.9	1,361
			STD	35.9	2.5	0.67	33	84	2.8	370	7.0	130
			MAX	245.2	29.4	10.11	1,284	1,210	32.3	4,336	44.8	1,466
836	113.0	30	AV30	222.0	28.2	9.45	1,252	1,125	30.7	4,159	38.6	1,386
			STD	15.5	1.0	0.36	13	30	1.1	148	0.7	28
				245.0	29.6	10.00	1,271	1,174	32.5	4,378	40.7	1,439
868	114.0	32	AV32		28.6			1,132	31.1	4,221	38.1	1,394
			STD	11.6	0.7	0.23	10	26	0.8	100	0.4	27
				-	-	=	-	_			= "	

KIWC	C, POA T	TPP - IF	⊃ 9 (Loc	c. 6)					PP48	3x1.0", <i>I</i>	APE D1	80-42
OP: F	RMDT			-						Date:	06-May	-2016
BL#	Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
, , , , , , , , , , , , , , , , , , ,												1,457
905	905 115.0 37 AV37 206.0 27.2 9.18 1,251 1,091 29.5 4,015 39.1 1											
STD 7.0 0.5 0.15 13 23 0.5 67 0.3												30
MAX 220.1 28.1 9.47 1,276 1,148 30.6 4,150 39.7 1												
		A۱	verage	213.3	26.8	9.23	1,028	976	28.9	3,952	37.2	1,078
Std. Dev. 46.9 3.7 1.04 291 270 4.1 546 8.7 3												355
		Ma	ximum	305.9	31.6	19.56	1,326	1,276	34.0	4,662	55.0	1,499
				Total no	umber d	of blows	analyz	ed: 905				

BL# Sensors

1-499 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

500-905 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: [28243] 1025.0 (1.00); A2: [34329] 1085.0 (1.00);

A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

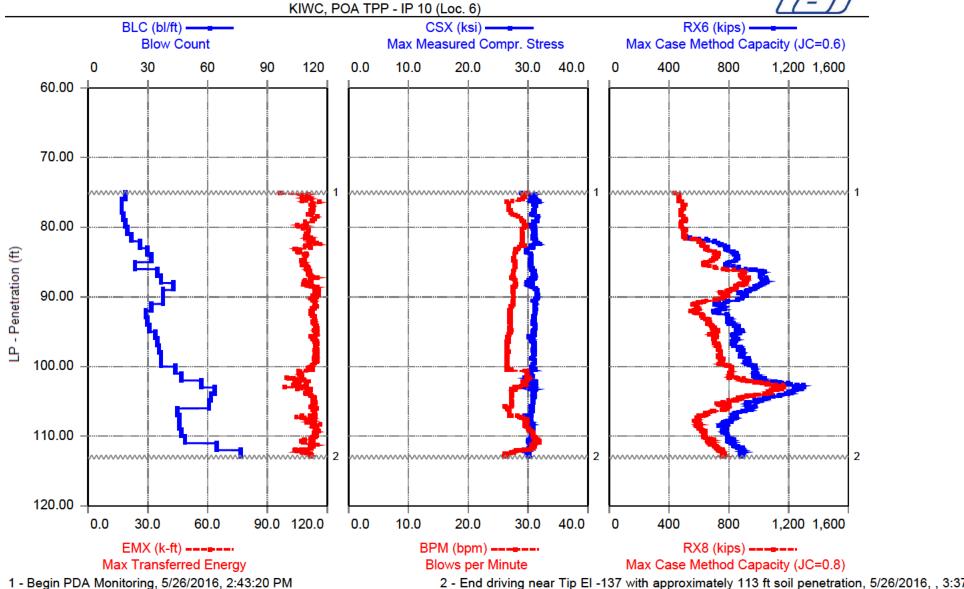
BL# Comments

- 1 Begin driving with D180-42, tip near -81, 10:38:09 AM, 5/6/2016
- 40 5/6/2016, 11:01:34 AM remove D180, 5/6/2016, 11:01:34 AM continue.
- 804 Pause, continue. 11:17:32 AM

905 End of Driving, Tip near -140, 115 ft depth, 11:20:09 AM, 5/7/2016

Time Summary

Drive 23 minutes 24 seconds 10:38 AM - 11:01 AM (5/6/2016) BN 1 - 40


Stop 23 hours 45 minutes 34 seconds 11:01 AM - 10:47 AM

Drive 33 minutes 0 second 10:47 AM - 11:20 AM BN 41 - 905

Total time [1: 00:41:59] = (Driving [00:56:24] + Stop [23:45:34])

Printed: 31-May-2016 Test started: 26-May-2016

KIWC, POA TPP - IP 10 (Loc. 6) PP48x1.0", APE 15-4 OP: RMDT Date: 26-May-2016 0.492 k/ft3 147.65 in² AR: SP: 174.00 ft EM: 31,052 ksi LE: WS: 17,100.0 f/s JC: 0.35 [] EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress CSX: Max Measured Compr. Stress RX6: Max Case Method Capacity (JC=0.6) FMX: Maximum Force RX7: Max Case Method Capacity (JC=0.7) VMX: Maximum Velocity RX8: Max Case Method Capacity (JC=0.8) BPM: Blows per Minute **FMX VMX BPM** CSI BL# Depth **BLC TYPE EMX** CSX RX6 RX7 RX8 ft bl/ft k-ft ksi kips f/s bpm ksi kips kips kips AV18 107.6 30.7 4,528 464 464 19 76.00 19 17.0 29.5 33.9 464 STD 1.2 177 0.7 0.6 1.3 16 7.4 16 16 MAX 115.3 31.9 4,715 17.8 31.0 35.8 488 488 488 17 AV17 111.9 31.1 4,599 17.2 36 77.00 27.2 34.4 488 488 488 0.5 16 STD 3.1 0.6 90 8.0 0.5 16 16 MAX 117.0 32.3 4,769 18.1 28.9 35.4 519 519 519 53 78.00 17 AV17 112.8 31.2 4,600 17.2 26.9 34.7 491 491 491 STD 0.2 0.2 0.2 14 14 14 8.0 31 0.2 MAX 113.8 31.6 4,659 17.7 27.3 35.0 526 526 526 18 AV18 112.9 71 79.00 31.3 4,621 17.6 28.3 34.0 492 492 492 STD 2.1 0.5 69 0.4 0.6 0.4 17 17 17 18.0 MAX 116.8 32.1 4.739 29.0 34.7 527 527 527 492 19 AV19 109.5 17.4 29.4 492 90 80.00 31.0 4,584 33.3 492 **STD** 4.7 8.0 0.5 0.4 8.0 16 16 113 16 MAX 114.3 31.9 4.710 18.1 30.1 34.3 523 523 523 20 AV20 109.8 31.0 4,577 17.5 29.2 110 81.00 33.5 503 502 502 STD 3.6 0.5 0.5 0.3 0.7 14 14 14 80 MAX 115.6 31.8 4,699 18.3 30.1 34.5 527 527 527 132 82.00 22 AV22 110.9 31.2 4,606 17.6 29.1 33.4 541 531 564 STD 3.1 0.5 69 0.3 0.2 0.5 60 43 38 MAX 116.3 32.0 4.731 18.1 29.4 34.6 619 672 605 158 83.00 26 AV26 112.3 31.2 4,605 17.5 29.1 33.5 748 669 626 0.7 0.3 0.3 37 21 STD 3.3 98 0.6 36 29.9 MAX 117.1 32.3 4.773 18.2 34.6 749 821 677 188 84.00 30 AV30 106.8 30.1 4.441 17.0 28.1 32.5 817 750 689 STD 0.4 0.4 0.3 0.7 30 31 34 2.7 65 MAX 111.8 31.1 4,588 17.6 29.3 33.8 859 797 744 220 85.00 32 AV32 108.6 30.6 4,517 17.3 27.7 33.2 853 780 709 0.2 STD 1.0 0.1 22 0.1 0.3 18 19 22 MAX 110.5 30.8 4,553 17.7 28.0 894 819 757 33.8 244 86.00 24 AV24 109.3 30.6 4,516 17.3 27.9 33.1 818 737 662 1.4 0.2 0.2 0.1 0.3 36 32 STD 29 36 MAX 111.7 31.0 4.574 17.5 28.1 33.5 894 810 726 279 87.00 35 AV35 111.0 17.5 27.6 934 31.0 4.570 34.3 1.003 870 0.2 41 STD 0.9 0.2 0.1 0.6 47 36 38

MAX 112.5

111.7

2.0

37 AV37

STD

316 88.00

31.5 4,647

30.7 4,533

67

0.5

18.0

17.4

0.4

28.0

27.7

0.3

35.1 1,047

33.9 1,039

22

0.5

982

969

20

922

909

18

KIWC, POA TPP - IP 10 (Loc. 6) PP48x1.0", APE 15-4 OP: RMDT Date: 26-May-2016 **VMX BPM CSI** BL# Depth **BLC TYPE EMX** CSX FMX RX6 RX7 RX8 kips bpm kips kips kips ft bl/ft k-ft ksi f/s ksi 31.4 4,638 28.5 34.9 1,085 1,017 MAX 115.7 18.0 951 43 AV43 112.4 30.6 4,524 17.4 359 89.00 27.8 33.4 998 931 866 **STD** 2.6 0.4 29 29 0.6 0.3 0.5 30 83 28.4 MAX 117.1 31.6 4,661 34.3 1,064 999 934 18.1 397 90.00 38 AV38 114.9 31.6 4,659 18.0 27.6 34.3 906 842 780 **STD** 0.2 0.2 0.1 0.4 27 27 26 1.1 27 32.0 4,721 MAX 116.3 18.2 27.9 35.1 955 892 828 34.6 435 91.00 38 AV38 113.9 31.4 4,634 17.6 27.6 833 760 692 STD 1.0 0.3 42 0.3 0.1 0.5 60 66 67 18.3 MAX 115.7 31.9 4,715 27.8 35.7 927 864 801 467 92.00 32 AV32 113.6 31.2 4.612 17.6 27.3 34.6 745 660 584 STD 1.0 0.2 24 0.2 0.2 0.4 25 23 16 27.7 MAX 115.3 31.6 4,661 18.0 800 708 35.4 621 496 93.00 29 AV29 112.7 31.2 4,601 17.7 27.1 34.0 756 672 600 STD 1.1 0.2 34 0.2 0.1 0.4 42 37 31 31.7 4.677 MAX 114.7 18.0 27.3 34.9 821 731 663 526 94.00 30 AV30 113.6 31.0 4,570 17.5 27.1 33.6 724 804 658 STD 0.7 0.2 31 0.2 0.1 0.5 17 16 16 MAX 115.2 31.4 4,642 17.9 27.3 34.4 835 758 686 557 95.00 31 AV31 114.7 31.2 4.600 17.6 27.1 34.1 860 779 699 STD 0.7 0.2 28 0.3 0.1 0.3 25 24 22 17.9 MAX 116.1 31.5 4.645 27.3 34.8 929 843 758 34 AV34 114.0 591 96.00 30.7 4,540 17.4 26.9 33.9 847 771 706 STD 1.1 0.4 54 0.3 0.2 0.5 23 20 21 MAX 115.8 31.3 4,618 17.9 27.2 34.7 910 762 836 626 97.00 35 AV35 114.3 30.9 4,567 17.5 26.7 839 768 713 33.8 STD 1.0 0.3 43 0.3 0.1 0.4 18 16 15 MAX 115.9 31.5 4,655 18.0 26.9 34.7 883 802 752 662 98.00 36 AV36 114.6 31.0 4,576 17.5 26.6 33.9 875 798 736 STD 0.2 0.1 0.4 19 0.7 26 0.1 27 12 847 MAX 115.9 31.4 4,635 17.8 26.8 34.7 930 764 699 99.00 37 AV37 114.4 31.0 4,571 17.6 26.6 33.7 898 809 742 21 STD 8.0 0.2 32 0.2 0.1 0.5 24 13 18.0 MAX 116.1 31.3 4,617 26.8 34.6 945 859 773 736 100.00 37 AV37 114.0 31.0 4.583 17.5 26.6 33.3 931 839 759 **STD** 8.0 0.2 25 0.2 0.3 21 23 18 0.1 MAX 115.7 31.5 4,645 17.9 26.7 34.0 973 887 803 44 AV44 30.7 4.531 17.3 780 101.00 109.7 27.9 32.9 976 893 817 STD 2.9 0.4 63 0.3 1.6 0.5 15 17 15

32.0 4,718

30.4 4,490

31.5 4,644

30.9 4,565

31.7 4,683

96

123

0.6

8.0

18.0

17.0

17.8

17.4

0.5

17.9

0.4

30.0

29.9

0.3

30.8

29.3

0.5

30.6

34.0 1,011

33.8 1,078

993

1,181

33

79

34.5 1,316 1,255 1,193

32.6

0.9

33.3

1.0

930

905

1,003

1.109

40

85

848

835

929

1.041

39

85

MAX 116.9

MAX 114.8

MAX 111.5

4.0

4.7

107.7

47 AV47 105.9

STD

STD

57 AV57

827 102.00

884 103.00

KIWC, POA T OP: RMDT	PP - IF	9 10 (Lo	c. 6)					F		.0", API 26-May	
BL# Depth	BLC	TYPE	EMX	CSX	FMX	VMX	BPM	CSI	RX6	RX7	RX8
ft	bl/ft		k-ft	ksi	kips	f/s	bpm	ksi	kips	kips	kips
948 104.00	64	AV63	109.4	30.9	4,564	17.5	27.6	33.0	1,241	1,170	1,102
	•	STD	2.2	0.3	48	0.2	0.3	0.3	36	38	39
		MAX	112.8	31.6	4,661	17.9	28.1	34.0	1,345	1,279	1,213
1010 105.00	62	AV62	112.9	31.0	4,575	17.7	27.4	32.9	1,072	981	906
		STD	1.0	0.2	24	0.1	0.1	0.2	60	59	62
		MAX	114.7	31.4	4,632	17.9	27.6	33.3	1,196	1,124	1,051
1071 106.00	61	AV61	113.3	30.8	4,545	17.6	27.1	32.8	945	855	769
		STD	8.0	0.1	21	0.2	0.5	0.3	29	32	32
		MAX	115.3	31.0	4,580	17.9	27.5	33.3	1,024	937	850
1116 107.00	45	AV45	113.9	30.7	4,534	17.5	26.9	32.7	895	798	707
		STD	0.7	0.1	21	0.2	0.1	0.2	51	55	57
		MAX	115.6	30.9	4,569	17.9	27.1	33.3	969	883	797
1162 108.00	46	AV46	111.0	30.1	4,440	16.9	29.0	32.8	832	706	598
		STD	3.7	0.6	84	0.4	1.0	0.7	24	27	23
		MAX	116.2	31.1	4,585	17.6	30.2	34.2	870	772	675
1208 109.00	46	AV46	113.6	30.6	4,521	17.4	29.8	32.9	772	675	597
		STD	2.2	0.4	52	0.2	0.2	0.4	18	16	15
		MAX	117.8	31.1	4,597	17.8	30.4	33.9	820	716	630
1255 110.00	47	AV47	114.6	30.8	4,554	17.6	30.7	32.9	779	687	631
		STD	8.0	0.1	19	0.2	0.3	0.3	16	15	12
100111100	4.0	MAX	116.5	31.2	4,610	17.8	31.1	33.5	812	725	657
1304 111.00	49	AV49	111.0	30.5	4,499	17.4	31.5	32.2	809	735	664
		STD	2.7	0.3	41	0.2	0.4	0.3	18	21	22
1000 110 00	6 6	MAX	115.0	30.9	4,565	17.8	32.2	32.9	853	782	711
1369 112.00	65	AV65	111.7	30.4	4,482	17.4	31.0	32.4	855	776	711
		STD	3.1	0.4	64	0.3	0.5	0.5	27	29	23
1446 112 00	77	MAX	115.8	31.1	4,587	17.9	32.1	33.2	926	857	787 750
1446 113.00	//	AV77 STD	109.7 2.7	30.0 0.4	4,431	17.2 0.3	27.2 1.0	32.0 0.5	890 16	818 17	759 16
					60 4 405						
-	۸,	MAX	113.0 111.7	30.4 30.8	4,495 4,545	<u>17.6</u> 17.4	29.7 28.2	32.9 33.3	930 877	859 803	796 739
		verage d. Dev.	3.4	0.6	4,545	0.4	20.2 1.5	0.9	173	161	151
		ximum	3. 4 117.8	32.3	4,773	18.3	32.2	35.8	1,345	1,279	1,213
	ivia	^!!!!u!!!_	- 117.0	JZ.J	7,//3	10.5	52.2	55.6	1,543	1,2/3	1,213

Total number of blows analyzed: 1444

BL# Sensors

1-1446 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: off; A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

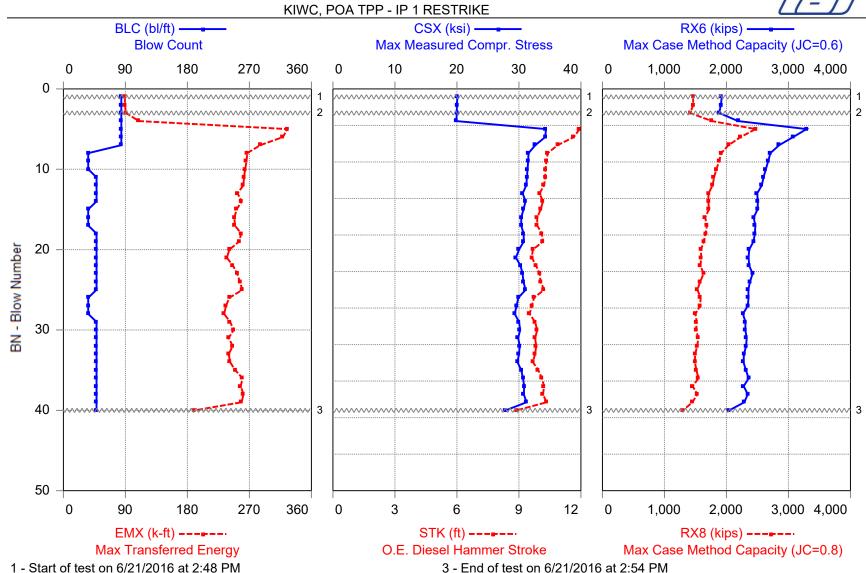
BL# Comments

Begin PDA Monitoring, 5/26/2016, 2:43:20 PM

1446 End driving near Tip EI -137 with approximately 113 ft soil penetration, 5/26/2016, , 3:37:31 PM

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 4 PDIPLOT2 2016.1.999.0 - Printed 31-May-2016


KIWC, POA TPP - IP 10 (Loc. 6) OP: RMDT PP48x1.0", APE 15-4 Date: 26-May-2016

Time Summary

Drive 54 minutes 10 seconds 2:43 PM - 3:37 PM BN 1 - 1446

Printed: 24-June-2016 Test started: 21-June-2016

^{1 -} Start of test on 6/21/2016 at 2:48 PM

^{2 -} End of "soft start"

KIWC, POA TPP - IP 1 RESTRIKE PP48x1.0", APE D180-42
OP: RMDT Date: 21-June-2016

AR: 147.65 in² SP: 0.492 k/ft³ LE: 178.50 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 []

EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress

CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute

RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles

						NAZ.	Auto	Japacity	FIICUOII	riies
					DV6	DVQ	CSI	EMY	DDM	RA2
	IIFE									kips
	Δ\/1			**						925
				**		,				1,031
				**						1,043
				**						1,686
				11 93						2,084
										1,930
										1,861
										1,827
36	AV1	265.8	31.5	10.33	2,673	1,881	32.7	4,649	36.9	1,765
36	AV1	263.8	31.4	10.28	2,634	1,839	32.4	4,634	37.0	1,722
48	AV1	262.2	31.3	10.28	2,598	1,799	32.5	4,620	37.0	1,770
48	AV1	261.3	31.2	10.22	2,570	1,777	32.2	4,605	37.1	1,728
										1,773
										1,752
										1,734
										1,667
										1,700
								•		1,730
										1,667
										1,664
										1,680
										1,683
										1,740
										1,704 1,606
										1,636
										1,619
										1,632
										1,629
										1,643
										1,701
										1,668
										1,745
		242.0	29.8							1,625
48	AV1	249.2	30.4				31.3		37.6	1,629
48	AV1	260.1	30.7	10.11	2,359	1,549	31.6	4,527	37.3	1,667
48	AV1	257.3	30.8	10.22	2,278	1,456	31.8	4,554	37.1	1,635
48	AV1	261.5	30.8	10.16	2,343	1,529	31.5	4,545	37.2	1,616
	BLC bl/ft 84 84 84 84 84 48 48 48 48 48 48 48 48	BLC TYPE bl/ft 84 AV1 84 AV1 84 AV1 48 AV1 4	BLC TYPE EMX bl/ft k-ft 84 AV1 89.2 84 AV1 90.8 84 AV1 109.6 84 AV1 325.1 84 AV1 285.8 36 AV1 266.8 36 AV1 262.2 48 AV1 252.8 48 AV1 252.8 48 AV1 258.8 36 AV1 258.8 36 AV1 258.8 36 AV1 258.8 36 AV1 252.8 48 AV1 252.8 48 AV1 252.8 48 AV1 258.1 48 AV1 258.1 48 AV1 254.9 48 AV1 252.4 48 AV1 240.9 36 AV1 240.9 36 AV1 233.3 48 AV1 242.1 48 AV1 239.9 48 AV1 242.1 48 AV1 239.9 48 AV1 242.0 48 AV1 242.0 48 AV1 242.0 48 AV1 242.0 48 AV1 257.3	Max Case Method Capacity (JC) BLC TYPE EMX CSX bl/ft k-ft ksi 84 AV1 89.2 20.1 84 AV1 89.3 20.0 84 AV1 90.8 20.0 84 AV1 109.6 19.9 84 AV1 109.6 19.9 84 AV1 109.6 19.9 84 AV1 109.6 19.9 84 AV1 255.8 32.6 36 AV1 266.8 31.5 36 AV1 263.8 31.5 36 AV1 263.8 31.4 48 AV1 262.2 31.3 48 AV1 252.8 30.6 48 AV1 258.8 31.1 36 AV1 248.8 30.4 48 AV1 254.9 30.8 48 AV1 254.9 30.8 <	bl/ft	Max Case Method Capacity (JC=0.8) BLC TYPE EMX CSX STK RX6 bl/ft k-ft ksi ft kips 84 AV1 89.2 20.1 ** 1,923 84 AV1 89.3 20.0 ** 1,911 84 AV1 190.8 20.0 ** 1,882 84 AV1 109.6 19.9 ** 2,188 84 AV1 318.7 34.4 11.93 3,292 84 AV1 285.8 32.6 10.87 2,850 36 AV1 266.8 31.5 10.39 2,707 36 AV1 265.8 31.5 10.39 2,707 36 AV1 265.8 31.5 10.39 2,707 36 AV1 265.8 31.5 10.39 2,707 36 AV1 263.8 31.1 10.28 2,598 48 A	BLC TYPE EMX CSX STK RX6 RX8 bl/ft k-ft ksi ft kips kips RX8 RX1 RX1	BLC TYPE EMX CSX STK RX6 RX8 Ksi ksi	BLC TYPE	BLC TYPE

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2016.1.999.0 - Printed 24-June-2016

KIWC	C, POA T	PP - IP	1 RESTE		PP.	48x1.0",	APE D1	180-42			
OP: F	RMDT								Date:	21-June	e-2016
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39	48	AV1	258.6	31.2	10.33	2,287	1,451	32.2	4,610	36.9	1,651
40	48	AV1	190.4	27.8	8.89	2,044	1,299	28.4	4,112	39.7	1,273
	Α	verage	238 5	29.6	10 08	2 406	1 647	30.6	4 376	33.8	1 646

Total number of blows analyzed: 40

BL# Sensors

1-40 F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H283] 92.3 (1.00);

F4: [H340] 94.0 (1.00); A1: off; A2: off; A3: [K1066] 332.0 (1.00);

A4: [K1717] 368.0 (1.00)

BL# Comments

1 Start of test on 6/21/2016 at 2:48 PM

End of "soft start" 3

40 End of test on 6/21/2016 at 2:54 PM

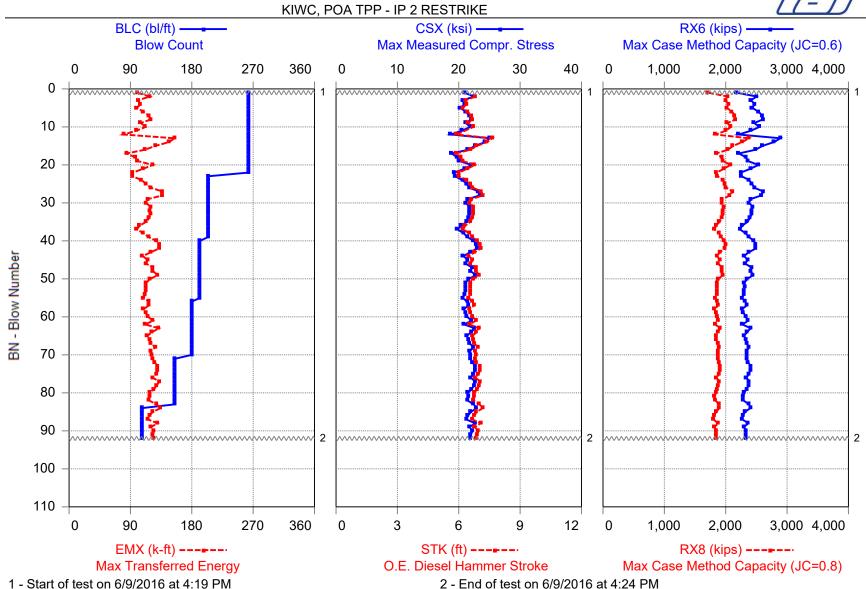
Time Summary

Drive 0 second 2:48 PM - 2:48 PM (6/21/2016) BN 1 - 1

Stop 1 minute 13 seconds 2:48 PM - 2:50 PM

Drive 0 second 2:50 PM - 2:50 PM BN 2 - 2

Stop 1 minute 10 seconds 2:50 PM - 2:51 PM


Drive 0 second 2:51 PM - 2:51 PM BN 3 - 3 Stop 2 minutes 2 seconds 2:51 PM - 2:53 PM

Drive 57 seconds 2:53 PM - 2:54 PM BN 4 - 40

Total time [00:05:24] = (Driving [00:00:57] + Stop [00:04:26])

Printed: 14-June-2016 Test started: 09-June-2016

 KIWC, POA TPP - IP 2 RESTRIKE
 PP48x1.0", APE D180-42

 OP: RMDT
 Date: 09-June-2016

 AR: 147.65 in²
 SP: 0.492 k/ft³

AR: 147.65 in² SP: 0.492 k/ft³
LE: 185.00 ft EM: 31,052 ksi
WS: 17,100.0 f/s JC: 0.35 []

EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress

CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute

RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles

				acity (JC:			RA2:	Auto (Capacity	Friction	Piles
RX8:				acity (JC:							
BL#		TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
1	264	AV1	100.1	20.9	**	2,175	1,715	22.0	3,090	1.9	1,304
2	264	AV1	118.3	22.5	6.82	2,502	2,030	24.0	3,322	45.1	1,519
3	264	AV1	101.4	20.7	6.34	2,412	1,998	22.1	3,052	46.7	1,530
4	264	AV1	105.0	21.0	6.40	2,472	2,045	22.4	3,099	46.5	1,587
5	264	AV1	99.6	20.3	6.20	2,433	2,019	21.6	2,991	47.2	1,586
6	264	AV1	109.0	21.1	6.42	2,533	2,102	22.6	3,118	46.4	1,678
7	264	AV1	116.9	21.7	6.63	2,597	2,152	23.2	3,207	45.7	1,728
8	264	AV1	120.3	22.1	6.69	2,607	2,164	23.6	3,259	45.5	1,731
9	264	AV1	105.2	21.1	6.45	2,465	2,026	22.6	3,121	46.3	1,613
10	264	AV1	112.3	21.9	6.72	2,549	2,086	23.5	3,238	45.4	1,587
11	264	AV1	98.8	20.5	**	2,412	2,002	21.9	3,024	1.9	1,582
12	264	AV1	80.3	18.7	5.88	2,211	1,837	20.0	2,761	48.4	1,440
13	264	AV1	154.6	25.1	7.64	2,890	2,377	27.0	3,700	42.7	1,908
14	264	AV1	146.7	24.3	7.39	2,786	2,265	26.1	3,589	43.4	1,823
15	264	AV1	126.5	22.6	6.88	2,599	2,121	24.3	3,344	44.9	1,737
16	264	AV1	111.4	21.5	6.57	2,488	2,037	23.2	3,176	45.9	1,690
17	264	AV1	84.4	18.8	5.86	2,213	1,841	20.2	2,783	48.5	1,505
18	264	AV1	97.3	19.7	6.12	2,334	1,935	21.2	2,916	47.5	1,629
19	264	AV1	100.7	20.1	6.20	2,363	1,958	21.6	2,970	47.2	1,660
20	264	AV1	123.1	22.1	6.79	2,533	2,075	23.8	3,263	45.2	1,729
21	264	AV1	109.0	21.0	6.42	2,405	1,972	22.6	3,098	46.4	1,680
22	264	AV1	94.0	19.3	6.01	2,248	1,853	20.7	2,854	47.9	1,576
23	204	AV1	93.1	19.4	6.01	2,262	1,868	20.8	2,864	47.9	1,576
24	204	AV1	106.5	20.6	6.40	2,382	1,964	22.2	3,045	46.5	1,672
25	204	AV1	113.1	21.3	6.57	2,430	1,985	22.9	3,139	45.9	1,710
26	204	AV1	119.9	21.7	6.69	2,467	2,010	23.3	3,208	45.5	1,730
27	204	AV1	137.0	23.3	7.11	2,611	2,112	25.0	3,434	44.2	1,804
28	204	AV1	137.4	23.5	7.18	2,583	2,074	25.2	3,463	44.0	1,632
29	204	AV1	116.0	21.5	6.63	2,408	1,946	23.1	3,176	45.7	1,681
30	204	AV1	112.6	21.1	6.54	2,379	1,936	22.7	3,117	46.0	1,689
31	204	AV1	119.8	21.8	6.72	2,441	1,975	23.4	3,220	45.4	1,722
32	204	AV1	118.7	21.7	6.72	2,426	1,963	23.4	3,211	45.4	1,698
33	204	AV1	119.5	21.7	6.72	2,424	1,960	23.4	3,210	45.4	1,690
34	204	AV1	117.6	21.6	6.66	2,393	1,934	23.2	3,191	45.6	1,663
35	204	AV1	112.9	21.3	6.57	2,354	1,899	22.8	3,141	45.9	1,647
36	204	AV1	103.5	20.4	6.31	2,268	1,842	21.9	3,005	46.8	1,609
37	204	AV1	99.5	19.8	6.23	2,232	1,818	21.2	2,926	47.1	1,628
38	204	AV1	109.5	20.8	6.51	2,325	1,890	22.3	3,072	46.1	1,651

BL# BLC TYPE EMX CSX STK RX6 RX8 KS1 KS1 KS1 KS2 KS1 KS2 KS2	KIWC, OP: RI		PP - IP	2 RESTF	RIKE				PP	48x1.0", Date:	APE D1 09-June	
bl/ft			TYPF	FMX	CSX	STK	RX6	RX8	CSI			
39 204 AV1 116.7 21.4 6.66 2,376 1,928 23.0 3,162 45.6 1,688 40 192 AV1 132.7 22.9 7.04 2,490 2,000 24.7 3,309 44.8 1,627 42 192 AV1 132.3 23.0 7.08 2,491 1,986 24.9 3,394 44.3 1,627 43 192 AV1 110.9 21.9 6.79 2,375 1,903 23.6 3,228 45.2 1,659 44 192 AV1 110.3 21.5 6.69 2,358 1,903 33.1 3,172 45.5 1,659 46 192 AV1 113.3 21.1 6.69 2,358 1,903 33.9 3,275 45.5 1,758 47 192 AV1 123.3 22.0 6.85 2,421 1,943 23.9 3,275 45.5 1,758 48 192												
40 192 AV1 127.9 22.4 6.91 2,462 1,980 24.2 3,309 44.8 1,648 41 192 AV1 132.7 22.9 7.04 2,490 2,000 24.7 3,380 44.4 1,627 42 192 AV1 119.9 21.9 6.79 2,375 1,903 23.6 3,228 45.2 1,659 44 192 AV1 115.3 21.5 6.69 2,358 1,903 23.1 3,172 45.5 1,702 46 192 AV1 113.3 21.1 6.57 2,317 1,875 22.7 3,118 45.9 1,588 47 192 AV1 123.3 22.0 6.85 2,410 1,941 23.7 3,244 45.0 1,613 48 192 AV1 113.2 21.7 6.72 2,350 1,858 22.8 3,114 45.8 1,525 51 192 AV1	39		AV1									
41 192 AV1 132.7 22.9 7.04 2,490 2,000 24.7 3,380 44.4 1,627 42 192 AV1 132.3 23.0 7.08 2,491 1,986 24.9 3,394 44.3 1,607 43 192 AV1 119.9 21.9 6.79 2,375 1,903 23.6 3,228 45.2 1,683 45 192 AV1 115.3 21.5 6.69 2,358 1,903 23.1 3,172 45.5 1,683 46 192 AV1 123.3 22.0 6.85 2,410 1,943 23.9 3,275 45.0 1,713 48 192 AV1 130.1 22.8 7.01 2,450 1,956 24.6 3,359 44.5 1,633 50 192 AV1 113.2 21.7 6.72 2,350 1,883 23.4 3,199 45.4 1,555 51 192 AV1										•		
42 192 AV1 132.3 23.0 7.08 2,491 1,986 24.9 3,394 44.3 1,607 43 192 AV1 119.9 21.9 6.79 2,375 1,903 23.6 3,228 45.2 1,659 44 192 AV1 115.3 21.5 6.69 2,358 1,903 23.1 3,172 45.5 1,702 46 192 AV1 123.1 22.2 6.85 2,421 1,943 23.9 3,275 45.0 1,713 48 192 AV1 130.1 22.8 7.01 2,450 1,956 24.6 3,359 44.5 1,613 49 192 AV1 130.1 22.8 7.10 2,450 1,984 23.9 3,275 45.0 1,613 49 192 AV1 113.2 21.1 6.60 2,350 1,883 23.4 3,199 45.4 1,555 51 192												
43 192 AV1 119.9 21.9 6.79 2.375 1,903 23.6 3,228 45.2 1,689 44 192 AV1 108.1 20.7 6.48 2,300 1,860 22.4 3,063 46.2 1,683 45 192 AV1 115.3 21.1 6.57 2,317 1,875 22.7 3,118 45.9 1,702 46 192 AV1 123.3 22.0 6.85 2,421 1,943 23.9 3,275 45.0 1,713 48 192 AV1 123.3 22.0 6.85 2,421 1,943 23.9 3,275 45.0 1,613 48 192 AV1 113.2 21.7 6.72 2,350 1,856 24.6 3,359 44.5 1,631 49 192 AV1 113.2 21.7 6.70 2,301 1,858 22.8 3,114 45.8 1,555 51 192						7.08					44.3	
45 192 AV1 115.3 21.5 6.69 2,358 1,903 23.1 3,172 45.5 1,702 46 192 AV1 113.3 21.1 6.57 2,317 1,875 22.7 3,118 45.9 1,588 47 192 AV1 123.1 22.2 6.85 2,421 1,943 23.9 3,275 45.0 1,713 48 192 AV1 130.1 22.8 7.01 2,450 1,956 24.6 3,359 44.5 1,633 50 192 AV1 119.2 21.7 6.72 2,350 1,858 23.4 3,199 45.4 1,555 51 192 AV1 112.8 21.2 6.60 2,307 1,858 22.8 3,114 45.8 1,575 53 192 AV1 112.3 21.1 6.57 2,303 1,865 22.8 3,116 45.8 1,575 54 192	43	192	AV1	119.9	21.9	6.79		1,903	23.6		45.2	
46 192 AV1 113.3 21.1 6.57 2,317 1,875 22.7 3,118 45.9 1,588 47 192 AV1 123.1 22.2 6.85 2,421 1,943 23.9 3,275 45.0 1,713 49 192 AV1 130.1 22.8 7.01 2,450 1,956 24.6 3,359 44.5 1,633 50 192 AV1 119.2 21.7 6.72 2,350 1,883 23.4 3,199 45.4 1,555 51 192 AV1 112.8 21.2 6.60 2,307 1,888 22.8 3,114 45.8 1,554 52 192 AV1 112.7 21.1 6.57 2,303 1,865 22.8 3,114 45.8 1,5575 53 192 AV1 112.7 21.1 6.57 2,303 1,867 22.2 3,045 46.2 1,515 56 180	44	192	AV1	108.1	20.7	6.48	2,300	1,860	22.4	3,063	46.2	1,683
47 192 AV1 123.1 22.2 6.85 2,421 1,943 23.9 3,275 45.0 1,613 48 192 AV1 130.1 22.8 7.01 2,450 1,966 24.6 3,359 44.5 1,633 50 192 AV1 119.2 21.7 6.72 2,350 1,883 23.4 3,199 45.4 1,555 51 192 AV1 113.2 21.1 6.60 2,307 1,888 22.8 3,114 45.8 1,545 52 192 AV1 112.7 21.1 6.57 2,303 1,857 22.7 3,116 45.8 1,575 53 192 AV1 112.3 21.1 6.50 2,303 1,857 22.7 3,116 45.8 1,575 53 192 AV1 112.3 21.1 6.60 2,303 1,857 22.7 3,111 45.8 1,661 1,551 56 180	45	192	AV1	115.3	21.5	6.69	2,358	1,903	23.1	3,172	45.5	1,702
48 192 AV1 123.3 22.0 6.85 2,410 1,941 23.7 3,244 45.0 1,633 50 192 AV1 119.2 21.7 6.72 2,350 1,883 23.4 3,199 45.4 1,555 51 192 AV1 113.2 21.1 6.60 2,307 1,858 22.8 3,114 45.8 1,575 51 192 AV1 112.8 21.2 6.60 2,301 1,865 22.8 3,114 45.8 1,575 53 192 AV1 112.3 21.1 6.60 2,301 1,865 22.8 3,116 45.8 1,575 54 192 AV1 112.3 21.1 6.60 2,304 1,858 22.7 3,111 45.8 1,575 54 192 AV1 110.9 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180	46		AV1	113.3		6.57	2,317	1,875		3,118	45.9	1,588
49 192 AV1 130.1 22.8 7.01 2,450 1,956 24.6 3,359 44.5 1,633 50 192 AV1 119.2 21.7 6.72 2,3507 1,858 22.8 3,114 45.8 1,555 51 192 AV1 112.8 21.2 6.60 2,311 1,865 22.8 3,130 45.8 1,575 53 192 AV1 112.7 21.1 6.60 2,301 1,858 22.7 3,116 45.8 1,575 53 192 AV1 112.3 21.1 6.60 2,304 1,858 22.7 3,111 45.8 1,566 54 192 AV1 110.3 21.4 6.60 2,323 1,870 23.0 3,160 45.6 1,503 56 180 AV1 116.8 21.6 6.76 2,322 1,877 23.3 3,160 45.8 1,661 58 180			AV1									
50 192 AV1 119.2 21.7 6.72 2,350 1,883 23.4 3,199 45.4 1,555 51 192 AV1 113.2 21.1 6.60 2,307 1,858 22.8 3,110 45.8 1,544 52 192 AV1 112.8 21.2 6.60 2,301 1,865 22.8 3,130 45.8 1,545 53 192 AV1 112.3 21.1 6.60 2,304 1,858 22.7 3,111 45.8 1,661 55 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180 AV1 116.8 21.6 6.66 2,323 1,877 23.3 3,186 45.3 1,681 58 180 AV1 110.9 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180												
51 192 AV1 113.2 21.1 6.60 2,307 1,858 22.8 3,114 45.8 1,574 52 192 AV1 112.8 21.2 6.60 2,301 1,857 22.7 3,116 45.9 1,575 53 192 AV1 112.3 21.1 6.60 2,304 1,858 22.7 3,111 45.8 1,575 54 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180 AV1 117.3 21.4 6.66 2,323 1,870 23.0 3,160 45.6 1,503 57 180 AV1 110.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 58 180 AV1 112.5 21.2 6.60 2,329 1,843 22.8 3,126 45.8 1,627 60 180												
52 192 AV1 112.8 21.2 6.60 2,311 1,865 22.8 3,130 45.8 1,575 53 192 AV1 112.7 21.1 6.57 2,303 1,857 22.7 3,116 45.9 1,568 54 192 AV1 110.9 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180 AV1 117.3 21.4 6.66 2,323 1,870 23.0 3,160 45.6 1,503 57 180 AV1 116.8 21.6 6.76 2,342 1,877 23.3 3,186 45.3 1,681 58 180 AV1 109.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 115.9 21.4 6.66 2,293 1,843 22.8 3,126 45.8 1,627 61 180												
53 192 AV1 112.7 21.1 6.57 2,303 1,857 22.7 3,116 45.9 1,568 54 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,111 45.8 1,661 55 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,111 45.8 1,661 56 180 AV1 116.8 21.6 6.76 2,322 1,877 23.3 3,160 45.6 1,503 57 180 AV1 116.8 21.6 6.76 2,342 1,877 23.3 3,166 45.6 1,503 58 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,176 46.1 1,513 59 180 AV1 112.3 21.2 6.60 2,293 1,841 23.1 3,158 45.6 1,572 61 180												
54 192 AV1 112.3 21.1 6.60 2,304 1,858 22.7 3,111 45.8 1,661 55 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180 AV1 117.3 21.4 6.66 2,323 1,870 23.3 3,186 45.3 1,681 58 180 AV1 110.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,533 62 180												
55 192 AV1 109.0 20.6 6.48 2,265 1,829 22.2 3,045 46.2 1,515 56 180 AV1 117.3 21.4 6.66 2,323 1,870 23.0 3,160 45.6 1,503 57 180 AV1 116.8 21.6 6.76 2,342 1,877 23.3 3,186 45.3 1,681 58 180 AV1 110.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 111.5 22.1 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 63 180												,
56 180 AV1 117.3 21.4 6.66 2,323 1,870 23.0 3,160 45.6 1,503 57 180 AV1 116.8 21.6 6.76 2,342 1,877 23.3 3,160 45.6 1,503 58 180 AV1 109.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,523 62 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 63 180												
57 180 AV1 116.8 21.6 6.76 2,342 1,877 23.3 3,186 45.3 1,681 58 180 AV1 109.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,523 62 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 63 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180												
58 180 AV1 109.2 20.8 6.51 2,265 1,817 22.5 3,076 46.1 1,513 59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,523 61 180 AV1 123.4 22.1 6.85 2,367 1,886 23.9 3,262 45.0 1,523 62 180 AV1 111.6 20.9 6.51 2,272 1,886 23.9 3,262 45.0 1,523 63 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 65 180												
59 180 AV1 112.5 21.2 6.60 2,293 1,843 22.8 3,126 45.8 1,627 60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 123.4 22.1 6.85 2,367 1,886 23.9 3,262 45.0 1,523 62 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,535 63 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 119.7 21.8 6.76 2,328 1,855 23.4 3,194 45.4 1,504 67 180												
60 180 AV1 115.9 21.4 6.66 2,326 1,871 23.1 3,158 45.6 1,572 61 180 AV1 123.4 22.1 6.85 2,367 1,886 23.9 3,262 45.0 1,523 62 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,535 63 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180												
61 180 AV1 123.4 22.1 6.85 2,367 1,886 23.9 3,262 45.0 1,523 62 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,535 63 180 AV1 311.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 121.8 22.0 6.85 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 118.7 21.7 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,297 1,841 23.3 3,160 45.4 1,504 83 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
62 180 AV1 111.6 20.9 6.51 2,272 1,826 22.5 3,081 46.1 1,535 63 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 120.0 21.8 6.82 2,344 1,880 23.8 3,248 45.0 1,543 70 180 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234												
63 180 AV1 131.8 22.6 7.01 2,406 1,914 24.4 3,341 44.5 1,533 64 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248												
64 180 AV1 121.9 22.0 6.88 2,350 1,872 23.8 3,255 44.9 1,541 65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234												
65 180 AV1 114.8 21.3 6.66 2,299 1,842 23.0 3,151 45.6 1,519 66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,552 72 156												
66 180 AV1 118.6 21.6 6.72 2,328 1,855 23.4 3,194 45.4 1,504 67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,406 1,909 24.6 3,349										•		
67 180 AV1 119.7 21.8 6.76 2,346 1,880 23.5 3,217 45.3 1,570 68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,487 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511										•		
68 180 AV1 126.5 22.4 6.95 2,381 1,892 24.2 3,308 44.7 1,531 69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314								,		•		
69 180 AV1 120.0 21.8 6.82 2,344 1,874 23.6 3,225 45.1 1,550 70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344								-				
70 180 AV1 121.8 22.0 6.85 2,351 1,880 23.8 3,248 45.0 1,543 71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344										•		
71 156 AV1 122.4 21.9 6.82 2,347 1,875 23.7 3,234 45.1 1,522 72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267										•		,
72 156 AV1 125.8 22.2 6.88 2,370 1,893 24.0 3,283 44.9 1,552 73 156 AV1 130.5 22.7 7.04 2,406 1,909 24.6 3,350 44.4 1,550 74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267												,
73												
74 156 AV1 130.7 22.7 7.04 2,403 1,904 24.5 3,349 44.4 1,528 75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,455 82 156												
75 156 AV1 128.3 22.4 6.98 2,380 1,896 24.3 3,314 44.6 1,525 76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156												
76 156 AV1 122.6 22.0 6.82 2,339 1,853 23.8 3,244 45.1 1,506 77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309												
77 156 AV1 132.4 22.6 7.04 2,387 1,889 24.5 3,344 44.4 1,529 78 156 AV1 128.7 22.5 7.01 2,374 1,872 24.4 3,323 44.5 1,491 79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
78												
79 156 AV1 124.8 22.1 6.91 2,343 1,863 24.0 3,267 44.8 1,509 80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
80 156 AV1 118.9 21.5 6.76 2,297 1,841 23.3 3,181 45.3 1,480 81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
81 156 AV1 118.7 21.7 6.76 2,292 1,819 23.4 3,197 45.3 1,455 82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
82 156 AV1 117.1 21.4 6.72 2,288 1,831 23.1 3,160 45.4 1,504 83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												
83 156 AV1 128.1 22.4 7.01 2,376 1,891 24.3 3,309 44.5 1,511												

KIWC,	POA T	PP - IP	PP ^c	PP48x1.0", APE D180-42							
OP: RI	MDT			Date: 09-June-2016							
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
85	108	AV1	122.8	22.0	6.88	2,314	1,843	23.8	3,247	44.9	1,484
86	108	AV1	118.4	21.5	6.76	2,283	1,815	23.3	3,177	45.3	1,441
87	108	AV1	115.8	21.2	6.66	2,271	1,801	23.1	3,136	45.6	1,475
88	108	AV1	129.9	22.7	7.08	2,369	1,877	24.6	3,346	44.3	1,469
89	108	AV1	120.2	21.7	6.79	2,296	1,817	23.6	3,211	45.2	1,485
90	108	AV1	125.0	22.2	6.95	2,337	1,849	24.1	3,281	44.7	1,467
91	108	AV1	122.8	22.0	6.91	2,326	1,847	23.8	3,247	44.8	1,516
92	108	AV1	124.7	22.0	6.88	2,331	1,851	23.8	3,249	44.9	1,506
	Average		117.4	21.6	6.71	2,385	1,925	23.3	3,192	44.5	1,592

Total number of blows analyzed: 92

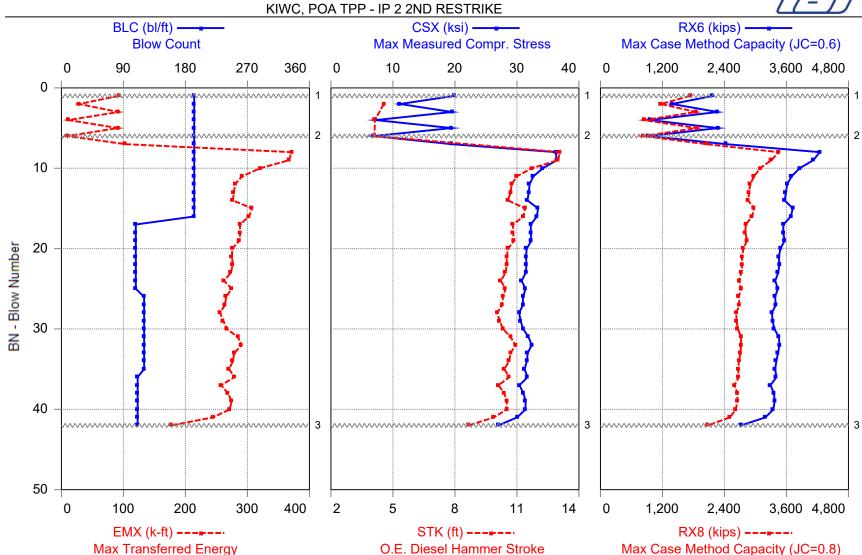
BL# Sensors

1-92 F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H340] 94.0 (1.00);

F4: [H283] 92.3 (1.00); A1: [39148] 1075.0 (1.00); A2: [39150] 1075.0 (1.00);

A3: [K1066] 332.0 (1.00); A4: [1717] 368.0 (1.00)

BL# Comments


- 1 Start of test on 6/9/2016 at 4:19 PM
- 92 End of test on 6/9/2016 at 4:24 PM

Time Summary

Drive 4 minutes 10 seconds 4:19 PM - 4:24 PM BN 1 - 92

Printed: 24-June-2016 Test started: 21-June-2016

3 - End of test on 6/21/2016 at 1:39 PM

^{1 -} Start of test on 6/21/2016 at 1:33 PM

^{2 -} End of "soft start".1:36:19 PM

36

37

38

111

111

111

AV1

AV1

AV1

279.1

257.7

268.7

31.7

30.4

31.0

10.63

10.11

10.39

3,405

3,292

3,359

2,675

2,595

2,651

34.2

32.9

33.5

4,683

4,491

4,585

36.4

37.3

36.8

2,000

1,962

2,004

KIWC, POA TPP - IP 2 2ND RESTRIKE PP48x1.0", APE D180-42 OP: RMDT Date: 21-June-2016 147.65 in² 0.492 k/ft³ AR: SP: LE: 185.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) **FMX** RA2 BL# BLC **TYPE EMX** CSX STK RX6 RX8 CSI BPM bl/ft k-ft ksi ft kips kips ksi kips bpm kips ** 1,380 1 193 92.6 2,171 1,736 21.3 1.9 AV1 19.9 2,932 2 193 AV1 28.6 11.1 4.56 1.385 1.170 11.9 1.646 54.6 1.005 3 193 AV1 92.1 19.5 2,268 1,854 20.9 2,883 1.9 1,434 4 1,070 193 AV1 11.3 7.2 4.13 961 841 7.8 57.2 903 5 19.5 ** 2,275 2,875 1,449 193 AV1 91.3 1,864 20.9 1.9 6 193 AV1 9.4 6.9 4.11 932 825 7.4 1,016 57.3 921 7 2,873 193 AV1 103.1 19.5 2,437 2,052 21.0 1.9 1.749 8 36.3 13.08 4,243 3,451 5,355 32.9 2,364 193 AV1 371.3 38.4 9 193 AV1 367.0 36.4 13.00 4,120 3.306 38.7 5.379 33.0 2,319 34.2 11.72 10 193 AV1 320.5 3,854 3,090 5,051 34.7 2,193 36.4 11.00 11 193 AV1 291.4 32.6 3,701 2,973 34.9 4,821 35.8 2,120 34.4 4.730 2.039 12 193 AV1 280.0 32.0 10.75 3.613 2.897 36.2 13 278.3 31.9 2,876 34.3 4,713 2,058 193 AV1 10.69 3,590 36.3 14 193 276.4 31.7 10.57 3,565 2,859 34.0 4,676 36.5 2,017 AV1 15 193 AV1 307.4 33.4 11.39 3.722 2.970 35.9 4.932 35.2 2.155 193 AV1 302.9 33.2 11.32 3,685 2,937 4.904 35.3 2,117 16 35.6 32.3 17 108 AV1 287.8 10.81 3,543 2,811 34.7 4,762 36.1 2,074 18 108 AV1 288.2 32.2 10.81 3,536 2,806 34.6 4.756 36.1 2.084 19 108 AV1 287.4 32.3 10.87 3,566 2,836 34.9 4,775 36.0 2,085 20 2,768 4.664 36.5 108 AV1 275.5 31.6 10.57 3,483 33.9 2,046 21 275.0 31.4 3.452 2.738 4.643 2.043 108 AV1 10.51 33.9 36.6 22 108 AV1 276.3 31.5 10.51 3,461 2,745 33.9 4,656 36.6 2,024 23 AV1 273.3 31.4 10.45 3,440 2,725 33.9 4,641 36.7 2,037 108 4.541 2.004 24 108 AV1 262.4 30.8 10.22 3.382 2.685 33.1 37.1 25 108 274.7 31.4 10.45 3,434 2,721 33.9 4.637 36.7 2.023 AV1 31.0 26 120 AV1 265.7 10.33 3,380 2,674 33.4 4,574 36.9 2,017 263.8 10.28 27 120 AV1 31.0 3,393 2,690 33.4 4,573 37.0 2,022 28 120 AV1 255.9 30.4 10.05 3,319 2,629 32.7 4,482 37.4 1,983 29 AV1 261.2 30.6 3,331 2,633 4.516 37.2 1,997 120 10.16 32.9 2,014 30 120 266.7 31.0 10.33 3,367 2,660 33.3 4,577 36.9 AV1 31 120 AV1 284.6 31.9 10.69 3,452 2,722 34.4 4.705 36.3 2,049 32 120 AV1 290.7 32.4 10.93 3,466 2,720 34.9 4,781 35.9 2,053 33 120 AV1 278.7 31.7 10.69 3,435 2.709 34.1 4.687 36.3 2.030 276.6 31.6 10.63 36.4 34 120 AV1 3.404 2.680 34.1 4.665 2.034 35 270.5 31.2 10.39 3,381 2,666 4,612 1,997 120 AV1 33.6 36.8

KIWC, OP: RI		PP - IP	PP48x1.0", APE D180-42 Date: 21-June-2016								
		TVDE	001								
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39	111	AV1	274.4	31.4	10.51	3,370	2,648	33.9	4,636	36.6	2,020
40	111	AV1	271.4	31.4	10.51	3,347	2,621	33.7	4,634	36.6	1,970
41	111	AV1	244.6	30.0	9.89	3,194	2,507	32.3	4,436	37.7	1,889
42	111	AV1	177.1	27.0	8.66	2,719	2,077	29.1	3,986	40.2	1,519
'	Average		243.1	29.0	10.18	3,201	2,550	31.1	4,275	34.5	1,910
Total number of blows analyzed: 42											

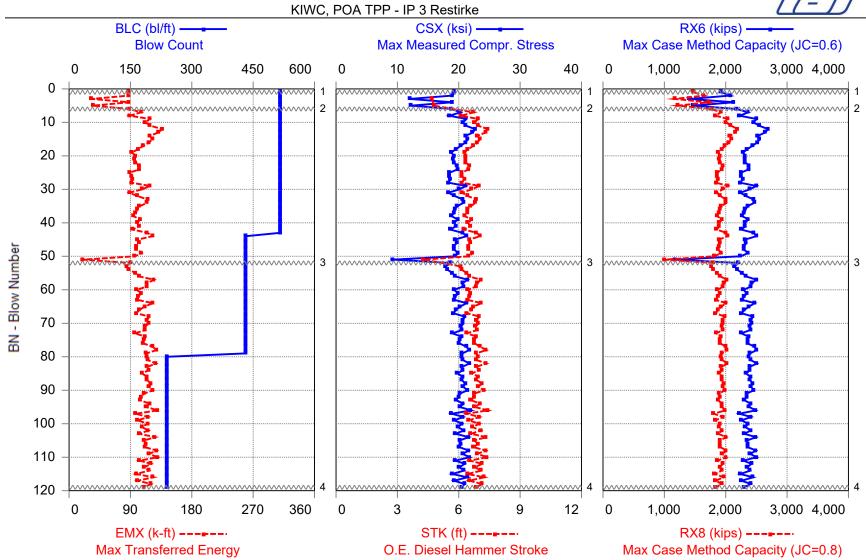
Total number of blows analyzed: 42

BL# Sensors

1-42 F1: [1458W] 129.0 (1.00); F2: [1463W] 127.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: [W10287] 970.0 (1.00); A2: [W10356] 980.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

BL# Comments

- 1 Start of test on 6/21/2016 at 1:33 PM
- 6 End of "soft start".1:36:19 PM
- 42 End of test on 6/21/2016 at 1:39 PM


Time Summary

Drive 1 second 1:33 PM - 1:34 PM (6/21/2016) BN 1 - 2
Stop 1 minute 11 seconds 1:34 PM - 1:35 PM
Drive 1 second 1:35 PM - 1:35 PM BN 3 - 4
Stop 1 minute 6 seconds 1:36 PM - 1:36 PM
Drive 1 second 1:36 PM - 1:36 PM BN 5 - 6
Stop 1 minute 56 seconds 1:36 PM - 1:38 PM
Drive 57 seconds 1:38 PM - 1:39 PM BN 7 - 42

Total time [00:05:14] = (Driving [00:01:00] + Stop [00:04:13])

Printed: 17-June-2016 Test started: 16-June-2016

- 1 Start of test on 6/16/2016 at 12:17 PM
- 2 End of "soft starts".

- 3 Restart after 2 minutes 29 seconds
- 4 End of test on 6/16/2016 at 12:26 PM

37

38

516

516

AV1

AV1

98.2

94.3

19.3

18.8

6.42

6.28

2,307

2,266

1,890

1,861

21.3

20.1

2.851

2,776

46.4

46.9

1,529

1,530

KIWC, POA TPP - IP 3 Restirke PP48x1.0", APE D180-42 OP: RMDT Date: 16-June-2016 0.492 k/ft³ AR: 147.65 in² SP: LE: 188.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) **FMX** RA2 BL# BLC **TYPE EMX** CSX STK RX6 RX8 CSI BPM bl/ft k-ft ksi ft kips kips ksi kips bpm kips 88.2 ** 1 516 1,931 1,478 2,848 1.9 1,122 AV1 19.3 20.4 ** 2 2.809 1.255 516 AV1 88.3 19.0 2.075 1.647 20.2 1.9 4.70 3 516 AV1 33.5 12.0 1,416 1,170 12.8 1,773 53.8 858 4 ** 2,132 20.1 2,796 AV1 88.1 18.9 1,716 1.9 1,269 516 5 12.3 1,476 1,225 1,814 898 516 AV1 35.6 4.78 13.1 53.4 ** 6 516 AV1 8.88 18.9 2,178 1,767 20.1 2,785 1.9 1,319 7 516 AV1 105.4 20.3 6.72 2,367 1,921 21.7 2,996 45.4 1.427 8 89.2 18.5 6.12 2,226 1,835 2,725 47.5 1,386 516 AV1 19.7 9 516 AV1 118.4 21.2 6.95 2,503 2,038 22.8 3,135 44.7 1,531 1,545 112.3 20.7 45.2 10 AV1 6.79 2,452 2,002 22.2 3,057 516 11 516 AV1 119.4 21.2 6.95 2,545 2,089 22.9 3,127 44.7 1,591 22.6 7.42 2.688 2.192 3.344 43.3 12 516 AV1 136.5 24.6 1.652 13 AV1 131.5 22.3 7.32 2,645 2,157 24.3 3,295 43.6 1,630 516 14 516 118.3 21.1 6.91 2,525 2,071 22.8 3,121 44.8 1,616 AV1 15 AV1 122.3 21.5 2.556 2.091 23.4 3.173 44.4 1.609 516 7.04 AV1 117.5 21.1 6.91 2,514 2,056 22.8 3,113 44.8 1,622 16 516 1,565 20.3 3,003 17 516 AV1 109.4 6.72 2,435 1,996 22.2 45.4 18 516 AV1 101.2 19.5 6.45 2,353 1,934 20.9 2.882 46.3 1,528 19 516 AV1 92.4 18.8 6.28 2,282 1,882 20.5 2,776 46.9 1,479 20 19.2 20.5 516 AV1 97.6 6.37 2,321 1,908 2,842 46.6 1,497 21 AV1 19.1 2.310 1.901 20.9 2.818 46.7 1.508 516 96.1 6.34 22 516 AV1 98.0 19.2 6.34 2,325 1,912 20.4 2,839 46.7 1,519 23 AV1 103.5 19.7 6.54 2,382 1,958 21.6 2,915 46.0 1,561 516 19.9 1.946 2.931 1.551 24 516 AV1 103.6 6.48 2.373 21.1 46.2 25 AV1 89.1 18.5 2,255 1,863 20.3 2,737 47.3 1,482 516 6.17 26 516 AV1 91.9 18.5 2,255 1,860 19.7 2,736 47.3 1,513 6.17 27 516 AV1 92.8 18.7 6.28 2,281 1,884 20.5 2,758 46.9 1,516 28 516 AV1 91.3 18.3 6.14 2,233 1,842 19.5 2,703 47.4 1,519 29 AV1 118.6 21.2 2,501 2.041 23.3 3,124 44.5 1,590 516 7.01 30 516 AV1 107.2 20.1 6.63 2,392 1.952 21.6 2,972 45.7 1,566 31 516 AV1 88.5 18.3 6.17 2,239 1,852 20.1 2,705 47.3 1,475 19.3 32 AV1 100.1 6.42 2,328 1,913 20.7 2,855 46.4 1,569 516 2,001 33 516 AV1 115.3 20.7 6.88 2.454 22.8 3.052 44.9 1.603 114.7 20.8 2.466 22.3 45.1 34 516 AV1 6.82 2.011 3.071 1.596 35 AV1 103.8 19.7 2,359 1,931 2,914 45.8 1,546 516 6.60 21.8 36 99.7 19.4 6.45 2,321 1,903 20.7 2,860 46.3 1,552 516 AV1

KIWC, POA TPP - IP 3 Restirke

PP48x1.0", APE D180-42

OP: RMDT

OP: RMDT								Date: 16-June-2016				
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2	
DL"	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips	
39	516	AV1	104.7	19.8	6.63	2,370	1,940	21.9	2,928	45.7	1,585	
40	516	AV1	99.8	19.3	6.45	2,310	1,897	20.6	2,846	46.3	1,562	
41	516	AV1	102.9	19.5	6.57	2,325	1,898	21.5	2,886	45.9	1,479	
42	516	AV1	93.1	18.6	6.25	2,252	1,855	19.9	2,750	47.0	1,542	
43	516	AV1	115.1	20.6	6.88	2,455	2,006	22.8	3,044	44.9	1,596	
44	432	AV1	122.3	21.3	7.04	2,499	2,029	22.8	3,139	44.4	1,654	
45	432	AV1	101.0	19.4	6.51	2,315	1,893	21.5	2,865	46.1	1,535	
46	432	AV1	103.5	19.7	6.57	2,339	1,909	21.2	2,905	45.9	1,573	
47	432	AV1	98.7	19.2	6.48	2,300	1,887	21.3	2,836	46.2	1,499	
48	432	AV1	99.6	19.3	6.48	2,297	1,878	20.6	2,845	46.2	1,529	
49	432	AV1	106.7	19.9	6.69	2,367	1,932	22.0	2,939	45.5	1,563	
50	432	AV1	96.8	19.4	6.48	2,244	1,812	20.8	2,868	46.2	1,441	
51	432	AV1	20.6	9.3	4.28	1,180	1,001	10.3	1,375	56.2	878	
52	432	AV1	90.0	18.7	**	2,208	1,801	20.4	2,765	1.9	1,458	
53	432	AV1	84.4	17.9	6.09	2,147	1,763	19.4	2,637	47.6	1,449	
54	432	AV1	88.1	18.2	6.14	2,188	1,796	19.9	2,681	47.4	1,473	
55	432	AV1	97.6	19.0	6.40	2,272	1,858	20.5	2,806	46.5	1,547	
56	432	AV1	103.0	19.4	6.51	2,332	1,911	21.3	2,869	46.1	1,543	
57	432	AV1	124.6	21.5	7.08	2,501	2,023	23.2	3,168	44.3	1,559	
58	432	AV1	115.0	20.6	6.91	2,424	1,972	22.9	3,044	44.8	1,540	
59	432	AV1	115.0	20.8	6.85	2,417	1,964	22.3	3,066	45.0	1,623	
60	432	AV1	99.0	19.2	6.45	2,289	1,871	21.3	2,836	46.3	1,496	
61	432	AV1	106.6	20.0	6.60	2,345	1,907	21.4	2,948	45.8	1,517	
62	432	AV1	101.2	19.4	6.54	2,302	1,878	21.4	2,868	46.0	1,551	
63	432	AV1	100.4	19.3	6.42	2,267	1,842	20.6	2,852	46.4	1,503	
64	432	AV1	122.8	21.3	7.11	2,475	2,005	23.5	3,140	44.2	1,579	
65	432	AV1	111.2	20.3	6.72	2,379	1,933	21.7	2,991	45.4	1,515	
66	432	AV1	103.3	19.6	6.63	2,306	1,877	21.7	2,888	45.7	1,486	
67	432	AV1	98.6	19.1	6.40	2,258	1,839	20.5	2,826	46.5	1,486	
68	432	AV1	117.6	21.0	7.01	2,441	1,981	23.3	3,094	44.5	1,636	
69	432	AV1	114.8	20.7	6.88	2,417	1,955	22.1	3,064	44.9	1,569	
70	432	AV1	116.9	20.7	6.98	2,423	1,965	23.0	3,061	44.6	1,573	
71	432	AV1	111.6	20.4	6.82	2,390	1,943	21.9	3,016	45.1	1,588	
72	432	AV1	112.3	20.6	6.91	2,404	1,953	22.9	3,041	44.8	1,596	
73	432	AV1	96.5	18.9	6.40	2,252	1,846	20.2	2,797	46.5	1,563	
74	432	AV1	112.1	20.5	6.88	2,376	1,921	22.9	3,026	44.9	1,526	
75	432	AV1	110.3	20.2	6.76	2,358	1,910	21.4	2,979	45.3	1,571	
76	432	AV1	109.2	20.1	6.79	2,356	1,914	22.4	2,971	45.2	1,525	
77	432	AV1	122.5	21.2	7.04	2,471	2,001	22.7	3,137	44.4	1,579	
78	432	AV1	128.3	21.7	7.35	2,507	2,022	24.2	3,207	43.5	1,632	
79	432	AV1	113.8	20.6	6.85	2,394	1,937	22.1	3,042	45.0	1,592	
80	240	AV1	113.9	20.5	6.95	2,379	1,926	22.8	3,025	44.7	1,499	
81	240	AV1	115.3	20.7	6.88	2,406	1,946	22.0	3,055	44.9	1,590	
82	240	AV1	127.6	21.7	7.35	2,511	2,027	24.2	3,210	43.5	1,574	
83	240	AV1	114.8	20.6	6.85	2,389	1,931	22.0	3,040	45.0	1,587	
84	240	AV1	116.7	20.7	7.01	2,395	1,934	23.1	3,057	44.5	1,524	

OP: RMDT Date: 16-June-2										e-2016	
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
85	240	AV1	107.1	19.8	6.63	2,333	1,901	21.3	2,920	45.7	1,561
86	240	AV1	114.4	20.7	6.98	2,404	1,945	23.1	3,059	44.6	1,529
87	240	AV1	114.5	20.5	6.88	2,401	1,947	22.0	3,028	44.9	1,584
88	240	AV1	120.5	21.1	7.14	2,437	1,968	23.5	3,115	44.1	1,614
89	240	AV1	117.8	20.7	6.95	2,416	1,959	22.2	3,063	44.7	1,577
90	240	AV1	123.3	21.4	7.25	2,460	1,983	24.0	3,167	43.8	1,561
91	240	AV1	109.9	20.2	6.76	2,341	1,896	21.7	2,981	45.3	1,536
92	240	AV1	106.6	20.0	6.76	2,343	1,906	22.3	2,951	45.3	1,498
93	240	AV1	104.1	19.6	6.60	2,306	1,877	20.9	2,889	45.8	1,554
94	240	AV1	118.1	20.8	7.04	2,404	1,939	23.1	3,065	44.4	1,593
95	240	AV1	113.5	20.2	6.79	2,382	1,944	21.6	2,980	45.2	1,583
96	240	AV1	130.1	22.0	7.42	2,489	1,991	24.5	3,249	43.3	1,610
97	240	AV1	97.9	18.9	6.40	2,222	1,807	20.2	2,788	46.5	1,489
98	240	AV1	115.9	20.7	7.01	2,411	1,953	23.1	3,060	44.5	1,510
99	240	AV1	100.9	19.3	6.48	2,256	1,831	20.7	2,845	46.2	1,513
100	240	AV1	115.2	20.6	7.01	2,366	1,908	23.0	3,040	44.5	1,565
101	240	AV1	106.8	19.8	6.66	2,322	1,887	21.3	2,931	45.6	1,573
102	240	AV1	116.6	20.8	7.08	2,406	1,944	23.3	3,074	44.3	1,512
103	240	AV1	103.2	19.5	6.60	2,304	1,877	20.7	2,880	45.8	1,556
104	240	AV1	126.4	21.6	7.35	2,493	2,010	24.2	3,192	43.5	1,582
105	240	AV1	110.1	20.2	6.76	2,351	1,904	21.6	2,978	45.3	1,580
106	240	AV1	113.4	20.4	6.95	2,362	1,911	22.7	3,017	44.7	1,567
107	240	AV1	111.3	20.1	6.72	2,357	1,914	21.5	2,966	45.4	1,544
108	240	AV1	128.3	21.6	7.32	2,494	2,011	24.1	3,192	43.6	1,647
109	240	AV1	117.7	20.6	6.91	2,400	1,946	22.1	3,045	44.8	1,577
110	240	AV1	129.6	21.8	7.39	2,502	2,011	24.3	3,217	43.4	1,670
111	240	AV1	103.8	19.5	6.54	2,289	1,866	20.8	2,874	46.0	1,573
112	240	AV1	120.5	21.0	7.14	2,420	1,953	23.4	3,096	44.1	1,602
113	240	AV1	110.2	20.1	6.79	2,350	1,904	21.5	2,968	45.2	1,580
114	240	AV1	117.4	20.9	7.11	2,401	1,934	23.2	3,081	44.2	1,486
115	240	AV1	98.7	18.9	6.42	2,238	1,821	20.2	2,795	46.4	1,526
116	240	AV1	123.5	21.4	7.25	2,445	1,966	23.8	3,161	43.8	1,630
117	240	AV1	101.1	19.3	6.51	2,259	1,836	20.5	2,843	46.1	1,491
118	240	AV1	120.2	21.0	7.14	2,408	1,938	23.4	3,094	44.1	1,604
119	240	AV1	109.6	20.5	6.85	2,299	1,832	21.9	3,028	45.0	1,430
	A	verage	106.4	19.9	6.69	2,336	1,901	21.6	2,934	43.8	1,523
			т.	ما مصريات ا	f bl		J d. 1	10			

Total number of blows analyzed: 119

BL# Sensors

1-119 F1: [1458W] 129.0 (1.00); F2: [1463W] 127.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: [W10287] 970.0 (1.00); A2: [W10356] 980.0 (1.00);

A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 4 PDIPLOT2 2016.1.999.0 - Printed 17-June-2016

KIWC, POA TPP - IP 3 Restirke OP: RMDT

PP48x1.0", APE D180-42 Date: 16-June-2016

BL# Comments

- 1 Start of test on 6/16/2016 at 12:17 PM
- 6 End of "soft starts".
- 52 Restart after 2 minutes 29 seconds
- 119 End of test on 6/16/2016 at 12:26 PM

Time Summary

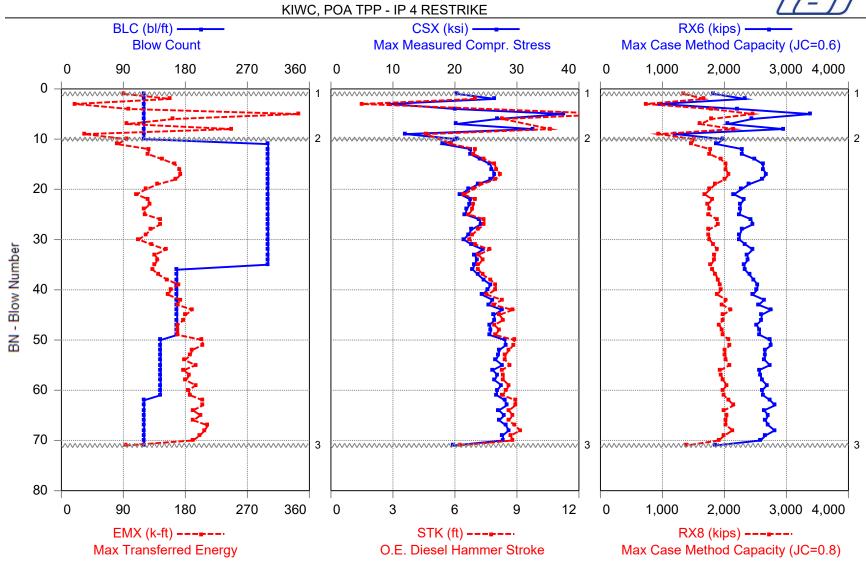
Drive 0 second 12:17 PM - 12:17 PM (6/16/2016) BN 1 - 1

Stop 1 minute 10 seconds 12:17 PM - 12:18 PM

Drive 1 minute 2 seconds 12:18 PM - 12:19 PM BN 2 - 5

Stop 1 minute 30 seconds 12:19 PM - 12:21 PM

Drive 58 seconds 12:21 PM - 12:22 PM BN 6 - 51


Stop 2 minutes 29 seconds 12:22 PM - 12:24 PM

Drive 1 minute 29 seconds 12:24 PM - 12:26 PM BN 52 - 119

Total time [00:08:40] = (Driving [00:03:29] + Stop [00:05:10])

Printed: 15-June-2016 Test started: 15-June-2016

^{1 -} Start of test on 6/15/2016 at 11:06 AM

3 - End of test on 6/15/2016 at 11:12 AM

² - End of "soft starts". IP 4 advanced 1 inch during soft start blows.

33

34

35

36

37

38

300

300

300

168

168

168

AV1

AV1

AV1

AV1

AV1

AV1

135.7

140.4

135.0

132.7

141.2

154.2

23.2

23.6

23.1

22.9

23.7

24.6

7.14

7.35

7.14

7.14

7.35

7.72

2,370

2.383

2,319

2,330

2.404

2,470

1.844

1.835

1,783

1,805

1,862

1,894

24.6

25.2

24.7

24.4

25.3

26.3

3.420

3.482

3,413

3,383

3,505

3,639

44.1

43.5

44.1

44.1

43.5

42.5

1.543

1.471

1,519

1,424

1,566

1,495

KIWC, POA TPP - IP 4 RESTRIKE PP48x1.0", APE D180-42 OP: RMDT Date: 15-June-2016 0.492 k/ft³ AR: 147.65 in² SP: LE: 189.00 ft EM: 31,052 ksi WS: 17,100.0 f/s JC: 0.35 [] CSI: EMX: Max Transferred Energy Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) **FMX** RA2 BL# BLC **TYPE EMX** CSX STK RX6 RX8 CSI BPM bl/ft k-ft ksi ft kips kips ksi kips bpm kips 1 120 AV1 90.5 20.3 1,828 3,000 1.9 1,347 22.0 948 2 26.5 120 AV1 158.2 6.98 2.330 1.666 28.4 3.909 44.6 1.156 3 120 AV1 19.6 9.4 1.49 954 734 10.2 1,385 90.0 483 4 20.0 ** 2,216 1,790 2,957 1,446 120 AV1 98.5 21.7 1.9 5 344.1 37.5 3,387 2,454 5,534 1,616 120 AV1 13.66 40.5 32.2 6 120 AV1 162.5 26.8 8.31 2,445 1,796 28.6 3,958 41.0 1,288 7 120 AV1 95.6 20.2 2,062 1,610 21.5 2,981 1.9 1,241 8 32.5 2,952 2,148 4,802 36.4 1,386 120 AV1 247.3 10.63 35.0 9 120 AV1 33.4 12.0 4.61 1,209 946 12.9 1,773 54.3 737 3,012 10 120 AV1 95.1 20.4 1,979 1,514 21.4 1.9 1,177 11 300 AV1 81.1 18.1 5.83 1,875 1,469 19.4 2,671 48.6 1,289 22.6 6.98 2.291 1.769 3.336 1.452 12 300 AV1 127.4 24.3 44.6 2,282 13 22.5 24.0 3,320 44.8 1,494 300 AV1 126.1 6.91 1,766 14 300 146.7 24.1 7.42 2,490 1,942 25.9 3,560 43.3 1,550 AV1 15 300 AV1 165.1 25.7 7.91 2.623 2.032 27.5 3.794 42.0 1.635 AV1 172.0 26.0 8.03 2,622 2,018 27.9 3.840 41.7 1,499 16 300 26.5 2,070 17 300 AV1 173.3 8.19 2,680 28.4 3,909 41.3 1,694 18 300 AV1 166.6 25.8 7.99 2.606 2.006 27.7 3,817 41.8 1.539 19 300 AV1 139.6 23.7 7.28 2,394 1,848 25.3 3,502 43.7 1,531 20 122.4 22.2 1,382 300 AV1 6.88 2,275 1,769 23.7 3,282 44.9 21 AV1 109.2 20.9 2.155 3.084 46.4 1.399 300 6.42 1.683 22.2 22 300 AV1 126.1 22.5 6.98 2,316 1,804 24.0 3,317 44.6 1,442 23 300 AV1 128.1 22.4 6.88 2,257 1,736 23.9 3,304 44.9 1,412 21.9 3.233 45.0 1.432 24 300 AV1 120.1 6.85 2.263 1.768 23.4 AV1 2,244 25 300 121.5 21.7 6.66 1,750 23.1 3.199 45.6 1.475 3,544 26 300 AV1 143.9 24.0 7.42 2,434 1,878 25.7 43.3 1,486 27 300 AV1 143.2 24.2 7.42 2,453 1,898 25.8 3,568 43.3 1,568 28 300 AV1 129.7 22.7 7.11 2,281 1,752 24.3 3,350 44.2 1,349 22.2 1,410 29 AV1 122.7 2,249 1,743 3,273 45.0 300 6.85 23.7 30 300 AV1 112.3 21.4 6.69 2,240 1,759 22.9 3,164 45.5 1,408 31 300 AV1 131.0 22.7 7.01 2,342 1,826 24.2 3,351 44.5 1,553 24.5 3,625 32 300 AV1 151.7 7.68 2,458 1,882 26.2 42.6 1,519

KIWC, POA TPP - IP 4 RESTRIKE PP48x1.0", APE D180-2 OP: RMDT Date: 15-June-20 BL# BLC TYPE EMX CSX STK RX6 RX8 CSI FMX BPM R											
		TYPE	EMX	CSX	STK	RX6	RX8	CSI			RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39	168	AV1	169.7	25.7	7.99	2,536	1,929	27.4	3,798	41.8	1,581
40	168	AV1	158.9	25.3	7.95	2,527	1,940	27.0	3,736	41.9	1,560
41	168	AV1	155.3	24.4	7.57	2,457	1,890	26.0	3,599	42.9	1,573
42	168	AV1	172.7	26.1	8.27	2,641	2,032	27.9	3,851	41.1	1,603
43	168	AV1	168.7	25.4	7.87	2,553	1,966	27.0	3,751	42.1	1,612
44	168	AV1	190.0	27.6	8.79	2,752	2,106	29.6	4,077	39.9	1,647
45	168	AV1	180.3	26.3	8.15	2,597	1,976	28.1	3,885	41.4	1,596
46	168	AV1	177.2	26.4	8.36	2,600	1,977	28.2	3,903	40.9	1,515
47	168	AV1	169.1	25.6	7.91	2,518	1,917	27.3	3,779	42.0	1,547
48	168	AV1	169.2	25.8	8.15	2,569	1,965	27.5	3,815	41.4	1,587
49	168	AV1	169.6	25.6	7.95	2,571	1,976	27.3	3,782	41.9	1,606
50	144	AV1	204.4	28.0	8.89	2,738	2,074	29.7	4,140	39.7	1,680
51	144	AV1	205.0	28.2	8.84	2,759	2,091	30.0	4,169	39.8	1,682
52	144	AV1	189.8	27.2	8.61	2,652	2,007	28.8	4,012	40.3	1,618
53	144	AV1	187.6	27.0	8.44	2,653	2,015	28.6	3,992	40.7	1,621
54	144	AV1	179.2	26.6	8.44	2,652	2,029	28.2	3,928	40.7	1,626
55	144	AV1	194.8	27.7	8.66	2,732	2,082	29.4	4,083	40.2	1,692
56	144	AV1	177.9	26.1	8.27	2,559	1,937	27.7	3,858	41.1	1,560
57	144	AV1	186.2	26.8	8.36	2,582	1,944	28.4	3,962	40.9	1,599
58	144	AV1	180.5	26.4	8.36	2,606	1,981	28.0	3,899	40.9	1,598
59	144	AV1	195.0	27.5	8.61	2,687	2,036	29.2	4,060	40.3	1,630
60	144	AV1	184.6	26.8	8.48	2,609	1,973	28.4	3,956	40.6	1,549
61	144	AV1	187.0	26.7	8.31	2,623	1,992	28.5	3,949	41.0	1,653
62	120	AV1	204.9	28.1	8.93	2,736	2,069	29.7	4,142	39.6	1,659
63	120	AV1	205.5	28.4	8.93	2,816	2,153	30.1	4,191	39.6	1,725
64 65	120	AV1	191.1	27.1	8.61	2,641	1,994	28.7	4,001	40.3	1,602
65 66	120	AV1	201.8	28.0	8.79	2,708	2,044	29.7	4,132	39.9	1,683
66 67	120	AV1	191.7	27.1	8.61	2,663	2,021	28.7	4,008	40.3	1,610
67 68	120	AV1	212.6	28.2	8.89	2,709	2,031	29.9	4,166	39.7	1,672
68 60	120 120	AV1	208.1	28.7 27.7	9.17	2,810	2,131	30.4	4,237	39.1	1,710
69 70	120	AV1	201.1 191.3	27.7 27.8	8.70	2,662	1,999	29.6	4,091	40.1 39.9	1,631
70 71	120	AV1 AV1	93.8	27.8 19.8	8.79 6.23	2,583	1,909	29.5 21.0	4,111	39.9 47.1	1,487
/						1,858	1,387		2,926		1,129
	A	verage	157.7	24.7	7.82	2,448	1,870	26.4	3,650	40.7	1,491

Total number of blows analyzed: 71

BL# Sensors

1-71 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: [7734] 1060.0 (1.00); A2: off; A3: [K3257] 340.0 (1.00);

A4: [K3259] 365.0 (1.00)

BL# Comments

- Start of test on 6/15/2016 at 11:06 AM
- 10 End of "soft starts". IP 4 advanced 1 inch during soft start blows.

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 3 PDIPLOT2 2016.1.999.0 - Printed 15-June-2016

KIWC, POA TPP - IP 4 RESTRIKE OP: RMDT

PP48x1.0", APE D180-42 Date: 15-June-2016

71 End of test on 6/15/2016 at 11:12 AM

Time Summary

Drive 2 seconds 11:06 AM - 11:06 AM (6/15/2016) BN 1 - 3

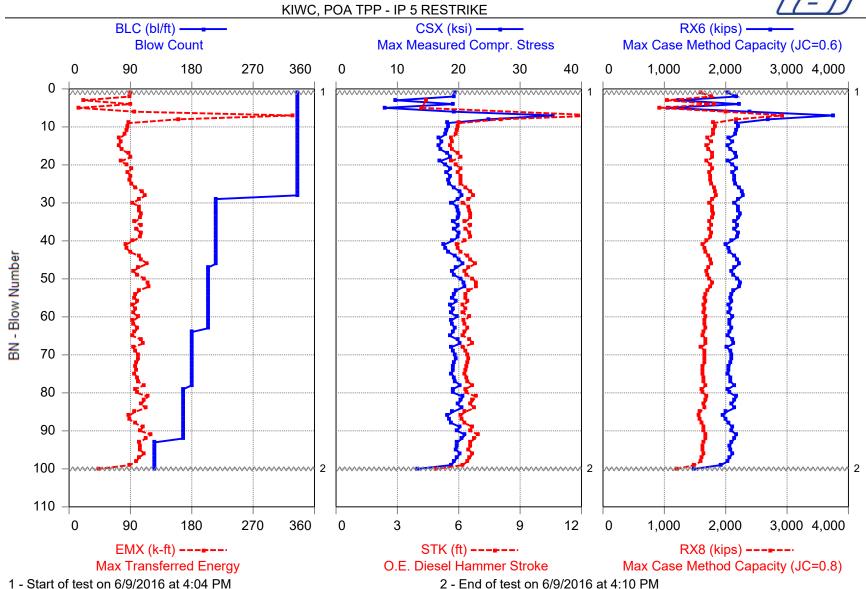
Stop 1 minute 18 seconds 11:06 AM - 11:07 AM

Drive 3 seconds 11:07 AM - 11:07 AM BN 4 - 6

Stop 1 minute 19 seconds 11:07 AM - 11:09 AM

Drive 2 seconds 11:09 AM - 11:09 AM BN 7 - 9

Stop 1 minute 31 seconds 11:09 AM - 11:10 AM


Drive 1 minute 26 seconds 11:10 AM - 11:12 AM BN 10 - 71

Total time [00:05:44] = (Driving [00:01:34] + Stop [00:04:09])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 14-June-2016 Test started: 09-June-2016

Case Method & iCAP® Results PDIPLOT2 2016.1.999.0 - Printed 14-June-2016 KIWC, POA TPP - IP 5 RESTRIKE PP48x1.0", APE D180-42 OP: RMDT Date: 09-June-2016 0.492 k/ft³ AR: 147.65 in² SP: 185.00 ft EM: 31,052 ksi LE: WS: 17,100.0 f/s JC: 0.35 [] EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress FMX: Maximum Force CSX: Max Measured Compr. Stress STK: O.E. Diesel Hammer Stroke **BPM: Blows per Minute** RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles RX8: Max Case Method Capacity (JC=0.8) RX8 CSI BL# Depth BLC TYPE **EMX** CSX STK RX6 **FMX BPM** RA2 ft bl/ft k-ft ksi ft kips kips ksi kips bpm kips 336 90.4 2,029 1,593 22.2 2,866 1,266 1 144.0 AV1 19.4 1.9 144.0 89.7 2.175 2 AV1 19.2 1.765 21.7 2.836 1.9 1.410 336 3 144.0 55.5 336 AV1 21.9 9.8 4.40 1,232 1,049 11.0 1,443 964 144.0 AV1 2,222 21.6 2,827 336 90.0 19.1 1,817 1.9 1,454 4 144.0 AV1 14.8 1,065 923 877 336 8.1 4.19 9.1 1,189 56.8 2,004 144.0 336 AV1 96.6 19.2 2,391 21.7 2,836 1.9 1,774 6 144.0 336 AV1 328.1 35.4 12.91 3.761 2,930 39.9 5,229 33.1 2,396 7 144.0 AV1 160.2 24.9 8.07 2,699 2,171 28.1 3,677 8 336 9 144.0 336 AV1 87.2 18.2 6.01 2,175 1,802 20.6 2,688 10 144.0 1,829 20.7 2,701 AV1 86.9 18.3 5.98 2,201 336 11 144.0 336 AV1 85.1 18.1 5.93 2,169 1,802 20.4 2,672 12 144.0 81.9 1.795 336 AV1 17.8 5.86 2.158 20.1 2,633 13 144.0 5.63 2,046 1,708 19.0 2,486 336 AV1 73.8 16.8 14 144.0 AV1 76.0 17.2 5.71 2,108 1,763 19.4 2,542 336 15 144.0 AV1 73.4 16.8 5.59 2.029 1.691 18.9 2.475 336 16 144.0 AV1 77.5 17.1 5.68 2,079 1,729 19.2 2,523 336 AV1 5.98 2,161 20.5 2,693 17 144.1 336 87.2 18.2 1,785 18 144.1 336 AV1 90.9 18.6 6.09 2,173 1,783 21.0 2,750 19 144.1 336 AV1 76.2 17.0 5.66 2,042 1,692 19.2 2,507 1,755 20.2 2,635 20 144.1 AV1 5.88 2,121 336 85.0 17.8 144.1 AV1 91.5 6.09 2.171 1.781 21.1 2.764 21 336 18.7

41.6 1.834 47.9 1,532 48.0 1,530 48.2 1,518 48.5 1.494 49.4 1,450 49.1 1,465 49.6 1.465 49.2 1,451 48.0 1,531 47.6 1,538 49.3 1,437 48.4 1,521 47.6 1.543 22 144.1 336 AV1 86.3 18.0 5.96 2,117 1,740 20.4 2,663 48.1 1,504 23 144.1 AV1 91.1 18.7 6.12 2,146 1,758 21.1 2,757 47.5 1,523 336 24 144.1 6.09 2.145 47.6 1.524 AV1 89.5 18.4 1.760 20.8 2.717 336 25 144.1 336 AV1 91.6 18.5 6.12 2,154 1,768 20.9 2,734 47.5 1.545 21.7 2,837 26 144.1 336 AV1 98.0 19.2 6.34 2,223 1,820 46.7 1,593 27 144.1 336 AV1 107.7 20.1 6.57 2,273 1,828 22.7 2,975 45.9 1,648 28 144.1 336 AV1 112.3 20.6 6.72 2,288 1,845 23.3 3,038 45.4 1,666 29 144.1 AV1 103.5 6.48 2,209 1,784 22.4 2,930 46.2 1,584 216 19.8 30 144.1 216 AV1 93.1 18.9 6.20 2,143 1,743 21.3 2,787 47.2 1.562 31 144.1 216 AV1 102.9 19.7 6.48 2,207 1,785 22.3 2,915 46.2 1,589 103.7 22.4 2,929 32 144.1 216 AV1 19.8 6.51 2,211 1,784 46.1 1,604 106.4 1.806 22.7 2.972 33 144.1 216 AV1 20.1 6.60 2,244 45.8 1.623 34 144.1 AV1 104.7 22.6 2.948 216 20.0 6.57 2.210 1.782 45.9 1.622 35 144.1 1,742 21.5 2,825 46.8 1,553 216 AV1 96.5 19.1 6.31 2,151 144.1 216 AV1 105.7 20.0 6.57 2,199 1,765 22.5 2,949 45.9 1,590 36 37 144.1 216 AV1 99.2 19.3 6.37 2,146 1,732 21.8 2,853 46.6 1.569 38 144.1 216 AV1 106.1 20.0 6.54 2,203 1,765 22.6 2,953 46.0 1,608

,	TPP - IP 5 RES	TRIKE						_ ,	APE D18	
OP: RMDT								Date: ()9-June	-2016
BL# Depth	BLC TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2

OP: RMDT									Date: 0	<u> 19-June</u>	<u>-2016</u>
BL# Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
· ft			k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39 144.1	216	AV1	104.8	19.9	6.57	2,193	1,760	22.5	2,940	45.9	1,589
40 144.1	216	AV1	94.0	18.9	6.28	2,096	1,689	21.4		46.9	1,521
41 144.1	216	AV1	83.2	17.6	5.91	2,002	1,625	19.9	2,600	48.3	1,420
42 144.1	216	AV1	84.6	17.9	5.96	2,045	1,667		2,643	48.1	1,492
43 144.2		AV1	89.9	18.4	6.12	2,043	1,677	20.7		47.5	1,519
44 144.2		AV1	103.2	19.5	6.45	2,150	1,725		2,879	46.3	1,611
45 144.2		AV1	106.5	20.1	6.57		1,752		2,968	45.9	1,618
46 144.2	_	AV1	114.9	20.7		2,224	1,766	23.4		45.1	1,655
47 144.2		AV1	102.3	19.6		2,149	1,721	22.2		46.2	1,574
48 144.2		AV1	94.2	18.9		2,092	1,687	21.3		46.9	1,519
49 144.2		AV1	101.0	19.3		2,125	1,703	21.8		46.5	1,641
50 144.2	204	AV1	110.8	20.3	6.69	2,199	1,738	22.9	3,002	45.5	1,633
51 144.2	204	AV1	115.9	20.9	6.85	2,246	1,788	23.6	3,085	45.0	1,699
52 144.2	204	AV1	117.7	21.0	6.88	2,230	1,754	23.6	3,101	44.9	1,623
53 144.2	204	AV1	103.6	19.6	6.48	2,131	1,700	22.1	2,896	46.2	1,622
54 144.2		AV1	97.8	19.3		2,097	1,682	21.7	,	46.6	1,535
55 144.2		AV1	96.3	19.0		2,077	1,659		2,811	46.7	1,511
56 144.2		AV1	100.9	19.6		2,104	1,679		2,893	46.3	1,520
57 144.2		AV1	92.7	18.6		2,048	1,646		2,742	47.2	1,584
58 144.2	_	AV1	97.7	19.2		2,040	1,662		2,834	46.6	1,519
59 144.2		AV1	94.2	18.8		2,056			2,770	47.1	1,516
						,	1,647				,
60 144.2		AV1	102.4	19.7	6.51	2,119	1,680		2,912	46.1	1,571
61 144.2		AV1	94.0	18.7	6.25	2,061	1,653	21.1	2,766	47.0	1,499
62 144.2		AV1	95.3	18.9		2,066	1,654		2,790	46.9	1,513
63 144.3		AV1	100.8	19.4		2,099	1,671		2,860	46.4	1,554
64 144.3		AV1	96.4	19.1		2,061	1,642	21.4		46.9	1,499
65 144.3		AV1	93.2	18.6		2,039	1,635	21.0		47.1	1,564
66 144.3	180	AV1	105.5	19.8	6.54	2,119	1,677	22.3	2,930	46.0	1,563
67 144.3	180	AV1	108.6	20.2	6.66	2,133	1,682	22.8	2,988	45.6	1,530
68 144.3	180	AV1	94.3	18.7	6.20	2,020	1,601	21.1	2,768	47.2	1,444
69 144.3	180	AV1	97.3	19.1	6.34	2,078	1,657	21.6	2,821	46.7	1,575
70 144.3	180	AV1	101.4	19.4	6.42	2,098	1,658	21.9	2,870	46.4	1,556
71 144.3		AV1	102.4	19.6	6.48	2,091	1,654	22.1	2,888	46.2	1,550
72 144.3	180	AV1	99.4	19.2	6.42		1,654		2,838	46.4	1,545
73 144.3		AV1	97.9	19.2		,	1,635		2,830		1,486
74 144.3		AV1	98.5	19.1			1,624		2,821	46.6	1,501
75 144.3		AV1	95.8	18.8			1,627		2,783		1,543
76 144.3		AV1	100.6	19.3		,	1,648		2,763		1,536
70 144.3		AV1					,		,		
			101.2	19.4		2,075	1,644		2,871		1,519
78 144.3		AV1	109.7	20.2			1,673		2,990		1,474
79 144.3		AV1	97.6	19.1			1,618		2,819		1,503
80 144.3		AV1	99.8	19.2		2,066	1,633		2,832	46.5	1,560
81 144.4		AV1	115.3	20.7			1,694		3,055		1,568
82 144.4		AV1	110.8	20.4			1,679		3,007		1,510
83 144.4		AV1	105.8	19.8		2,099	1,639		2,931		1,488
84 144.4	168	AV1	112.5	20.5	6.76	2,139	1,665	23.1	3,024	45.3	1,451

KIWC OP: F	C, POA T RMDT	PP - IP	5 RES	STRIKE					PP48	3x1.0", <i>A</i> Date: 0	APE D1)9-June	
BL#	Depth	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	· ft	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
85	144.4	168	AV1	96.4	19.0	6.31	2,011	1,578	21.4	2,810	46.8	1,380
86	144.4	168	AV1	88.3	18.1	6.09	1,960	1,559	20.5	2,679	47.6	1,474
87	144.4	168	AV1	89.2	18.5	6.17	2,000	1,585	20.8	2,726	47.3	1,465
88	144.4	168	AV1	96.9	18.9	6.31	2,045	1,619	21.4	2,783	46.8	1,476
89	144.4	168	AV1	108.4	20.2	6.66	2,108	1,638	22.7	2,985	45.6	1,479
90	144.4	168	AV1	104.4	19.7	6.57	2,099	1,647	22.3	2,915	45.9	1,517
91	144.4	168	AV1	119.9	21.0	6.95	2,171	1,675	23.6	3,104	44.7	1,496
92	144.4	168	AV1	112.8	20.5	6.79	2,142	1,674	23.2		45.2	1,522
93	144.4	126	AV1	103.0	19.8	6.57	2,092	1,637	22.3	2,922	45.9	1,539
94	144.4	126	AV1	104.5	19.8	6.57	2,069	1,622	22.4	2,923	45.9	1,455
95	144.4	126	AV1	104.2	19.6	6.48	2,076	1,623	22.0	2,890	46.2	1,458
96	144.4	126	AV1	110.3	20.2	6.69	2,109	1,646	22.9	2,984	45.5	1,470
97	144.5	126	AV1	102.7	19.7	6.54	2,064	1,605	22.2	2,910	46.0	1,472
98	144.5	126	AV1	99.2	19.3	6.42	2,032	1,599	21.8	2,848	46.4	1,510
99	144.5	126	AV1	89.4	18.8	6.20	1,924	1,491	21.1	2,775	47.2	1,348
100	144.5	126	AV1	44.2	13.3	4.91	1,490	1,211	15.1	1,966	52.7	1,025
		Av	erage	98.8	19.2	6.38	2,116	1,698	21.6	2,829	45.0	1,525

Total number of blows analyzed: 100

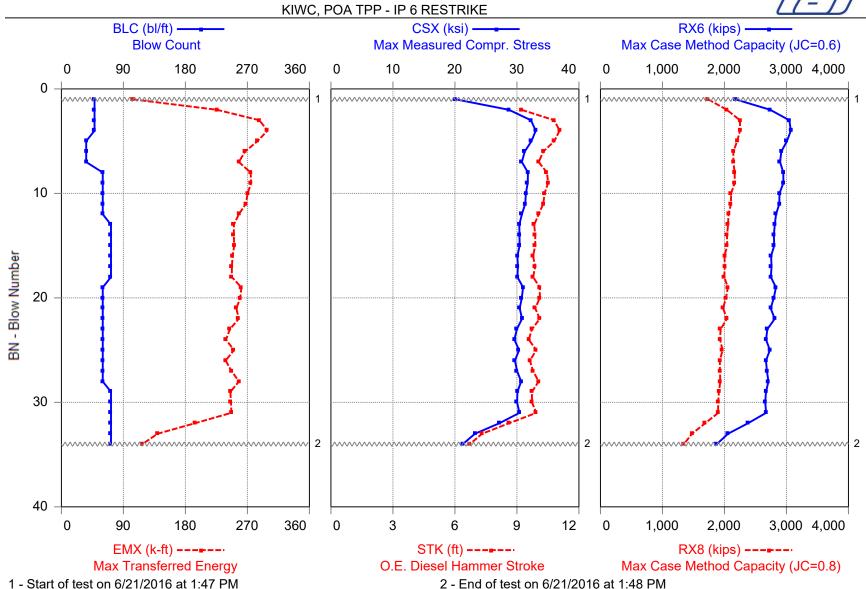
BL# Sensors

1-100 F1: [1458W] 129.0 (1.00); F2: [1463W] 127.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: [W10287] 970.0 (1.00); A2: [W10356] 980.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

BL# Comments

1 Start of test on 6/9/2016 at 4:04 PM 100 End of test on 6/9/2016 at 4:10 PM

Time Summary


Drive 0 second 4:04 PM - 4:04 PM (6/9/2016) BN 1 - 1
Stop 1 minute 19 seconds
Drive 1 second 4:05 PM - 4:05 PM BN 2 - 3
Stop 1 minute 2 seconds
Drive 1 second 4:05 PM - 4:06 PM
Drive 1 second 4:06 PM - 4:06 PM BN 4 - 5
Stop 1 minute 0 second 4:06 PM - 4:07 PM
Drive 2 minutes 1 second 4:07 PM - 4:10 PM BN 6 - 100

Total time [00:05:25] = (Driving [00:02:03] + Stop [00:03:22])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 24-June-2016 Test started: 21-June-2016

KIWC, POA TPP - IP 6 RESTRIKE

OP: RMDT

PP48x1.0", APE D180-42

Date: 21-June-2016

AR: 147.65 in² SP: 0.492 k/ft³
LE: 185.00 ft EM: 31,052 ksi
WS: 17,100.0 f/s JC: 0.35 []

EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress

CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute

RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles

RX8:	Max Ca	ise Meth	nod Capa	acity (JC	(8.0=						
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
1	48	AV1	103.4	20.1	**	2,176	1,736	21.5	2,967	1.9	1,143
2	48	AV1	225.9	28.7	9.22	2,738	2,038	29.3	4,239	39.0	1,274
3	48	AV1	287.5	32.3	10.81	3,045	2,250	32.8	4,765	36.1	1,364
4	48	AV1	299.0	33.0	11.06	3,071	2,251	33.6	4,876	35.7	1,520
5	36	AV1	284.7	32.3	10.81	3,007	2,204	32.9	4,776	36.1	1,294
6	36	AV1	266.5	31.2	10.28	2,917	2,145	31.7	4,614	37.0	1,340
7	36	AV1	257.6	30.8	10.05	2,896	2,143	31.4	4,547	37.4	1,305
8	60	AV1	274.6	31.8	10.45	2,949	2,165	32.3	4,693	36.7	1,310
9	60	AV1	275.3	31.7	10.51	2,950	2,165	32.3	4,686	36.6	1,262
10	60	AV1	270.3	31.4	10.33	2,888	2,106	31.9	4,642	36.9	1,248
11	60	AV1	267.8	31.3	10.28	2,884	2,105	31.8	4,627	37.0	1,246
12	60	AV1	257.5	30.8	10.05	2,832	2,065	31.2	4,547	37.4	1,207
13	72	AV1	250.3	30.4	9.83	2,812	2,058	30.8	4,486	37.8	1,151
14	72	AV1	250.3	30.4	9.89	2,797	2,041	30.8	4,491	37.7	1,154
15	72	AV1	250.8	30.4	9.89	2,803	2,045	30.8	4,494	37.7	1,112
16	72	AV1	248.5	30.1	9.78	2,752	2,001	30.4	4,440	37.9	1,087
17	72	AV1	247.4	30.2	9.89	2,760	2,006	30.5	4,452	37.7	1,075
18	72	AV1	247.3	30.1	9.78	2,748	1,996	30.4	4,441	37.9	1,084
19	60	AV1	261.2	31.0	10.11	2,831	2,055	31.4	4,575	37.3	1,044
20	60	AV1	259.6	30.8	10.11	2,796	2,025	31.1	4,546	37.3	1,039
21	60	AV1	254.0	30.4	9.89	2,745	1,978	30.8	4,496	37.7	1,011
22	60	AV1	257.5	30.8	10.11	2,811	2,041	31.2	4,552	37.3	1,005
23	60	AV1	244.6	30.0	9.73	2,691	1,938	30.4	4,428	38.0	973
24	60	AV1	239.0	29.6	9.57	2,671	1,929	29.9	4,368	38.3	976
25	60	AV1	250.4	30.3	9.94	2,733	1,970	30.7	4,480	37.6	992
26	60	AV1	238.4	29.7	9.62	2,669	1,925	30.0	4,382	38.2	964
27	60	AV1	246.9	30.0	9.78	2,684	1,928	30.4	4,433	37.9	988
28	60	AV1	257.6	30.7	10.05	2,709	1,932	31.1	4,530	37.4	980
29	72	AV1	245.2	30.1	9.73	2,669	1,910	30.5	4,441	38.0	975
30	72	AV1	246.2	30.0	9.73	2,658	1,897	30.4	4,432	38.0	961
31	72	AV1	246.8	30.4	9.94	2,672	1,899	30.8	4,491	37.6	875
32	72	AV1	193.8	27.2	8.61	2,380	1,690	27.6	4,012	40.3	760
33	72	AV1	139.6	23.2	7.32	2,058	1,476	23.5	3,430	43.6	692
34	72	AV1	117.5	21.3	6.72	1,877	1,346	21.5	3,140	45.4	696
	A	verage	243.0	29.8	9.81	2,726	1,984	30.2	4,397	36.9	1,091

Total number of blows analyzed: 34

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2016.1.999.0 - Printed 24-June-2016

KIWC, POA TPP - IP 6 RESTRIKE OP: RMDT

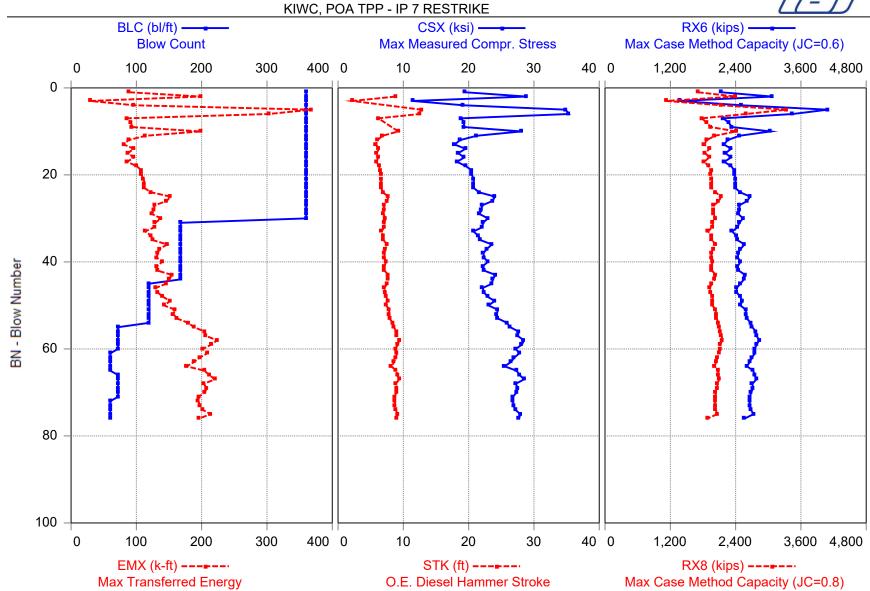
PP48x1.0", APE D180-42 Date: 21-June-2016

BL# Sensors

1-34 F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H283] 92.3 (1.00); F4: [H340] 94.0 (1.00); A1: off; A2: off; A3: [K1066] 332.0 (1.00); A4: [K1717] 368.0 (1.00)

BL# Comments

- 1 Start of test on 6/21/2016 at 1:47 PM
- 34 End of test on 6/21/2016 at 1:48 PM


Time Summary

Drive 52 seconds 1:47 PM - 1:48 PM BN 1 - 34

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 09-June-2016 Test started: 08-June-2016

KIWC, POA TPP - IP 7 RESTRIKE

PP48x1.0", APE D180-42

OP: RMDT											
	in²								_		
LE: 185.00										1: 31,05	
WS: 17,100.0										: 0.3	
EMX: Max Tr								Max F1			Stress
CSX: Max Me				S				Maximu			
STK: O.E. Di								Blows p			
RX6: Max Ca							RA2:	Auto Ca	apacity F	riction	Piles
RX8: Max Ca											
BL# Depth		TYPE	EMX	CSX	STK	RX6	RX8		FMX	BPM	RA2
ft	bl/ft		k-ft	ksi	ft	kips	kips		kips	bpm	kips
30 139.08	360	AV30	126.5	21.6	7.09	2,478	2,017		3,193	39.7	1,630
		STD	65.2	4.7	1.99	454	344		695	16.3	315
	400	MAX	368.4	35.4		4,092	3,336		5,222	75.4	2,745
44 139.17	168	AV14	133.9	22.5	7.19	2,468	1,975		3,319	44.0	1,666
		STD	10.7	0.9	0.28	61	36		127	0.8	43
			154.4	24.1		2,574	2,038		3,561	45.6	1,757
54 139.25	120	AV10	150.0	23.7	7.61	2,529	1,995		3,502	42.8	1,740
		STD	14.2	1.1	0.37	80	50		159	1.0	69
00.100.00		MAX	179.1	25.9	8.36	2,675	2,078		3,817	44.3	1,860
60 139.33	72	AV6	206.5	27.6		2,772	2,125		4,069	39.6	1,913
		STD	11.0	0.7	0.27	38	20		100	0.6	27
05.400.40	00	MAX		28.5	9.37	2,834	2,158		4,204	40.5	1,955
65 139.42	60	AV5	195.1	26.8	8.70	2,690	2,059		3,960	40.1	1,874
		STD	11.2	0.8	0.29	51	28		116	0.7	26
71 120 50	70	MAX		27.8	9.03	2,755	2,097		4,102	41.3	1,909
71 139.50	72	AV6 STD	207.3 7.7	27.5	8.98 0.22	2,718 40	2,065 26		4,064	39.5	1,886
		MAX	220.3	0.5					78 4 205	0.5	34
76 120 E0	60	AV5	220.3	28.5	9.37	2,783	2,101	33.6	4,205	40.2	1,934
76 139.58	60	STD	6.7	27.3	8.87 0.16	2,659 53	2,006		4,030	39.7 0.3	1,821
				0.4			63		66		100
	Λ.	MAX		27.9		2,729			4,122	40.1	1,901
		_	153.0	23.7	7.73	2,551	2,021	27.9	3,500	40.9	1,722
		d. Dev.	53.1	3.9	1.45	308	222		571 5 222	10.4	228
	ivia	ximum	368.4 Total n	35.4		4,092			5,222	75.4	2,745
	Total number of blows analyzed: 76										

BL# Sensors

1-76 F1: [1458W] 129.0 (1.00); F2: [1463W] 127.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: [W10287] 970.0 (1.00); A2: [W10356] 980.0 (1.00);

A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

Time Summary

Drive 2 seconds 1:36 PM - 1:36 PM (6/8/2016) BN 1 - 3

Stop 1 minute 20 seconds 1:36 PM - 1:37 PM

Drive 4 seconds 1:37 PM - 1:37 PM BN 4 - 7

Stop 1 minute 1 second 1:37 PM - 1:38 PM

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

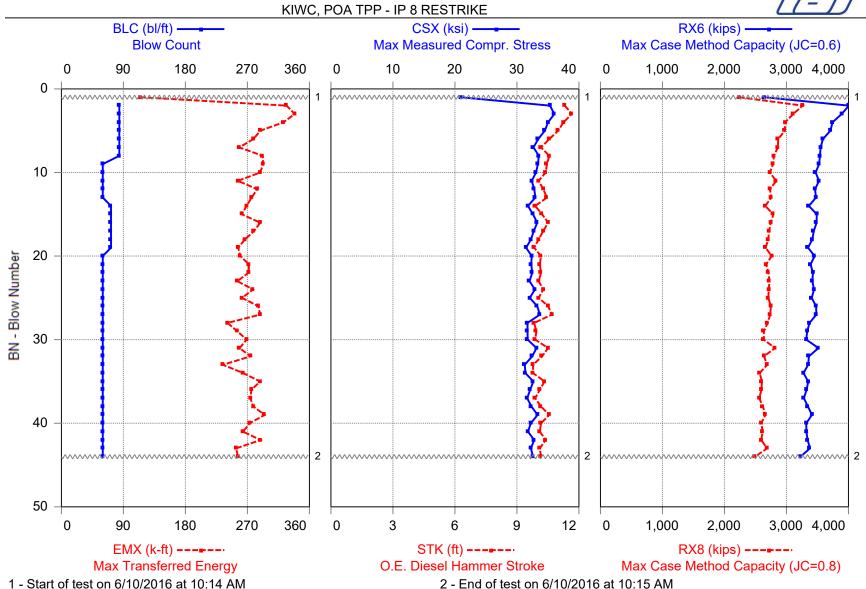
Page 2 PDIPLOT2 2016.1.999.0 - Printed 09-June-2016

KIWC, POA TPP - IP 7 RESTRIKE OP: RMDT

PP48x1.0", APE D180-42 Date: 08-June-2016

Drive 0 second 1:38 PM - 1:38 PM BN 8 - 8

Stop 1 minute 20 seconds 1:38 PM - 1:39 PM


Drive 1 minute 33 seconds 1:39 PM - 1:41 PM BN 9 - 76

Total time [00:05:23] = (Driving [00:01:41] + Stop [00:03:42])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 14-June-2016 Test started: 10-June-2016

 KIWC, POA TPP - IP 8 RESTRIKE
 PP48x1.0", APE D180-42

 OP: RMDT
 Date: 10-June-2016

 AR: 147.65 in²
 SP: 0.492 k/ft³

 LE: 192.00 ft
 EM: 31,052 ksi

 WS: 17,100.0 f/s
 JC: 0.35 []

EMX: Max Transferred Energy CSI: Max F1 or F2 Compr. Stress

CSX: Max Measured Compr. Stress FMX: Maximum Force STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute

RX6: Max Case Method Capacity (JC=0.6) RA2: Auto Capacity Friction Piles

1 1/10.			iou oupe				1 1/ 1/2	. ,	Jupucity		1 1100
RX8:	Max Ca	ise Meth	nod Capa	acity (JC	=0.8)						
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
1	0	AV1	114.3	20.9	**	2,643	2,237	22.6	3,088	1.9	1,938
2	84	AV1	326.9	35.3	11.32	4,007	3,261	38.1	5,215	35.3	2,318
3	84	AV1	338.6	36.0	11.66	3,891	3,110	38.8	5,320	34.8	2,051
4	84	AV1	322.3	35.0	11.25	3,742	2,978	38.0	5,170	35.4	1,855
5	84	AV1	288.8	34.5	11.00	3,709	2,974	37.4	5,094	35.8	2,117
6	84	AV1	278.7	33.4	10.57	3,588	2,866	36.5	4,935	36.5	1,835
7	84	AV1	258.1	32.7	10.16	3,550	2,862	35.3	4,824	37.2	2,039
8	84	AV1	292.3	33.5	10.57	3,540	2,797	36.5	4,951	36.5	1,740
9	60	AV1	292.8	33.4	10.45	3,526	2,785	36.2	4,928	36.7	1,717
10	60	AV1	288.4	33.1	10.39	3,470	2,730	36.2	4,885	36.8	1,650
11	60	AV1	256.1	32.4	10.05	3,525	2,837	35.1	4,782	37.4	1,989
12	60	AV1	284.2	32.8	10.28	3,462	2,733	35.9	4,843	37.0	1,664
13	60	AV1	276.1	33.0	10.45	3,476	2,755	35.8	4,869	36.7	1,792
14	72	AV1	268.9	31.8	9.89	3,362	2,657	34.8	4,693	37.7	1,656
15	72	AV1	261.9	32.6	10.22	3,488	2,790	35.6	4,812	37.1	2,011
16	72	AV1	288.6	33.3	10.51	3,485	2,747	36.2	4,912	36.6	1,700
17	72	AV1	279.8	32.7	10.28	3,441	2,720	35.6	4,831	37.0	1,672
18	72	AV1	266.5	32.3	10.05	3,417	2,707	35.1	4,763	37.4	1,693
19	72	AV1	256.5	31.5	9.83	3,347	2,664	34.3	4,649	37.8	1,674
20	60	AV1	259.7	32.4	10.16	3,455	2,760	35.3	4,782	37.2	1,965
21	60	AV1	272.4	32.3	10.11	3,388	2,671	35.2	4,771	37.3	1,678
22	60	AV1	271.7	32.5	10.16	3,428	2,711	35.3	4,794	37.2	1,702
23	60	AV1	255.4	32.0	10.05	3,416	2,726	35.0	4,731	37.4	1,801
24	60	AV1	278.3	32.9	10.28	3,444	2,714	35.8	4,858	37.0	1,700
25	60	AV1	262.1	32.1	10.05	3,407	2,706	35.0	4,735	37.4	1,769
26	60	AV1	285.9	33.3	10.51	3,478	2,750	36.3	4,913	36.6	1,805
27	60	AV1	288.5	33.7	10.69	3,483	2,738	36.9	4,976	36.3	1,775
28	60	AV1	241.1	31.7	9.83	3,373	2,697	34.5	4,681	37.8	2,026
29	60	AV1	255.5	31.7	9.94	3,334	2,636	34.7	4,683	37.6	1,701
30	60	AV1	268.8	31.7	9.89	3,319	2,634	34.6	4,684	37.7	1,657
31	60	AV1	258.7	33.2	10.51	3,516	2,815	36.5	4,895	36.6	2,122
32	60	AV1	274.5	32.5	10.22	3,362	2,637	35.5	4,794	37.1	1,640
33	60	AV1	234.4	31.3	9.78	3,351	2,690	34.3	4,615	37.9	2,044
34	60	AV1	264.0	31.4	9.78	3,273	2,568	34.2	4,630	37.9	1,619
35	60	AV1	288.4	32.6	10.33	3,351	2,605	35.6	4,820	36.9	1,670
36	60	AV1	275.7	32.1	10.11	3,325	2,595	35.1	4,745	37.3	1,636
37	60	AV1	274.3	31.7	9.89	3,281	2,561	34.5	4,673	37.7	1,658
38	60	AV1	278.6	32.3	10.16	3,346	2,620	35.4	4,776	37.2	1,682

KIWC, OP: RI		PP - IP	8 RESTI	RIKE				PP	48x1.0", Date:	APE D1	
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39	60	AV1	295.1	33.3	10.57	3,411	2,660	36.4	4,921	36.5	1,699
40	60	AV1	273.5	32.2	10.16	3,320	2,594	35.2	4,761	37.2	1,638
41	60	AV1	263.7	31.8	10.11	3,320	2,616	34.7	4,691	37.3	1,694
42	60	AV1	289.2	32.8	10.39	3,341	2,592	35.8	4,840	36.8	1,636
43	60	AV1	253.5	32.3	10.11	3,379	2,688	35.3	4,762	37.3	2,005
44	60	AV1	256.4	32.6	10.16	3,226	2,494	35.6	4,815	37.2	1,512
	Α	verage	271.8	32.5	10.30	3,432	2,720	35.4	4,793	36.2	1,794
		_	Te	otal num	ber of b	lows and	alyzed: 4	14			

BL# Sensors

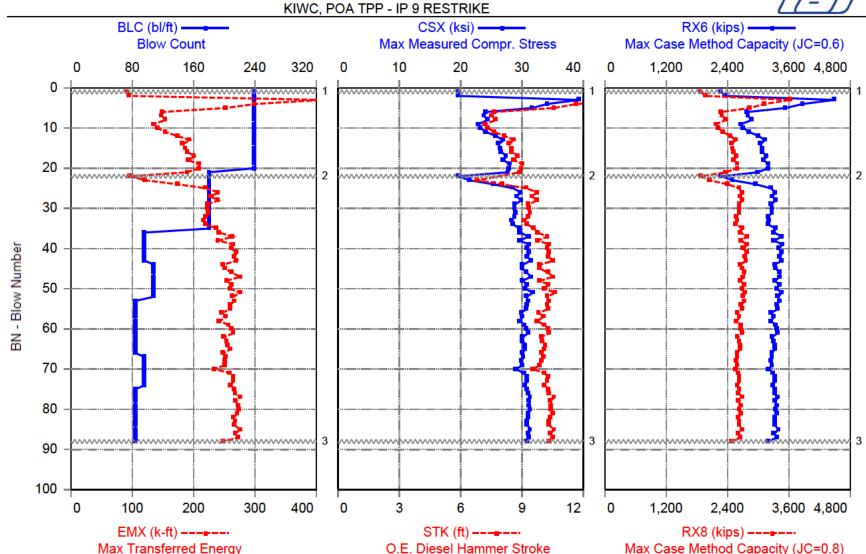
1-44 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00);

F4: [H324] 93.0 (1.00); A1: [28243] 1025.0 (1.00); A2: [21461] 950.0 (1.00);

A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

BL# Comments

- 1 Start of test on 6/10/2016 at 10:14 AM
- 44 End of test on 6/10/2016 at 10:15 AM


Time Summary

Drive 1 minute 9 seconds 10:14 AM - 10:15 AM BN 1 - 44

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 14-June-2016 Test started: 10-June-2016

- 1 Start of test on 6/10/2016 at 9:57 AM
- 2 RMDT requests pause to review data.

3 - End of test on 6/10/2016 at 10:03 AM

 KIWC, POA TPP - IP 9 RESTRIKE
 PP48x1.0", APE D180-42

 OP: RMDT
 Date: 10-June-2016

 AR: 147.65 in²
 SP: 0.492 k/ft³

 LE: 192.00 ft
 EM: 31,052 ksi

 WS: 17,100.0 f/s
 JC: 0.35 []

 EMX: Max Transferred Energy
 CSI: Max F1 or F2 Compr. Stress

CSX: Max Measured Compr. Stress FMX: Maximum Force

STK: O.E. Diesel Hammer Stroke BPM: Blows per Minute

RX6: Max Case Method Capacity (JC=0.6)

RA2: Auto Capacity Friction Piles

			nod Capa				1 (/ (2.	, (010	Japacity	1 11000011	1 1100
BL#		TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
DL#	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
1	240	AV1	92.0	19.6	**	2,276	1,867	21.2	2,892	1.9	1,089
2	240	AV1	94.8	19.5	**	2,353	1,971	21.2	2,884	1.9	1,374
3	240	AV1	409.0	39.3	14.57	4,485	3,621	42.4	5,802	31.2	2,336
4	240	AV1	299.9	34.1	11.66	3,865	3,115	36.4	5,031	34.8	1,922
5	240	AV1	252.1	31.7	10.57	3,534	2,836	34.4	4,674	36.5	1,617
6	240	AV1	148.8	24.1	7.64	2,786	2,274	26.0	3,565	42.7	1,467
7	240	AV1	148.1	23.8	7.53	2,794	2,293	25.8	3,514	43.0	1,448
8	240	AV1	154.0	24.4	7.72	2,874	2,362	26.2	3,604	42.5	1,497
9	240	AV1	134.4	22.9	7.21	2,659	2,172	25.0	3,380	43.9	1,425
10	240	AV1	140.9	23.2	7.32	2,712	2,219	25.2	3,425	43.6	1,465
11	240	AV1	153.4	24.2	7.64	2,820	2,307	26.3	3,571	42.7	1,476
12	240	AV1	173.8	25.7	8.15	3,003	2,462	27.6	3,797	41.4	1,605
13	240	AV1	193.6	27.0	8.61	3,128	2,550	29.0	3,988	40.3	1,534
14	240	AV1	181.6	26.2	8.36	3,039	2,478	28.5	3,865	40.9	1,566
15	240	AV1	186.8	26.5	8.48	3,073	2,508	28.6	3,906	40.6	1,652
16	240	AV1	190.1	26.7	8.53	3,082	2,509	28.8	3,939	40.5	1,615
17	240	AV1	201.1	27.4	8.79	3,164	2,574	29.5	4,052	39.9	1,705
18	240	AV1	191.7	27.0	8.61	3,106	2,526	29.4	3,987	40.3	1,705
19	240	AV1	209.3	28.0	9.03	3,199	2,592	30.4	4,136	39.4	1,672
20	240	AV1	208.6	27.9	8.98	3,188	2,584	30.2	4,127	39.5	1,719
21	180	AV1	189.2	27.7	8.89	2,990	2,369	30.2	4,093	39.7	1,313
22	180	AV1	96.2	19.6	**	2,281	1,870	21.5	2,892	1.9	1,299
23	180	AV1	121.7	21.5	6.82	2,499	2,043	23.4	3,169	45.1	1,386
24	180	AV1	174.1	25.4	8.03	2,948	2,404	27.6	3,743	41.7	1,557
25	180	AV1	220.0	28.5	9.22	3,243	2,621	31.2	4,213	39.0	1,658
26	180	AV1	240.2	29.8	9.73	3,334	2,679	32.5	4,405	38.0	1,659
27	180	AV1	227.1	29.1	9.47	3,278	2,641	31.8	4,297	38.5	1,732
28	180	AV1	240.3	29.9	9.73	3,340	2,682		4,408	38.0	1,646
29	180	AV1	222.2	28.8	9.32	3,253	2,621		4,259	38.8	1,724
30	180	AV1	223.1	28.9	9.37	3,260	2,630		4,263	38.7	1,713
31	180	AV1	224.9	29.0	9.42	3,265	2,630	31.6	4,279	38.6	1,727
32	180	AV1	219.1	28.8	9.32	3,200	2,566	31.5	4,251	38.8	1,606
33	180	AV1	215.9	28.3	9.12	3,203	2,587	30.3	4,178	39.2	1,668
34	180	AV1	219.9	28.5	9.27	3,191	2,563	31.7	4,215	38.9	1,661
35	180	AV1	237.3	29.6	9.57	3,335	2,692	31.7	4,365	38.3	1,818
36	96	AV1	240.7	29.6	9.78	3,304	2,647	33.0	4,378	37.9	1,671
37	96	AV1	263.8	31.1	10.22	3,459	2,774	33.3	4,591	37.1	1,863
38	96	AV1	240.2	29.6	9.78	3,309	2,658	32.9	4,369	37.9	1,787

KIWC, POA TPP - IP 9 RESTRIKE

OP: RMDT

PP48x1.0", APE D180-42

Date: 10-June-2016

OP: RI	MDT								Date:	10-June	e-2016
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
39	96	AV1	265.1	31.2	10.33	3,473	2,785	33.6	4,604	36.9	1,778
40	96	AV1	261.2	30.9	10.22	3,392	2,703	33.9	4,560	37.1	1,834
41	96	AV1	270.1	31.2	10.33	3,464	2,772	33.8	4,600	36.9	1,904
42	96	AV1	266.6	30.9	10.28	3,426	2,737	34.1	4,566	37.0	1,765
43	96	AV1	269.2	31.4	10.51	3,461	2,761	34.3	4,640	36.6	1,784
44	108	AV1	248.1	30.1	9.89	3,318	2,648	33.0	4,447	37.7	1,792
45	108	AV1	251.1	30.1	9.89	3,348	2,682	32.4	4,439	37.7	1,872
46	108	AV1	262.1	30.8	10.28	3,416	2,733	34.0	4,542	37.0	1,869
47	108	AV1	275.4	31.5	10.51	3,425	2,714	33.8	4,653	36.6	1,708
48	108	AV1	253.4	30.1	9.89	3,325	2,653	32.9	4,438	37.7	1,710
49	108	AV1	261.8	30.9	10.28	3,412	2,727	33.4	4,556	37.0	1,925
50	108	AV1	259.5	30.5	10.11	3,358	2,677	33.9	4,510	37.3	1,860
51 52	108	AV1	276.0	31.7	10.63	3,461	2,749	34.2	4,687	36.4	1,835
52 52	108	AV1	263.9	30.7	10.22	3,388	2,702	33.8	4,540	37.1 36.9	1,828
53 54	84 84	AV1	266.3	31.0	10.33	3,422	2,730	33.7 33.7	4,577		1,884
55	84	AV1 AV1	259.5 260.1	30.8 30.7	10.22 10.28	3,359 3,380	2,669 2,692	33.4	4,547 4,532	37.1 37.0	1,849 1,778
56	84	AV1	246.1	29.9	9.83	3,257	2,584	32.8	4,332	37.8	1,778
57	84	AV1	253.0	30.1	10.05	3,237	2,638	32.4	4,420 4,447	37.6	1,704
58	84	AV1	242.2	29.6	9.73	3,241	2,577	32.4	4,374	38.0	1,704
59	84	AV1	256.5	30.4	10.11	3,343	2,661	33.3	4,496	37.3	1,899
60	84	AV1	261.1	30.8	10.11	3,355	2,665	34.0	4,541	37.0	1,847
61	84	AV1	265.1	31.1	10.23	3,378	2,681	33.4	4,585	36.9	1,920
62	84	AV1	249.4	30.1	9.94	3,272	2,598	32.7	4,449	37.6	1,866
63	84	AV1	254.2	30.1	10.00	3,307	2,630	33.0	4,450	37.5	1,793
64	84	AV1	255.4	30.6	10.16	3,329	2,646	33.4	4,512	37.2	1,885
65	84	AV1	260.8	30.5	10.11	3,329	2,643	32.7	4,506	37.3	1,887
66	84	AV1	248.3	30.1	9.94	3,264	2,591	32.8	4,446	37.6	1,887
67	96	AV1	252.7	30.2	10.05	3,273	2,592	32.7	4,454	37.4	1,808
68	96	AV1	251.4	30.0	9.94	3,258	2,581	33.2	4,428	37.6	1,840
69	96	AV1	250.3	30.1	9.89	3,276	2,597	32.1	4,451	37.7	1,773
70	96	AV1	233.5	29.0	9.52	3,203	2,559	31.9	4,275	38.4	1,884
71	96	AV1	259.1	30.3	10.11	3,295	2,609	32.6	4,476	37.3	1,838
72	96	AV1	265.4	30.9	10.28				4,559	37.0	1,906
73	96	AV1	264.6	30.9	10.22	3,326	2,637	33.2	4,556	37.1	1,857
74	96	AV1	261.0	30.5	10.11	3,286	2,596	33.4	4,499	37.3	1,914
75	84	AV1	266.1	30.9	10.28	3,329	2,632	33.2	4,555	37.0	1,917
76	84	AV1	268.0	31.0	10.33	3,320	2,620	33.8	4,573	36.9	1,931
77	84	AV1	276.4	31.3	10.57	3,390	2,679	33.9	4,627	36.5	2,012
78	84	AV1	268.1	31.2	10.39	3,324	2,620	33.8	4,603	36.8	1,936
79	84	AV1	273.1	31.1	10.45	3,365	2,660	33.7	4,596	36.7	1,957
80	84	AV1	275.0	31.4	10.45	3,338	2,622	34.2	4,634	36.7	1,933
81	84	AV1	271.3	31.1	10.51	3,367	2,670	33.6	4,586	36.6	1,970
82 92	84 94	AV1	265.5	31.0	10.39	3,319	2,618	33.9	4,579	36.8	1,917
83 04	84 94	AV1	267.9	30.8	10.33	3,333	2,632	33.5	4,546	36.9	1,915
84	84	AV1	266.4	30.9	10.33	3,322	2,623	34.0	4,565	36.9	1,939

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 3 PDIPLOT2 2016.1.999.0 - Printed 14-June-2016

KIWC, OP: RI		PP - IP	9 RESTF	RIKE				PP	48x1.0", Date:	APE D1	
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
85	84	AV1	276.0	31.4	10.57	3,399	2,688	34.0	4,634	36.5	1,986
86	84	AV1	268.1	30.9	10.39	3,313	2,610	33.9	4,569	36.8	1,965
87	84	AV1	272.4	31.2	10.51	3,360	2,655	33.8	4,608	36.6	1,943
88	84	AV1	248.2	30.9	10.33	3,198	2,482	33.7	4,560	36.9	1,630
Average 234.6 29.2 9.73 3,238 2,593									4,308	36.9	1,754

Total number of blows analyzed: 88

BL# Sensors

1-88 F1: [H263] 92.0 (1.00); F2: [H289] 94.0 (1.00); F3: [H340] 94.0 (1.00);

F4: [H283] 92.3 (1.00); A1: [39148] 1075.0 (1.00); A2: [39150] 1075.0 (1.00);

A3: [K1066] 332.0 (1.00); A4: [1717] 368.0 (1.00)

BL# Comments

1 Start of test on 6/10/2016 at 9:57 AM

22 RMDT requests pause to review data.

88 End of test on 6/10/2016 at 10:03 AM

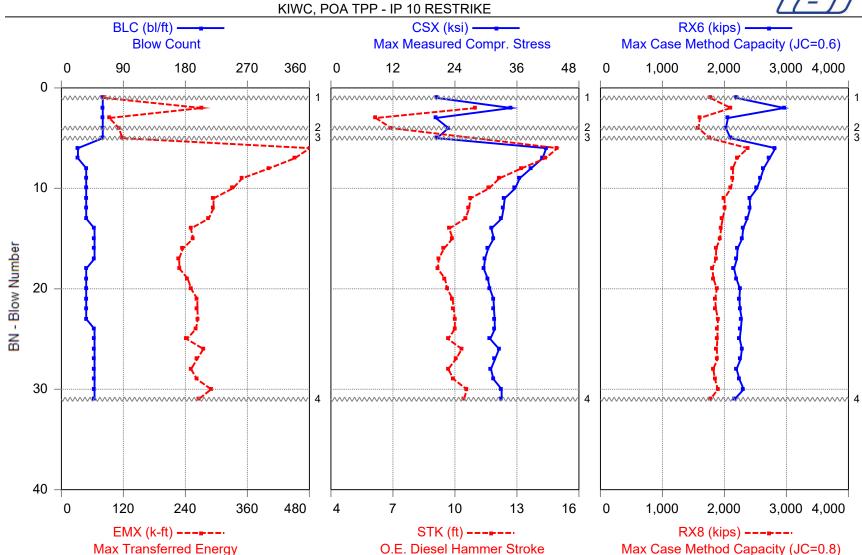
Time Summary

Drive 0 second 9:57 AM - 9:57 AM (6/10/2016) BN 1 - 1

Stop 1 minute 49 seconds 9:57 AM - 9:59 AM

Drive 28 seconds 9:59 AM - 10:00 AM BN 2 - 21

Stop 1 minute 23 seconds 10:00 AM - 10:01 AM


Drive 1 minute 45 seconds 10:01 AM - 10:03 AM BN 22 - 88

Total time [00:05:26] = (Driving [00:02:13] + Stop [00:03:12])

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.999.0 - Case Method & iCAP® Results

Printed: 14-June-2016 Test started: 10-June-2016

- 1 Start of test on 6/10/2016 at 1:03 PM
- 2 Restart after 2 minutes 11 seconds

- 3 Restart after 1 minute 39 seconds
- 4 End of test on 6/10/2016 at 1:08 PM

KIWC	KIWC, POA TPP - IP 10 RESTRIKE PP48x1.0", APE D180-42										
<u>OP: F</u>	OP: RMDT Date: 10-June-2016										
AR:	147.65	in²							S	P: 0.49	92 k/ft ³
LE:	174.00	ft							E	M: 31,0	
WS:	17,100.0	f/s							J(C: 0.	35 []
	Max Tra						CSI:	Max F	1 or F2 (Compr.	Stress
CSX:	Max Me	asured	Compr.	Stress			FMX	: Maxin	num Ford	ce	
STK:	O.E. Die	esel Ha	mmer Sti	oke			BPM	: Blows	per Min	ute	
RX6:	Max Cas	se Meth	nod Capa	city (JC	=0.6)		RA2:	Auto (Capacity	Friction	Piles
RX8:	Max Cas	se Meth	nod Capa	city (JC	(8.0=						
BL#	BLC	TYPE	EMX	CSX	STK	RX6	RX8	CSI	FMX	BPM	RA2
	bl/ft		k-ft	ksi	ft	kips	kips	ksi	kips	bpm	kips
1	60	AV1	83.9	20.4	**	2,192	1,769	21.4	3,018	1.9	1,602
2	60	AV1	271.5	34.9	11.00	2,965	2,102	37.5	5,155	35.8	1,685
3	60	AV1	92.8	20.3	6.17	2,056	1,605	22.1	2,997	47.3	1,425
4	60	AV1	111.2	22.7	6.91	2,022	1,581	24.5	3,358	44.8	1,601
5 6	60	AV1	118.0	20.5	**	2,098	1,759	21.9	3,031	1.9	1,844
6	24	AV1	480.8	41.7	14.96	2,821	2,376	44.0	6,153	30.8	2,599
7	24	AV1	451.7	40.9	14.38	2,728	2,203	43.2	6,045	31.4	2,274
8	36	AV1	402.5	38.8	13.24	2,634	2,136	41.2	5,725	32.7	2,200
9	36	AV1	350.1	36.5	12.15	2,581	2,137	38.7	5,395	34.1	2,348
10	36	AV1	331.9	35.7	11.66	2,526	2,102	37.9	5,266	34.8	2,253
11	36	AV1	294.4	33.6	10.75	2,406	2,000	35.8	4,966	36.2	2,051
12	36	AV1	294.3	33.4	10.69	2,414	2,008	35.5	4,933	36.3	2,043
13	36	AV1	285.3	33.1	10.51	2,369	1,969	35.1	4,882	36.6	2,008
14	48	AV1	250.5	31.1	9.73	2,301	1,945	33.1	4,586	38.0	2,006
15	48	AV1	255.1	31.5	9.89	2,286	1,929	33.6	4,652	37.7	1,965
16	48	AV1	235.2	30.4	9.47	2,211	1,866	32.4	4,491	38.5	1,835
17	48	AV1	227.7	29.8	9.22	2,202	1,864	31.9	4,406	39.0	1,924
18	36	AV1	228.6	29.6	9.17	2,155	1,804	31.7	4,369	39.1	1,807
19	36	AV1	244.5	30.4	9.52	2,193	1,822	32.4	4,481	38.4	1,808
20	36	AV1	251.1	30.8	9.62	2,249	1,878	32.8	4,543	38.2	1,976
21	36	AV1	263.0	31.5	9.89	2,240	1,850	33.5	4,645	37.7	1,926
22	36	AV1	263.2	31.6	9.94	2,251	1,861	33.8	4,659	37.6	2,000
23	36	AV1	263.9	31.7	10.00	2,279	1,895	34.0	4,677	37.5	2,013
24	48	AV1	260.4	31.7	10.00	2,264	1,889	34.0	4,684	37.5	2,019
25	48	AV1	242.7	30.8	9.67	2,246	1,887	33.2	4,553	38.1	2,020
26	48	AV1	274.8	32.5	10.33	2,282	1,875	34.8	4,805	36.9	2,064
27	48	AV1	262.7	31.7	10.05	2,261	1,888	34.1	4,687	37.4	2,001
28	48	AV1	250.9	31.0	9.67	2,195	1,819	33.3	4,571	38.1	1,954
29	48	AV1	262.2	31.5	9.94	2,241	1,847	33.9	4,647	37.6	2,018
30	48	AV1	289.8	33.0	10.57	2,310	1,894	35.4	4,878	36.5	2,087
31	48	AV1	265.7	33.1	10.45	2,163	1,773	35.4	4,880	36.7	1,810
	A۷	erage	263.2	31.5	10.33	2,327	1,914	33.6	4,650	35.0	1,973

BL# Sensors

1-31 F1: [G133] 97.0 (1.00); F2: [5235] 98.0 (1.00); F3: [H278] 99.0 (1.00); F4: [H324] 93.0 (1.00); A1: [28243] 1025.0 (1.00); A2: [21461] 950.0 (1.00); A3: [K3257] 340.0 (1.00); A4: [K3259] 365.0 (1.00)

Total number of blows analyzed: 31

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2016.1.999.0 - Printed 14-June-2016

KIWC, POA TPP - IP 10 RESTRIKE

PP48x1.0", APE D180-42 OP: RMDT Date: 10-June-2016

BL# Comments

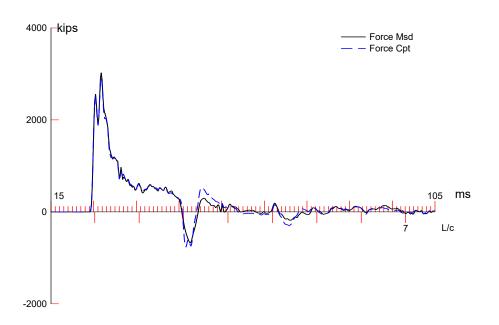
- Start of test on 6/10/2016 at 1:03 PM 1
- 4 Restart after 2 minutes 11 seconds
- 5 Restart after 1 minute 39 seconds
- End of test on 6/10/2016 at 1:08 PM

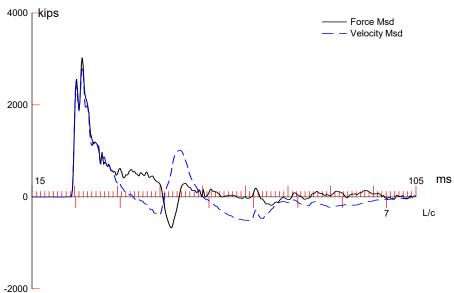
Time Summary

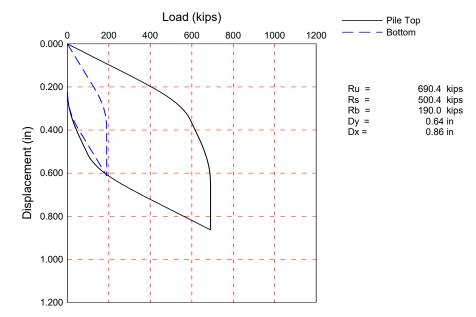
Drive 2 seconds 1:03 PM - 1:04 PM (6/10/2016) BN 1 - 3

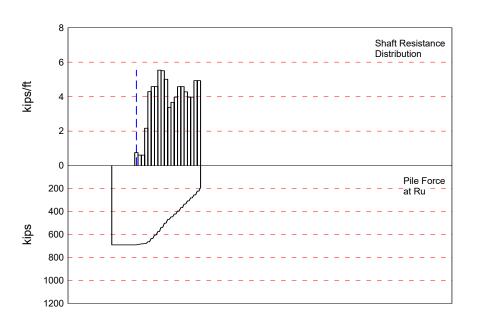
Stop 2 minutes 11 seconds 1:04 PM - 1:06 PM

Drive 0 second 1:06 PM - 1:06 PM BN 4 - 4


Stop 1 minute 39 seconds 1:06 PM - 1:07 PM


Drive 42 seconds 1:07 PM - 1:08 PM BN 5 - 31


Total time [00:04:35] = (Driving [00:00:45] + Stop [00:03:50])


Appendix C

Results of CAPWAP Analysis

Test: 07-Jun-2016 13:01: CAPWAP(R) 2006-3 OP: RMDT

	-		CAPWA	P SUMMARY	RESULTS				
Total CAPW	AP Capacity	7: 690	.4; along	Shaft	500.4; at	Toe	190.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist.	Damping
No.	Gages	Grade			Ru	(D	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	ki	.ps/ft	ksf	s/ft
				690.4					
1	52.7	2.7	5.0	685.4	5.0		1.85	0.15	0.280
2	59.3	9.3	4.0	681.4	9.0		0.61	0.05	0.280
3	65.9	15.9	4.0	677.4	13.0		0.61	0.05	0.280
4	72.5	22.5	14.3	663.1	27.3		2.17	0.17	0.280
5	79.1	29.1	28.3	634.8	55.6		4.29	0.34	0.280
6	85.7	35.7	30.2	604.6	85.8		4.58	0.36	0.280
7	92.3	42.3	30.2	574.4	116.0		4.58	0.36	0.280
8	98.9	48.9	36.5	537.9	152.5		5.54	0.44	0.280
9	105.5	55.4	36.3	501.6	188.8		5.51	0.44	0.280
10	112.1	62.0	33.0	468.6	221.8		5.01	0.40	0.280
11	118.7	68.6	22.2	446.4	244.0		3.37	0.27	0.280
12	125.3	75.2	24.2	422.2	268.2		3.67	0.29	0.280
13	131.9	81.8	26.2	396.0	294.4		3.97	0.32	0.280
14	138.4	88.4	30.2	365.8	324.6		4.58	0.36	0.280
15	145.0	95.0	30.2	335.6	354.8		4.58	0.36	0.280
16	151.6	101.6	28.2	307.4	383.0		4.28	0.34	0.280
17	158.2	108.2	26.2	281.2	409.2		3.97	0.32	0.280
18	164.8	114.8	26.2	255.0	435.4		3.97	0.32	0.280
19	171.4	121.4	32.5	222.5	467.9		4.93	0.39	0.280
20	178.0	128.0	32.5	190.0	500.4		4.93	0.39	0.280
Avg. Sha	aft		25.0				3.91	0.31	0.280
Toe	9		190.0					15.12	0.160
Soil Model	Parameters	s/Extensi	ons			Shaft	Toe	e	
Quake		(i:	n)			0.120	0.300	ס	
Case Dampi	ng Factor					0.523	0.113	3	
Unloading	Quake	(%	of loadir	ng quake)		30	100	כ	
Reloading	Level	(%	of Ru)			100	100	כ	
Unloading	Level	(%	of Ru)			5			
Soil Plug	Weight	(k	ips)				0.70	כ	
Soil Suppo	rt Dashpot					0.200	0.000	כ	
Soil Suppo	rt Weight	(k	ips)			8.65	0.00)	
max. Top C	omp. Stress	s =	19.7 ks	si (I	= 27.2 ms	, max	= 1.017 :	x Top)	
max. Comp.	Stress	=	20.0 ks	si (2	= 72.5 ft	, T=	31.2 ms)	
max. Tens.	Stress	=	-5.90 ks	si (2	= 6.6 ft	, T=	47.8 ms)	
max. Energ	y (EMX)	=	88.8 ki	.p-ft; ma	x. Measure	d Top	Displ.	(DMX) = 0.	77 in

KIWC, POA TPP; Pile: IP 1 (Loc. 5)
PP48x1.0'', APE 15-4; Blow: 2167
Robert Miner Dynamic Testing, Inc.

	EXTREMA TABLE										
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.			
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.			
No.	Gages			Stress	Stress	Energy					
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in			
1	3.3	2903.8	-827.9	19.7	-5.61	88.75	10.8	0.746			
2	6.6	2902.7	-870.7	19.7	-5.90	88.62	10.8	0.744			
5	16.5	2899.1	-851.8	19.6	-5.77	88.21	10.8	0.738			
8	26.4	2895.3	-805.5	19.6	-5.45	87.79	10.8	0.733			
11	36.3	2894.3	-739.6	19.6	-5.01	87.38	10.8	0.727			
14	46.1	2899.6	-671.4	19.6	-4.55	87.06	10.7	0.722			
17	56.0	2893.7	-600.7	19.6	-4.07	86.24	10.6	0.715			
20	65.9	2924.8	-562.7	19.8	-3.81	85.55	10.4	0.708			
23	75.8	2923.0	-556.0	19.8	-3.76	82.88	10.1	0.700			
26	85.7	2900.7	-546.0	19.6	-3.70	79.19	9.8	0.692			
29	95.6	2768.2	-675.1	18.7	-4.57	72.75	9.5	0.683			
32	105.5	2709.6	-549.1	18.3	-3.72	68.66	9.2	0.674			
35	115.4	2534.6	-639.3	17.2	-4.33	61.49	8.9	0.664			
38	125.3	2520.7	-518.2	17.1	-3.51	57.94	8.6	0.654			
41	135.1	2417.7	-493.1	16.4	-3.34	51.76	8.4	0.644			
44	145.0	2381.6	-536.8	16.1	-3.63	46.08	8.1	0.644			
47	154.9	2260.9	-357.1	15.3	-2.42	38.10	9.3	0.644			
50	164.8	1957.3	-217.8	13.3	-1.47	34.17	12.0	0.642			
51	168.1	1911.8	-90.8	12.9	-0.61	30.37	12.3	0.641			
52	171.4	1826.7	-75.1	12.4	-0.51	30.35	11.5	0.640			
53	174.7	1383.4	-33.7	9.4	-0.23	25.49	11.6	0.639			
54	178.0	765.6	-16.3	5.2	-0.11	20.36	12.5	0.638			
Absolute	72.5			20.0			(T =	31.2 ms)			
	6.6				-5.90		(T =	47.8 ms)			

Page 2 Analysis: 07-Jun-2016

KIWC, POA TPP; Pile: IP 1 (Loc. 5)
PP48x1.0'', APE 15-4; Blow: 2167
Robert Miner Dynamic Testing, Inc.

Test: 07-Jun-2016 13:01: CAPWAP(R) 2006-3

OP: RMDT

CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	2378.0	2101.6	1825.2	1548.7	1272.3	995.9	719.4	443.0	166.6	0.0
RX	2378.0	2101.6	1825.2	1548.7	1272.3	995.9	719.4	446.1	446.1	446.1
RU	2363.2	2085.2	1807.3	1529.4	1251.5	973.6	695.6	417.7	139.8	0.0

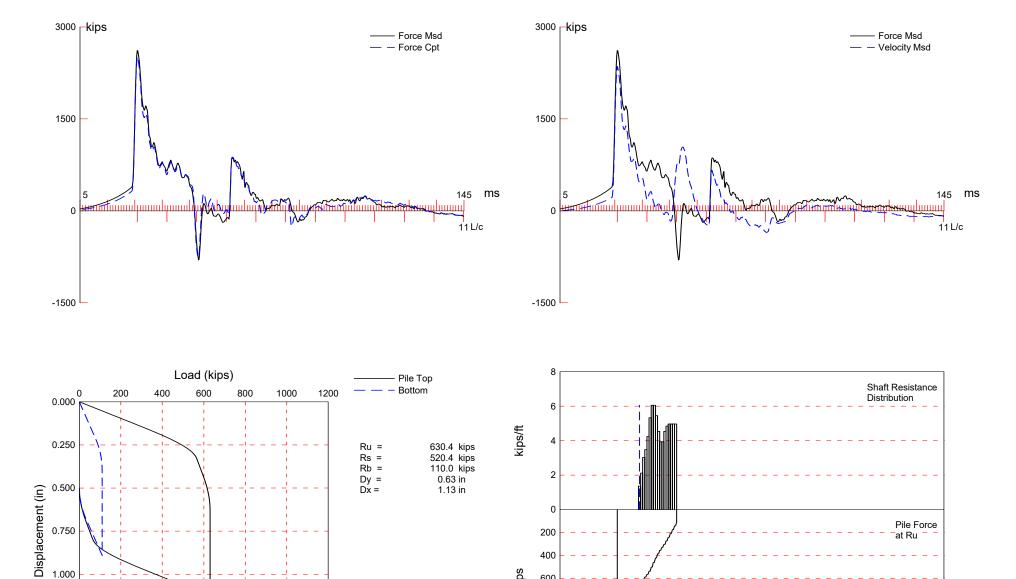
RAU = 396.3 (kips); RA2 = 543.4 (kips)

Current CAPWAP Ru = 690.4 (kips); Corresponding J(RP)= 0.61; J(RX) = 0.61

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
10.58	25.45	2595.2	2547.1	3062.9	0.775	0.222	0.222	89.2	2147.8

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	\mathtt{in}^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
178.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 20.8 ms

Page 3 Analysis: 07-Jun-2016

1.250

1.500

kips

1200

Test: 19-May-2016 11:26: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

			CAPWA	AP SUMMARY	RESULTS				
Total CAPV	WAP Capacit	y: 630	.4; along	Shaft	520.4; at	Toe	110.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Res	sist.	Resist.	Damping
No.	Gages	Grade			Ru	(De	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	kip	ps/ft	ksf	s/ft
				630.4					
1	72.7	2.7	9.0	621.4	9.0		3.36	0.27	0.240
2	79.3	9.3	14.0	607.4	23.0		2.12	0.17	0.240
3	85.9	15.9	20.0	587.4	43.0		3.03	0.24	0.240
4	92.5	22.5	23.0	564.4	66.0		3.48	0.28	0.240
5	99.1	29.1	28.0	536.4	94.0		4.24	0.34	0.240
6	105.7	35.7	35.2	501.2	129.2		5.33	0.42	0.240
7	112.3	42.3	40.0	461.2	169.2		6.05	0.48	0.240
8	118.9	48.9	40.0	421.2	209.2		6.05	0.48	0.240
9	125.5	55.5	36.0	385.2	245.2		5.45	0.43	0.240
10	132.1	62.1	30.0	355.2	275.2		4.54	0.36	0.240
11	138.8	68.8	26.0	329.2	301.2		3.94	0.31	0.240
12	145.4	75.4	26.0	303.2	327.2		3.94	0.31	0.240
13	152.0	82.0	30.0	273.2	357.2		4.54	0.36	0.240
14	158.6	88.6	32.0	241.2	389.2		4.84	0.39	0.240
15	165.2	95.2	32.8	208.4	422.0		4.96	0.40	0.240
16	171.8	101.8	32.8	175.6	454.8		4.96	0.40	0.240
17	178.4	108.4	32.8	142.8	487.6		4.96	0.40	0.240
18	185.0	115.0	32.8	110.0	520.4		4.96	0.40	0.240
Avg. Sh	aft		28.9				4.53	0.36	0.240
То	е		110.0					8.75	0.160
Soil Model	l Parameter	s/Extensi	ons		5	Shaft	Toe	e	
Quake		(iı	n)		(0.100	0.300	0	
Case Dampi	ing Factor				(.466	0.066	6	
Unloading	Quake	(%	of loading	ng quake)		30	70	0	
Reloading	Level	(%	of Ru)			100	100	0	
Unloading	Level	(%	of Ru)			40			
Soil Suppo	ort Dashpot				(250	0.000	0	
Soil Suppo	ort Weight	(k:	ips)			8.67	0.00	0	
max. Top (Comp. Stres	s =	17.0 ks	si (T	= 26.3 ms	, max=	1.024	x Top)	
max. Comp	. Stress	=	17.4 ks	si (Z	= 72.7 ft	, T=	30.5 ms)	
max. Tens	. Stress	=	-4.65 ks	si (Z	= 3.3 ft	, T=	48.5 ms)	
max. Energ	gy (EMX)	=	94.1 ki	ip-ft; ma	x. Measure	d Top	Displ.	(DMX) = 0.9	9 in

Page 1 Analysis: 12-Jul-2016 KIWC, POA TPP; Pile: IP 2 PP48x1.0'', APE D180-42; Blow: 818 Robert Miner Dynamic Testing, Inc.

3.3

OP: RMDT EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy ft kips kips kip-ft ft/s ksi ksi in 1 3.3 2513.1 -686.6 17.0 94.14 9.2 1.014 -4.65 2 2514.1 -619.6 17.0 -4.20 94.12 9.2 1.014 6.6 1.012 5 16.5 2517.8 -664.8 17.0 -4.50 94.08 9.1 8 26.4 2521.7 -611.5 17.1 -4.14 94.04 9.1 1.010 11 36.3 2526.3 -485.8 17.1 -3.29 93.99 9.1 1.006 14 46.3 2531.8 -516.9 17.1 -3.50 93.95 9.0 0.999 -381.9 17 56.2 2538.5 17.2 -2.59 93.90 9.0 0.992 20 66.1 2554.0 -403.5 17.3 -2.73 93.86 8.9 0.981 23 76.0 2559.4 -353.8 17.3 -2.40 92.29 8.8 0.970 85.9 2560.3 -281.1 17.3 -1.90 89.94 8.6 0.957 26 29 95.8 2486.0 -465.7 16.8 -3.15 83.15 8.4 0.946 32 105.7 2468.8 -332.0 16.7 -2.25 78.94 8.2 0.936 7.9 115.6 -446.7 68.36 0.934 35 2324.6 15.7 -3.02 38 125.5 2265.8 -423.4 15.3 -2.87 62.83 7.7 0.933 41 135.4 2127.9 -309.7 14.4 -2.10 53.43 7.6 0.932 44 145.4 2096.7 -346.9 14.2 -2.35 49.57 7.4 0.930 47 155.3 1991.2 -209.2 13.5 -1.42 41.10 8.7 0.929 -102.4 36.12 50 165.2 1946.3 13.2 -0.69 8.8 0.926 175.1 1542.7 -55.3 10.4 -0.37 25.76 10.8 0.923 53 178.4 1231.3 54 -37.4 8.3 -0.25 25.74 11.3 0.921 181.7 727.6 -23.9 -0.16 20.38 11.7 0.920 55 4.9 56 185.0 410.1 -22.0 2.8 -0.15 15.05 11.8 0.920 Absolute 72.7 17.4 (T =30.5 ms)

Test: 19-May-2016 11:26:

(T =

-4.65

48.5 ms)

CAPWAP(R) 2006-3

Page 2 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 2 Test: 19-May-2016 11:26: PP48x1.0'', APE D180-42; Blow: 818 CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc.

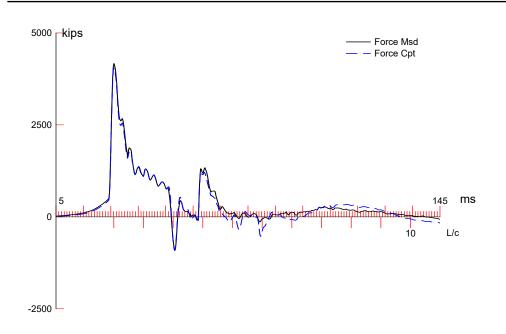
CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	1836.6	1522.7	1208.7	894.8	580.9	266.9	0.0	0.0	0.0	0.0	
RX	1836.6	1522.7	1208.7	894.8	598.3	538.9	516.8	494.6	472.9	472.2	
RU	1840.9	1527.4	1213.9	900.4	586.8	273.3	0.0	0.0	0.0	0.0	

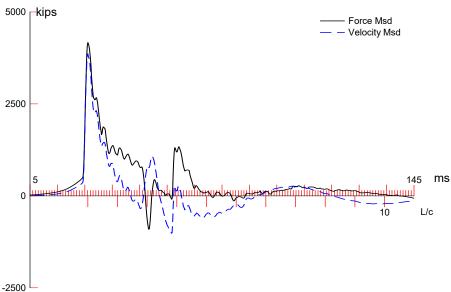
OP: RMDT

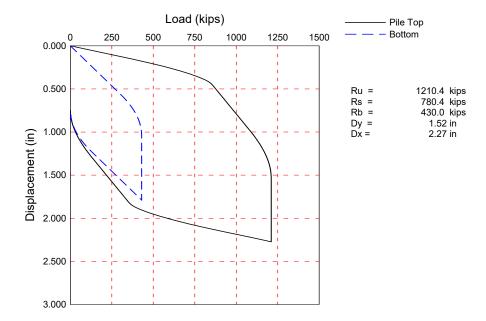
RAU = 320.3 (kips); RA2 = 484.9 (kips)

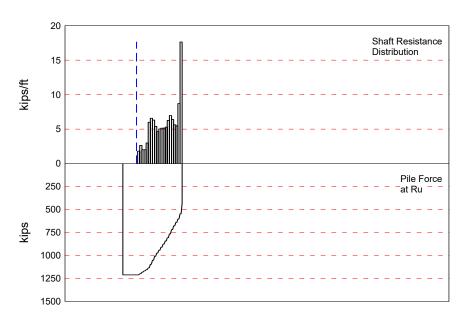
Current CAPWAP Ru = 630.4 (kips); Corresponding J(RP)= 0.38; J(RX) = 0.39

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
1486.9	92.2	0.500	0.500	0.989	2629.7	2600.3	2375.7	26.08	8.86


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 2 Test: 19-May-2016 11:40: PP48x1.0'', APE D180-42; Blow: 1248 CAPWAP(R) 2006-3 OP: RMDT

Robert Miner Dynamic Testing, Inc.

-			CAPWA	P SUMMARY	RESULTS			
Total	CAPWAP Capa	city: 12	10.4; along	Shaft	780.4; at	Toe 430.0	kips	
So:	il Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgm	nt Below	Below		in Pile	of	Resist.	Resist.	Damping
No	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				1210.4				
	1 52.9	8.7	12.0	1198.4	12.0	1.37	0.11	0.180
	2 59.5	15.3	17.5	1180.9	29.5	2.65	0.21	0.180
	3 66.1	21.9	13.3	1167.6	42.8	2.01	0.16	0.180
	4 72.7	28.6	13.3	1154.3	56.1	2.01	0.16	0.180
	5 79.3	35.2	19.8	1134.5	75.9	3.00	0.24	0.180
	6 85.9	41.8	39.7	1094.8	115.6	6.01	0.48	0.180
	7 92.5	48.4	43.5	1051.3	159.1	6.58	0.52	0.180
	8 99.1	55.0	41.7	1009.6	200.8	6.31	0.50	0.180
	9 105.7	61.6	35.7	973.9	236.5	5.40	0.43	0.180
:	10 112.3	68.2	30.7	943.2	267.2	4.65	0.37	0.180
	11 118.9	74.8	33.2	910.0	300.4	5.02	0.40	0.180
	12 125.5	81.4	34.0	876.0	334.4	5.15	0.41	0.180
	13 132.1	88.0	34.0	842.0	368.4	5.15	0.41	0.180
:	14 138.8	94.6	35.0	807.0	403.4	5.30	0.42	0.180
:	15 145.4	101.2	41.4	765.6	444.8	6.27	0.50	0.180
-	16 152.0	107.8	46.1	719.5	490.9	6.98	0.56	0.180
-	17 158.6	114.4	42.2	677.3	533.1	6.39	0.51	0.180
:	18 165.2	121.1	37.2	640.1	570.3	5.63	0.45	0.180
-	19 171.8	127.7	36.1	604.0	606.4	5.46	0.43	0.180
	20 178.4	134.3	57.5	546.5	663.9	8.70	0.69	0.180
:	21 185.0	140.9	116.5	430.0	780.4	17.63	1.40	0.180
Avg	. Shaft		37.2			5.54	0.44	0.180
	Toe		430.0				34.22	0.070
Soil M	Model Parame	ters/Extens	sions			Shaft To	е	
Quake		(in)			0.110 0.80	0	
Case D	amping Fact	or				0.533 0.11	4	
Unload	ling Quake	(% of loadir	ng quake)		50 10	0	
Reload	ling Level	(% of Ru)			100 10	0	
Soil P	lug Weight	(kips)			0.5	0	
max. T	op Comp. St	ress =	27.4 ks	si (I	'= 26.5 ms	, max= 1.021	x Top)	
max. C	omp. Stress	=	28.0 ks	si (Z	= 52.9 ft	, T= 29.4 ms)	
max. T	ens. Stress	=	-5.70 ks	si (Z	= 3.3 ft	, T= 48.5 ms)	
max. E	nergy (EMX)	=	228.8 ki	.p-ft; ma	x. Measure	d Top Displ.	(DMX) = 1.2	27 in

KIWC, POA TPP; Pile: IP 2
PP48x1.0'', APE D180-42; Blow: 1248
Robert Miner Dynamic Testing, Inc.

EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy kip-ft ft kips kips ksi ksi ft/s in 1 3.3 4050.7 -842.3 27.4 -5.70 228.84 14.9 1.309 2 4052.7 -738.2 27.4 228.77 14.8 1.306 6.6 -5.00 -3.89 5 16.5 4059.8 -574.2 27.5 228.56 14.8 1.293 -629.6 8 26.4 4069.0 27.6 -4.26 228.33 14.7 1.281 11 36.3 4080.6 -608.9 27.6 -4.12 228.10 14.7 1.262 14 46.3 4104.9 -551.8 27.8 -3.74 227.86 14.6 1.239 17 56.2 4105.1 -565.9 27.8 -3.83 224.45 14.4 1.225 20 66.1 4083.9 -645.1 27.7 -4.37 219.68 14.2 1.213 14.0 23 76.0 4046.9 -539.9 27.4 -3.66 212.81 1.200 85.9 4067.3 -483.9 27.5 -3.28 208.00 13.6 1.189 26 95.8 29 3871.9 -473.2 26.2 -3.20 189.33 13.3 1.173 32 105.7 3806.6 -438.7 25.8 -2.97 180.09 13.0 1.158 115.6 3658.7 -342.9 24.8 165.43 12.7 1.145 35 -2.32 38 125.5 3620.8 -421.7 24.5 -2.86 157.97 12.4 1.128 -290.8 41 135.4 3475.1 23.5 -1.97 143.44 12.1 1.114 44 145.4 3446.0 -208.5 23.3 -1.41 135.86 11.8 1.097 47 155.3 3251.7 -206.2 22.0 -1.40 117.39 12.1 1.080 3187.9 0.0 108.10 50 165.2 21.6 0.00 12.5 1.065 175.1 2755.5 0.0 18.7 0.00 91.61 15.6 1.051 53 54 178.4 2342.6 0.0 15.9 0.00 91.56 16.5 1.047 181.7 1617.4 0.0 11.0 0.00 77.90 17.0 1.043 55 56 185.0 1161.5 0.0 7.9 0.00 50.10 17.3 1.039 Absolute 52.9 28.0 (T =29.4 ms) 3.3 -5.70 (T =48.5 ms)

Test: 19-May-2016 11:40:

CAPWAP(R) 2006-3

OP: RMDT

Page 2 Analysis: 22-May-2016

 KIWC, POA TPP; Pile: IP 2
 Test: 19-May-2016 11:40:

 PP48x1.0'', APE D180-42; Blow: 1248
 CAPWAP(R) 2006-3

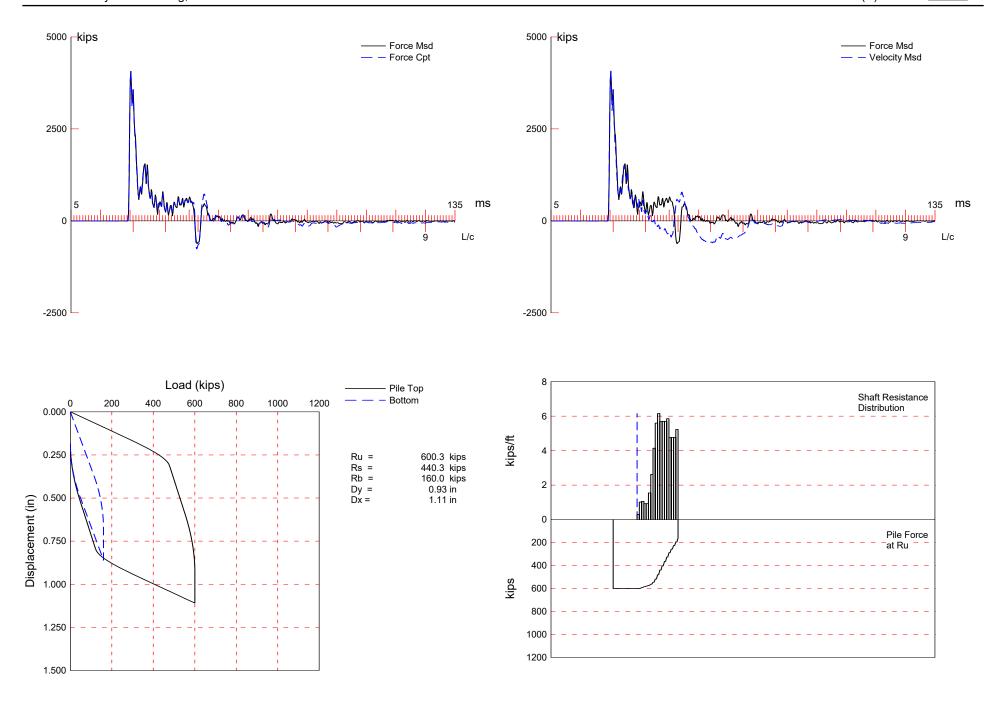
 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	3355.7	2891.7	2427.8	1963.8	1499.8	1035.8	571.8	107.8	0.0	0.0	
RX	3355.7	2891.7	2427.8	1963.8	1499.8	1343.6	1309.0	1274.3	1239.6	1204.9	
RU	3405.2	2946.1	2487.1	2028.1	1569.0	1110.0	650.9	191.9	0.0	0.0	

Current CAPWAP Ru = 1210.4 (kips); Corresponding J(RP) = 0.46; J(RX) = 0.88

RAU = 934.5 (kips); RA2 = 1451.3 (kips)

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
2721.7	228.6	0.750	0.750	1.266	4187.2	4165.3	3830.2	26.27	14.53


PILE PROFILE AND PILE MODEL

Depth	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	in²	ksi	lb/ft³	ft
	0.00	147.65	31043.9	492.000	12.566
	185.00	147.65	31043.9	492.000	12.566
Toe Area		12.566	ft²		

Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 22-May-2016

Test: 03-Jun-2016 11:56:

2366 CAPWAP(R) 2006-3

G, Inc. OP: RMDT

CAPWAP SUMMARY RESULTS

00.3; along Shaft 440.3; at Toe 160.0 kips

Ru Force Sum Unit Unit Smith

	VAP Capaci) kips	
Soil	Dist.	Depth	Ru	Force		Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	ft	ft	kips	kips	kips	kips/ft	ksf	s/f
				600.3				
1	75.9	3.9	2.0	598.3	2.0	0.52	0.04	0.40
2	82.5	10.5	6.7	591.6	8.7	1.02	0.08	0.40
3	89.1	17.1	7.0	584.6	15.7	1.06	0.08	0.40
4	95.6	23.6	6.1	578.5	21.8	0.92	0.07	0.40
5	102.2	30.2	6.1	572.4	27.9	0.92	0.07	0.40
6	108.8	36.8	10.2	562.2	38.1	1.55	0.12	0.40
7	115.4	43.4	17.3	544.9	55.4	2.62	0.21	0.40
8	122.0	50.0	27.3	517.6	82.7	4.14	0.33	0.40
9	128.6	56.6	36.9	480.7	119.6	5.59	0.45	0.40
10	135.2	63.2	40.6	440.1	160.2	6.15	0.49	0.40
11	141.8	69.8	37.6	402.5	197.8	5.70	0.45	0.40
12	148.4	76.4	37.6	364.9	235.4	5.70	0.45	0.40
13	155.0	83.0	37.6	327.3	273.0	5.70	0.45	0.40
14	161.6	89.6	38.6	288.7	311.6	5.85	0.47	0.40
15	168.2	96.2	31.4	257.3	343.0	4.76	0.38	0.40
16	174.8	102.8	31.4	225.9	374.4	4.76	0.38	0.40
17	181.4	109.4	31.4	194.5	405.8	4.76	0.38	0.40
18	188.0	116.0	34.5	160.0	440.3	5.23	0.42	0.40
Avg. Sh	aft		24.5			3.80	0.30	0.40
То	e		160.0				12.73	0.33
oil Model	L Paramete	rs/Extensi	ons		\$	Shaft To	oe .	
)uake		(i	n)		(0.100 0.5	20	
ase Dampi	ing Factor				(0.657 0.19	97	
Reloading	Level	(%	of Ru)			100 10	00	
Inloading	Level	(%	of Ru)			60		
oil Plug	Weight	(k	ips)			0.4	40	
ax. Top (Comp. Stre	ss =	27.6 k	si (1	r= 25.7 ms	, max= 1.000	x Top)	
ax. Comp.	. Stress	=	27.6 k	si (2	Z= 3.3 ft	, T= 25.7 m	s)	
ax. Tens.	. Stress	=	-6.41 k	si (2	Z= 164.9 ft	, T= 38.0 m	s)	
ax. Energ	ry (EMX)	=	110.2 k	ip-ft: ma	x. Measure	d Top Displ.	(DMX) = 0.6	59 in

Page 1 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 3_1
PP48x1.0'', APE 15-4; Blow: 2366
Robert Miner Dynamic Testing, Inc.

Test: 03-Jun-2016 11:56: CAPWAP(R) 2006-3 OP: RMDT

	EXTREMA TABLE												
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.					
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.					
No.	Gages			Stress	Stress	Energy							
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in					
1	3.3	4077.8	-767.0	27.6	-5.19	110.17	15.2	0.684					
2	6.6	4075.0	-675.8	27.6	-4.58	110.07	15.2	0.683					
5	16.5	4066.2	-699.4	27.5	-4.74	109.74	15.2	0.680					
8	26.4	4056.7	-675.1	27.5	-4.57	109.33	15.1	0.671					
11	36.3	4046.5	-685.5	27.4	-4.64	108.79	15.1	0.660					
14	46.2	4035.7	-626.7	27.3	-4.24	108.18	15.1	0.647					
17	56.1	4024.1	-643.1	27.2	-4.35	107.45	15.0	0.635					
20	66.0	4011.8	-553.9	27.2	-3.75	106.61	15.0	0.627					
23	75.9	4006.1	-544.3	27.1	-3.69	105.67	14.9	0.621					
26	85.8	3969.8	-509.5	26.9	-3.45	103.31	14.7	0.614					
29	95.6	3941.4	-423.0	26.7	-2.86	101.69	14.6	0.608					
32	105.5	3886.0	-390.7	26.3	-2.65	99.05	14.4	0.601					
35	115.4	3878.3	-417.7	26.3	-2.83	96.91	14.1	0.593					
38	125.3	3731.4	-512.5	25.3	-3.47	88.57	13.5	0.586					
41	135.2	3671.4	-365.4	24.9	-2.47	81.98	12.8	0.579					
44	145.1	3380.7	-236.1	22.9	-1.60	68.38	12.2	0.573					
47	155.0	3316.7	-375.2	22.5	-2.54	61.74	11.6	0.565					
50	164.9	3056.9	-946.7	20.7	-6.41	49.40	11.1	0.559					
53	174.8	3006.4	-682.7	20.4	-4.62	43.90	11.0	0.553					
56	184.7	2197.2	-46.2	14.9	-0.31	32.84	14.4	0.550					
57	188.0	1265.1	-0.6	8.6	-0.00	25.50	16.2	0.549					
Absolute	3.3			27.6			(T =	25.7 ms)					
	164.9				-6.41		(T =	38.0 ms)					

Page 2 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 3_1
PP48x1.0'', APE 15-4; Blow: 2366
Robert Miner Dynamic Testing, Inc.

Test: 03-Jun-2016 11:56: CAPWAP(R) 2006-3

OP: RMDT

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	3826.3	3352.1	2878.0	2403.8	1929.7	1455.6	981.4	507.3	33.2	0.0		
RX	3826.3	3352.1	2878.0	2403.8	1929.7	1455.6	981.4	702.2	657.5	620.9		
RU	3990.1	3532.3	3074.6	2616.8	2159.1	1701.3	1243.6	785.8	328.1	0.0		

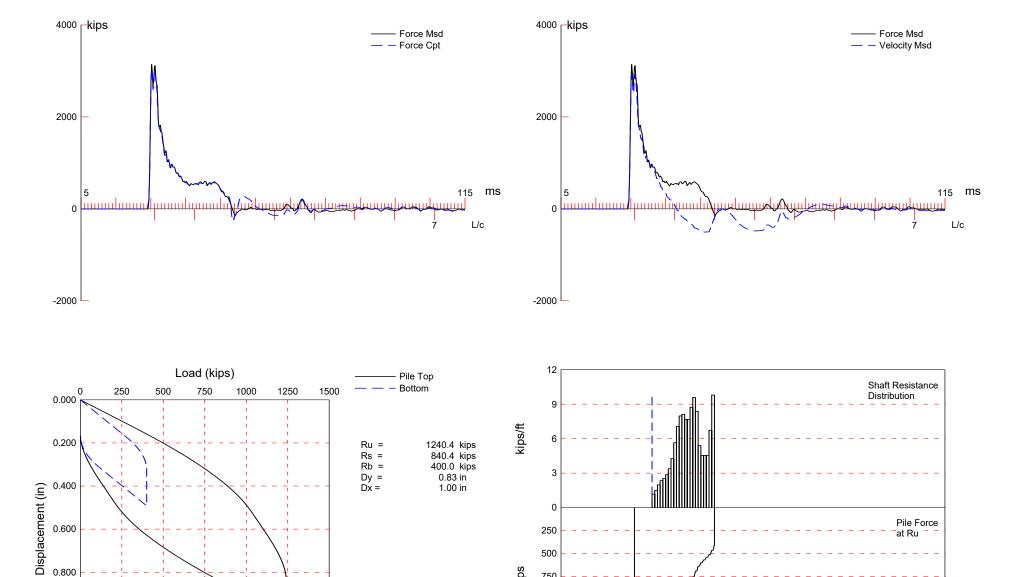
RAU = 579.1 (kips); RA2 = 528.2 (kips)

Current CAPWAP Ru = 600.3 (kips); Corresponding J(RP)= 0.68; matches RX9 within 5%

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3051.5	111.4	0.185	0.184	0.692	4210.2	4210.2	4357.5	26.23	16.25

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	\mathtt{in}^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
188.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 22.0 ms

Page 3 Analysis: 12-Jul-2016

1.000

1.200

kips

750 1000

1250 1500

Total CADW	MAP Capacity	1240	CAPWA	AP SUMMARY		Тое	400.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below	Ku	in Pile	of		sist.	Resist.	Damping
No.	Gages	Grade		111 1110	Ru		epth)	(Area)	Factor
	ft	ft	kips	kips	kips		ps/ft	ksf	s/ft
				1240.4					
1	49.8	3.3	7.8	1232.6	7.8		2.34	0.19	0.260
2	56.5	10.0	10.0	1222.6	17.8		1.51	0.12	0.260
3	63.1	16.6	13.2	1209.4	31.0		1.99	0.16	0.260
4	69.8	23.3	15.6	1193.8	46.6		2.35	0.19	0.260
5	76.4	29.9	16.9	1176.9	63.5		2.54	0.20	0.260
6	83.1	36.6	19.1	1157.8	82.6		2.87	0.23	0.260
7	89.7	43.2	22.5	1135.3	105.1		3.39	0.27	0.260
8	96.3	49.8	28.4	1106.9	133.5		4.27	0.34	0.260
9	103.0	56.5	37.5	1069.4	171.0		5.64	0.45	0.260
10	109.6	63.1	47.0	1022.4	218.0		7.07	0.56	0.260
11	116.3	69.8	53.0	969.4	271.0		7.98	0.63	0.260
12	122.9	76.4	53.9	915.5	324.9		8.11	0.65	0.260
13	129.6	83.1	50.9	864.6	375.8		7.66	0.61	0.260
14	136.2	89.7	50.9	813.7	426.7		7.66	0.61	0.260
15	142.8	96.3	58.0	755.7	484.7		8.73	0.69	0.260
16	149.5	103.0	63.7	692.0	548.4		9.59	0.76	0.260
17	156.1	109.6	55.7	636.3	604.1		8.38	0.67	0.260
18	162.8	116.3	35.9	600.4	640.0		5.40	0.43	0.260
19	169.4	122.9	30.2	570.2	670.2		4.55	0.36	0.260
20	176.1	129.6	30.2	540.0	700.4		4.55	0.36	0.260
21	182.7	136.2	30.2	509.8	730.6		4.55	0.36	0.260
22	189.4	142.9	44.7	465.1	775.3		6.73	0.54	0.260
23	196.0	149.5	65.1	400.0	840.4		9.80	0.78	0.260
Avg. Sha	aft		36.5				5.62	0.45	0.260
To	е		400.0					31.83	0.225
Soil Model	. Parameters	s/Extensi	ons		i	Shaft	То	е	
Quake		(iı	n)			0.100	0.25	0	
Case Dampi	ng Factor					0.815	0.33	6	
Unloading		(%	of loadir	ng quake)		30	6	0	
Reloading	Level	(%	of Ru)			100	10	0	
Unloading			of Ru)			10			
Soil Plug			ips)				0.4	0	
	ort Dashpot	•	- '			0.330	0.00		
Soil Suppo		(k:	ips)			8.72	0.0		
		`	,			· -		-	

KIWC, POA TPP; Pile: IP 3 (Loc. 1)
PP48x1.0'', APE 15-4; Blow: 4872
Robert Miner Dynamic Testing, Inc.

Test: 03-Jun-2016 14:02: CAPWAP(R) 2006-3 OP: RMDT

max. Top Comp. Stress = 20.5 ksi (T= 25.6 ms, max= 1.000 x Top)

max. Comp. Stress = 20.5 ksi (Z= 3.3 ft, T= 25.6 ms)

max. Tens. Stress = -1.69 ksi (Z= 3.3 ft, T= 48.6 ms)

max. Energy (EMX) = 97.1 kip-ft; max. Measured Top Displ. (DMX)= 0.63 in

EXTREMA TABLE

max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
iı	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
0.64	11.3	97.11	-1.69	20.5	-249.5	3033.6	3.3	1
0.638	11.3	96.97	-1.69	20.5	-249.1	3030.6	6.6	2
0.62	11.3	96.47	-1.46	20.5	-215.8	3020.9	16.6	5
0.604	11.2	95.89	-1.10	20.4	-162.7	3010.8	26.6	8
0.58	11.2	95.23	-1.06	20.3	-156.0	3000.1	36.5	11
0.56	11.1	94.49	-1.08	20.4	-158.9	3012.4	46.5	14
0.54	11.0	92.71	-1.05	20.4	-155.3	3015.3	56.5	17
0.51	10.8	89.12	-1.20	20.1	-176.6	2972.8	66.4	20
0.49	10.6	86.43	-1.22	20.1	-180.2	2962.6	76.4	23
0.48	10.4	81.76	-1.17	19.6	-172.8	2898.0	86.4	26
0.47	10.2	79.30	-1.24	19.7	-182.6	2903.4	96.3	29
0.46	9.8	73.06	-1.18	18.9	-174.6	2797.3	106.3	32
0.45	9.4	68.93	-1.11	18.7	-164.3	2761.1	116.3	35
0.44	8.9	60.49	-0.93	17.2	-137.1	2539.4	126.2	38
0.43	8.5	56.55	-0.83	16.9	-122.7	2502.4	136.2	41
0.42	8.1	48.85	-0.59	15.6	-87.3	2305.4	146.2	44
0.40	7.7	44.50	-0.63	15.0	-93.6	2220.4	156.1	47
0.39	7.5	38.36	-0.58	14.0	-85.9	2067.0	166.1	50
0.38	7.3	36.17	-0.73	13.9	-107.3	2045.8	176.1	53
0.37	8.9	31.93	-0.65	13.3	-95.6	1970.2	186.0	56
0.36	9.9	24.73	-0.49	8.1	-72.6	1199.4	196.0	59
25.6 ms	(T =			20.5			3.3	solute
48.6 ms	(T =		-1.69				3.3	
	-		_					

Page 2 Analysis: 06-Jun-2016

KIWC, POA TPP; Pile: IP 3 (Loc. 1) PP48x1.0'', APE 15-4; Blow: 4872 Robert Miner Dynamic Testing, Inc. Test: 03-Jun-2016 14:02: CAPWAP(R) 2006-3

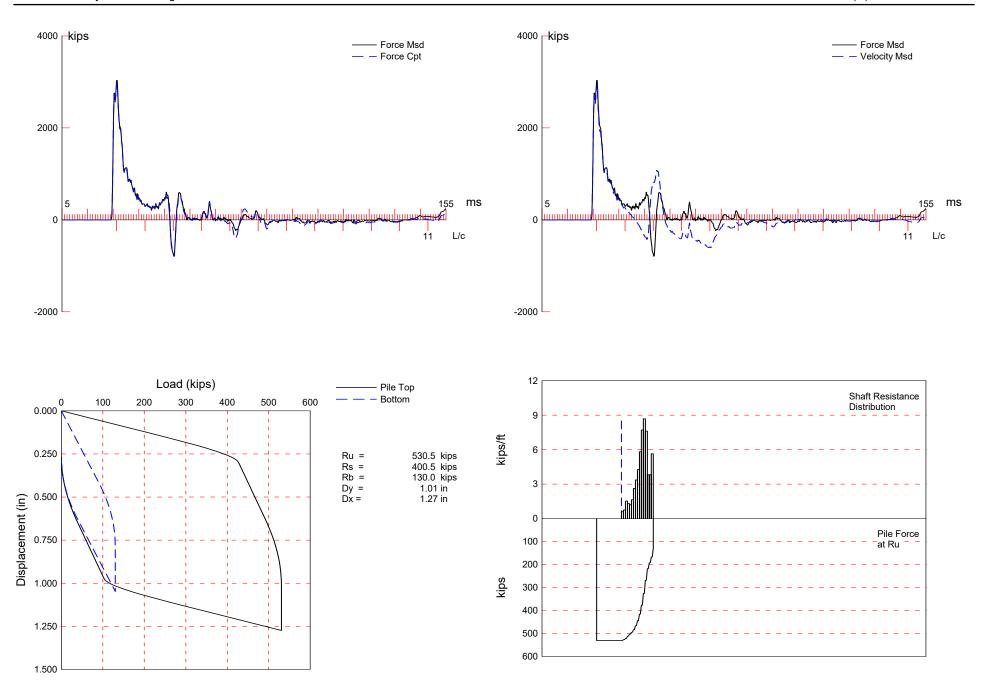
OP: RMDT

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	3287.1	2995.7	2704.3	2412.9	2121.5	1830.1	1538.7	1247.3	955.9	664.5		
RX	3287.1	2995.7	2704.3	2412.9	2121.5	1830.1	1538.7	1247.3	955.9	664.5		
RU	3313.2	3024.4	2735.6	2446.8	2158.0	1869.2	1580.4	1291.6	1002.8	714.0		

RAU = 423.9 (kips); RA2 = 665.4 (kips)

Current CAPWAP Ru = 1240.4 (kips); Corresponding J(RP) = 0.70; J(RX) = 0.70

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
11.26	26.23	2974.6	3226.5	3228.0	0.633	0.169	0.167	97.7	2931.0


PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	${\tt in^2}$	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
196.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		

Top Segment Length 3.32 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.194 ms, Wave Speed 17100.0 ft/s, 2L/c 22.9 ms

Page 3 Analysis: 06-Jun-2016

 KIWC, POA TPP; Pile: IP 4
 Test: 12-May-2016 15:43:

 PP48x1.0'', APE D180-42; Blow: 1102
 CAPWAP(R) 2006-3

 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

			CAPWA	AP SUMMARY	RESULTS				
Total CAP	WAP Capacit	y: 530	.5; along	Shaft	400.5; at	Toe 1	30.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Uni	Lt	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist	. R	esist.	Damping
No.	Gages	Grade			Ru	(Depth	1)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/f	Et	ksf	s/ft
				530.5					
1	89.5	3.5	4.0	526.5	4.0	1.1	L3	0.09	0.300
2	96.2	10.2	5.0	521.5	9.0	0.7	75	0.06	0.300
3	102.8	16.8	10.1	511.4	19.1	1.5	52	0.12	0.300
4	109.4	23.4	8.7	502.7	27.8	1.3	31	0.10	0.300
5	116.1	30.1	8.0	494.7	35.8	1.2	21	0.10	0.300
6	122.7	36.7	10.9	483.8	46.7	1.6	54	0.13	0.300
7	129.3	43.3	17.4	466.4	64.1	2.6	52	0.21	0.300
8	135.9	49.9	22.3	444.1	86.4	3.3	36	0.27	0.300
9	142.6	56.6	28.3	415.8	114.7	4.2	27	0.34	0.300
10	149.2	63.2	38.6	377.2	153.3	5.8	32	0.46	0.300
11	155.8	69.8	51.1	326.1	204.4	7.7	71	0.61	0.300
12	162.5	76.5	57.6	268.5	262.0	8.6	59	0.69	0.300
13	169.1	83.1	50.5	218.0	312.5	7.6	52	0.61	0.300
14	175.7	89.7	25.3	192.7	337.8	3.8	32	0.30	0.300
15	182.4	96.4	25.3	167.4	363.1	3.8	32	0.30	0.300
16	189.0	103.0	37.4	130.0	400.5	5.6	54	0.45	0.300
Avg. Sh	naft		25.0			3.8	39	0.31	0.300
To	oe .		130.0					10.35	0.350
Soil Mode	l Paramete	rs/Extensi	ons		;	Shaft	Toe		
Quake		(i:	n)			0.100	0.600		
Case Damp	ing Factor	•	•			0.448	0.170		
Reloading	Level	(%	of Ru)			100	100		
Unloading	Level	(%	of Ru)			45			
Soil Plug	Weight	(k	ips)				0.40		
max. Top	Comp. Stres	ss =	20.2 k	si (T	= 26.8 ms	, max= 1.	007 x	Top)	
max. Comp	. Stress	=	20.4 k	si (Z	= 96.2 ft	, T= 32.	4 ms)		
max. Tens	. Stress	=	-5.18 k	si (Z	= 6.6 ft	, T= 48.	7 ms)		
max. Energ	gy (EMX)	=	96.9 k	ip-ft; ma	x. Measure	d Top Dis	pl. (D	MX)= 0.80) in

Page 1 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 4
PP48x1.0'', APE D180-42; Blow: 1102
Robert Miner Dynamic Testing, Inc.

EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy ft kips kips kip-ft ft/s ksi ksi in 1 3.3 2988.0 -764.9 20.2 -5.18 96.94 11.1 0.819 2 2986.5 -765.3 20.2 -5.18 96.90 11.1 0.817 6.6 5 16.6 2985.8 -725.6 20.2 -4.91 96.73 11.1 0.813 8 26.5 2985.7 -721.1 20.2 -4.88 96.54 11.1 0.806 11 36.5 2985.3 -734.6 20.2 -4.97 96.29 11.1 0.796 14 46.4 2984.8 -733.1 20.2 -4.96 95.95 11.1 0.786 17 56.4 2984.3 -696.9 20.2 -4.72 95.56 11.1 0.775 20 66.3 2983.7 -653.0 20.2 -4.42 95.09 11.1 0.763 11.1 23 76.3 2986.5 -652.5 20.2 -4.42 94.49 0.751 26 86.2 3000.0 -582.9 20.3 -3.95 93.96 11.1 0.738 -542.0 29 96.2 3008.7 20.4 -3.67 93.17 10.9 0.725 32 106.1 2970.9 -521.5 20.1 -3.53 90.47 10.8 0.713 116.1 -409.1 20.1 -2.77 88.92 10.7 0.702 35 2969.6 38 126.0 2950.3 -396.6 20.0 -2.69 85.72 10.5 0.696 41 135.9 2962.6 -346.0 20.1 -2.34 82.83 10.1 0.689 44 145.9 2887.6 -304.2 19.6 -2.06 74.64 9.7 0.682 47 155.8 2878.4 -241.6 19.5 -1.64 68.46 9.1 0.676 165.8 -416.9 9.2 50 2582.8 17.5 -2.82 51.03 0.670 53 175.7 2199.5 -143.6 14.9 -0.97 42.45 11.6 0.665 -0.16 56 185.7 1471.5 -23.5 10.0 33.08 13.2 0.664 57 189.0 -3.5 5.9 25.80 13.6 0.663 871.2 -0.02 Absolute 96.2 20.4 (T =32.4 ms) 48.7 ms) 6.6 -5.18 (T =

Test: 12-May-2016 15:43:

CAPWAP(R) 2006-3

OP: RMDT

Page 2 Analysis: 12-Jul-2016

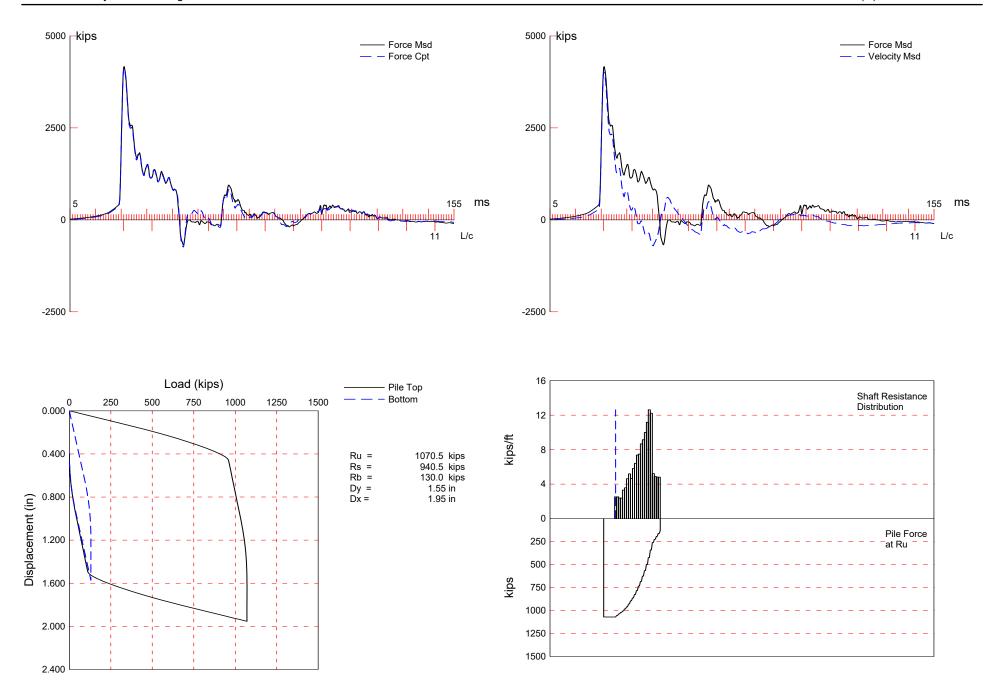
KIWC, POA TPP; Pile: IP 4 Test: 12-May-2016 15:43: PP48x1.0'', APE D180-42; Blow: 1102 CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	2257.9	1926.8	1595.6	1264.5	933.4	602.3	271.1	0.0	0.0	0.0		
RX	2257.9	1926.8	1595.6	1264.5	933.4	671.2	573.8	518.9	491.0	489.1		
RU	2265.7	1935.3	1605.0	1274.6	944.3	613.9	283.6	0.0	0.0	0.0		

RAU = 463.0 (kips); RA2 = 511.3 (kips)

Current CAPWAP Ru = 530.5 (kips); Corresponding J(RP) = 0.52; J(RX) = 0.68

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
2191.7	97.3	0.267	0.267	0.799	3086.0	2808.9	2760.2	26.57	11.20


PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
189.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		

Top Segment Length 3.32 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.194 ms, Wave Speed 17100.0 ft/s, 2L/c 22.1 ms

Page 3 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 4_2 PP48x1.0'', APE D180-42; Blow: 2879

Test: 13-May-2016 08:35: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

	-		CAPWA	P SUMMAR	RESULTS				
Total CA	PWAP Capacity	y: 1070.	5; along	Shaft	940.5; at	Toe	130.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	ı.	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist.	Damping
No.	Gages	Grade			Ru	. (D	epth)	(Area)	Factor
-	ft	ft	kips	kips	kips	ki	ps/ft	ksf	s/ft
				1070.5					
1	43.1	3.0	16.8	1053.7	16.8		5.53	0.44	0.300
2	49.7	9.7	16.8	1036.9	33.6		2.53	0.20	0.300
3	56.4	16.3	15.8	1021.1	49.4		2.38	0.19	0.300
4	63.0	22.9	15.8	1005.3	65.2		2.38	0.19	0.300
5	69.6	29.6	21.9	983.4	87.1		3.30	0.26	0.300
6	76.3	36.2	23.7	959.7	110.8		3.57	0.28	0.300
7	82.9	42.8	30.7	929.0	141.5		4.63	0.37	0.300
8	89.5	49.5	34.4	894.6	175.9		5.19	0.41	0.300
9	96.2	56.1	30.8	863.8	206.7		4.64	0.37	0.300
10	102.8	62.7	38.6	825.2	245.3		5.82	0.46	0.300
11	109.4	69.4	42.5	782.7	287.8		6.41	0.51	0.300
12	116.1	76.0	48.9	733.8	336.7		7.37	0.59	0.300
13	122.7	82.6	49.6	684.2	386.3		7.48	0.60	0.300
14	129.3	89.2	57.5	626.7	443.8		8.67	0.69	0.300
15	135.9	95.9	60.7	566.0	504.5		9.15	0.73	0.300
16	142.6	102.5	66.3	499.7	570.8		10.00	0.80	0.300
17	149.2	109.1	74.1	425.6	644.9		11.17	0.89	0.300
18	155.8	115.8	83.7	341.9	728.6		12.62	1.00	0.300
19	162.5	122.4	81.1	260.8	809.7		12.23	0.97	0.300
20	169.1	129.0	34.6	226.2	844.3		5.22	0.42	0.300
21	175.7	135.7	32.4	193.8	876.7		4.89	0.39	0.300
22	182.4	142.3	31.9	161.9	908.6		4.81	0.38	0.300
23	189.0	148.9	31.9	130.0	940.5		4.81	0.38	0.300
Avg. S	Shaft		40.9				6.31	0.50	0.300
T	oe.		130.0					10.35	0.100
Soil Mod	el Parameters	s/Extensio	ons			Shaft	То	e	
Quake		(in	١)			0.110	0.900)	
Case Dam	ping Factor					1.052	0.048		
Unloadin	g Quake	(%	of loadir	ng quake)		30	50	ס	
Reloadin		(%	of Ru)			100	100)	
Unloadin	-		of Ru)			0			
Soil Plu	_		ps)			,	1.60)	
	port Dashpot	,,,,,	/			0.370	0.000		
	port Weight	(ki	ps)			8.70	0.00		
JOLL Dup	Fore wording	(7.1	,			5.,5	0.00	-	

 KIWC, POA TPP; Pile: IP 4_2
 Test: 13-May-2016 08:35:

 PP48x1.0'', APE D180-42; Blow: 2879
 CAPWAP(R) 2006-3

 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

max. Top Comp. Stress = 28.0 ksi (T= 26.6 ms, max= 1.027 x Top)

max. Comp. Stress = 28.7 ksi (Z= 43.1 ft, T= 28.9 ms)

max. Tens. Stress = -4.81 ksi (Z= 6.6 ft, T= 49.1 ms)

max. Energy (EMX) = 223.9 kip-ft; max. Measured Top Displ. (DMX)= 1.07 in

EXTREMA TABLE

Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4128.9	-698.8	28.0	-4.73	223.89	15.1	1.094
2	6.6	4131.6	-710.0	28.0	-4.81	223.38	15.1	1.084
5	16.6	4140.8	-525.4	28.0	-3.56	221.66	15.1	1.052
8	26.5	4152.1	-389.9	28.1	-2.64	219.67	15.0	1.017
11	36.5	4195.5	-414.9	28.4	-2.81	218.62	14.8	1.016
14	46.4	4172.7	-214.8	28.3	-1.45	213.62	14.6	1.019
17	56.4	4149.1	-257.8	28.1	-1.75	208.72	14.3	1.016
20	66.3	4066.2	-157.2	27.5	-1.06	199.86	14.0	1.012
23	76.3	4053.3	-226.7	27.4	-1.53	193.98	13.7	1.009
26	86.2	3900.6	-279.8	26.4	-1.89	180.30	13.2	1.004
29	96.2	3851.2	-233.1	26.1	-1.58	172.06	12.8	0.999
32	106.1	3669.7	-213.4	24.8	-1.44	156.37	12.3	0.990
35	116.1	3624.1	-194.3	24.5	-1.32	147.15	11.7	0.983
38	126.0	3375.5	-244.5	22.9	-1.66	127.03	11.1	0.976
41	135.9	3307.7	-255.0	22.4	-1.73	115.68	10.5	0.969
44	145.9	3006.7	-156.1	20.4	-1.06	91.40	9.9	0.965
47	155.8	2896.6	-347.9	19.6	-2.36	77.50	9.2	0.958
50	165.8	2422.3	-399.5	16.4	-2.70	51.65	11.0	0.956
53	175.7	2319.5	-226.9	15.7	-1.54	38.78	11.9	0.950
56	185.7	1283.4	-105.5	8.7	-0.71	22.70	14.4	0.947
57	189.0	782.6	0.0	5.3	0.00	14.00	14.8	0.946
olute	43.1			28.7			(T =	28.9 ms)
	6.6				-4.81		(T =	49.1 ms)

Page 2 Analysis: 16-May-2016

 KIWC, POA TPP; Pile: IP 4_2
 Test: 13-May-2016 08:35:

 PP48x1.0'', APE D180-42; Blow: 2879
 CAPWAP(R) 2006-3

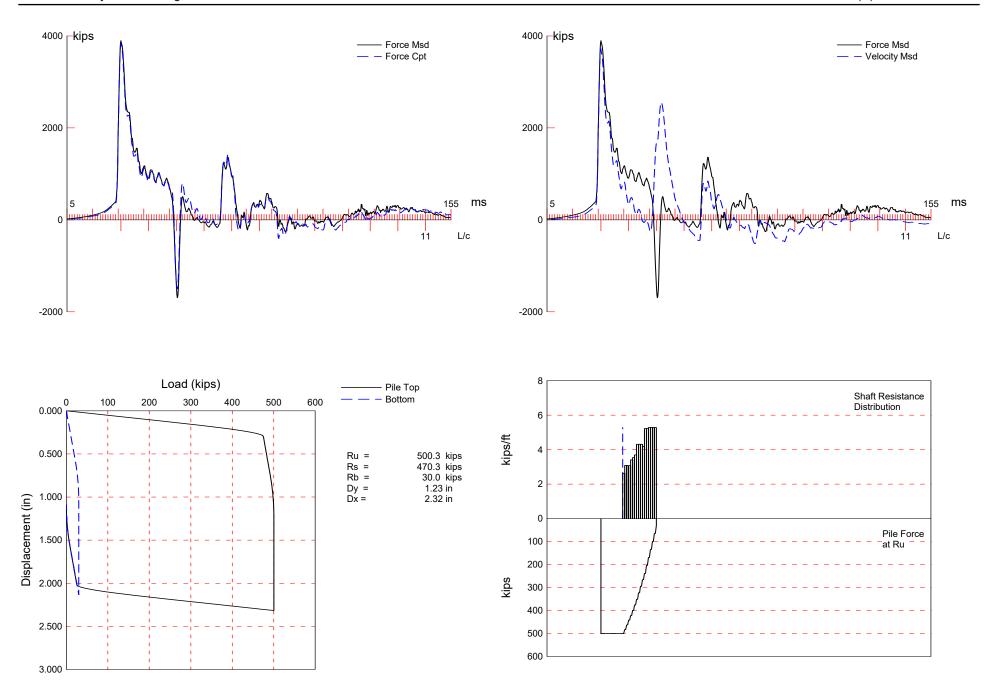
 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	3918.5	3486.0	3053.4	2620.8	2188.3	1755.7	1323.1	890.6	458.0	25.4
RX	3918.5	3486.0	3053.4	2620.8	2188.3	1755.7	1323.1	890.6	458.0	440.0
RU	4230.4	3829.1	3427.7	3026.3	2624.9	2223.5	1822.2	1420.8	1019.4	618.0

RAU = 416.2 (kips); RA2 = 808.5 (kips)

Current CAPWAP Ru = 1070.5 (kips); Corresponding J(RP)=0.66; J(RX)=0.66

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3665.0	224.2	0.400	0.394	1.068	4210.0	4178.6	4065.6	26.18	15.16


PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
189.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		

Top Segment Length 3.32 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.194 ms, Wave Speed 17100.0 ft/s, 2L/c 22.1 ms

Page 3 Analysis: 16-May-2016

KIWC, POA TPP; Pile: IP 5 Test: 18-May-2016 12:15: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

_			CAPWA	P SUMMARY	RESULTS				
Total CAPV	WAP Capacity	7: 500	.3; along	Shaft	470.3; at	Toe	30.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Res	sist.	Resist.	Damping
No.	Gages	Grade			Ru	(De	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	kij	ps/ft	ksf	s/ft
				500.3					
1	79.3	5.3	17.3	483.0	17.3		3.27	0.26	0.290
2	85.9	11.9	20.4	462.6	37.7		3.09	0.25	0.290
3	92.5	18.5	20.3	442.3	58.0		3.07	0.24	0.290
4	99.1	25.1	20.3	422.0	78.3		3.07	0.24	0.290
5	105.7	31.7	22.5	399.5	100.8		3.41	0.27	0.290
6	112.3	38.3	23.4	376.1	124.2		3.54	0.28	0.290
7	118.9	44.9	24.4	351.7	148.6		3.69	0.29	0.290
8	125.5	51.5	28.5	323.2	177.1		4.31	0.34	0.290
9	132.1	58.1	28.5	294.7	205.6		4.31	0.34	0.290
10	138.8	64.8	28.5	266.2	234.1		4.31	0.34	0.290
11	145.4	71.4	27.6	238.6	261.7		4.18	0.33	0.290
12	152.0	78.0	34.5	204.1	296.2		5.22	0.42	0.290
13	158.6	84.6	34.5	169.6	330.7		5.22	0.42	0.290
14	165.2	91.2	34.9	134.7	365.6		5.28	0.42	0.290
15	171.8	97.8	34.9	99.8	400.5		5.28	0.42	0.290
16	178.4	104.4	34.9	64.9	435.4		5.28	0.42	0.290
17	185.0	111.0	34.9	30.0	470.3		5.28	0.42	0.290
Avg. Sh	aft		27.7				4.24	0.34	0.290
То	е		30.0					2.39	0.100
Soil Model	l Parameters	s/Extensi	ons		i	Shaft	Toe	e	
Quake		(i :	n)			0.100	0.80	0	
	ing Factor	•	•			0.509	0.01		
Damping Ty	_						Smitl		
Unloading		(%	of loadir	ng quake)		30	9(0	
Reloading	Level		of Ru)			100	100	0	
Unloading	Level		of Ru)			30			
max. Top (Comp. Stress	s =	25.9 ks	si (T	'= 26.5 ms	, max=	1.029	x Top)	
max. Comp.	. Stress	=	26.7 ks	si (Z	= 79.3 ft	, T=	30.9 ms)	
max. Tens.	. Stress	=	-9.69 ks	si (Z	= 3.3 ft	, T=	48.3 ms)	
max. Energ	gy (EMX)	=	209.6 ki	.p-ft; ma	x. Measure	d Top	Displ.	(DMX) = 1.7	8 in

Page 1 Analysis: 12-Jul-2016 KIWC, POA TPP; Pile: IP 5
PP48x1.0'', APE D180-42; Blow: 260
Robert Miner Dynamic Testing, Inc.

OF. KIDI				REMA TABLE				berc miner
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
in	ft/s	kip-ft	ksi	ksi	kips	kips	ft	
1.737	14.1	209.60	-9.69	25.9	-1430.8	3828.0	3.3	1
1.737	14.1	209.55	-8.87	25.9	-1309.7	3829.0	6.6	2
1.732	14.1	209.39	-8.90	25.9	-1314.4	3832.6	16.5	5
1.724	14.1	209.23	-8.51	26.0	-1257.2	3836.3	26.4	8
1.716	14.1	209.07	-7.23	26.0	-1067.8	3841.3	36.3	11
1.707	14.0	208.90	-7.80	26.1	-1152.3	3848.4	46.3	14
1.698	14.0	208.74	-6.54	26.1	-966.5	3856.5	56.2	17
1.690	13.9	208.58	-6.73	26.2	-993.7	3868.6	66.1	20
1.682	13.7	208.42	-6.47	26.5	-955.4	3919.1	76.0	23
1.673	13.4	201.29	-5.33	26.4	-787.0	3900.2	85.9	26
1.670	13.2	185.17	-7.10	25.5	-1048.4	3770.4	95.8	29
1.665	12.9	177.22	-5.84	25.4	-862.7	3745.6	105.7	32
1.662	12.6	159.50	-6.67	24.4	-984.7	3604.3	115.6	35
1.657	12.3	150.03	-6.31	24.2	-932.3	3570.1	125.5	38
1.665	12.0	127.70	-5.15	22.9	-760.7	3383.4	135.4	41
1.669	11.9	116.21	-5.72	22.5	-844.3	3324.3	145.4	44
1.670	14.2	90.30	-4.79	21.2	-707.3	3129.2	155.3	47
1.669	14.8	74.98	-3.13	20.6	-462.0	3049.3	165.2	50
1.670	18.0	42.12	-3.19	16.0	-471.2	2369.4	175.1	53
1.670	18.9	41.94	-1.45	12.4	-214.6	1824.2	178.4	54
1.670	19.4	24.01	-0.63	6.4	-93.7	951.5	181.7	55
1.670	19.6	5.72	-0.02	1.8	-2.9	266.4	185.0	56
30.9 ms)	(T =			26.7			79.3	solute
48.3 ms)	(T =		-9.69				3.3	

Test: 18-May-2016 12:15:

CAPWAP(R) 2006-3

OP: RMDT

Page 2 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 5

PP48x1.0'', APE D180-42; Blow: 260

Robert Miner Dynamic Testing, Inc.

Test: 18-May-2016 12:15:

CAPWAP(R) 2006-3

OP: RMDT

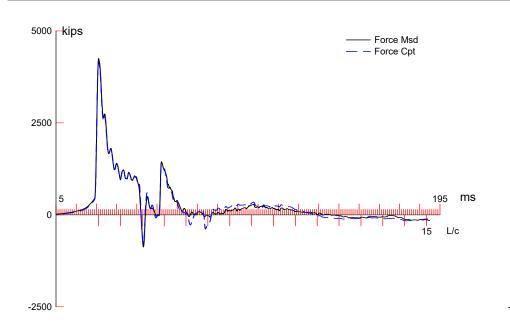
	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	2302.6	1764.2	1225.8	687.4	149.0	0.0	0.0	0.0	0.0	0.0	
RX	2302.6	1764.2	1225.8	856.2	723.2	621.8	587.2	570.4	568.5	566.6	
RII	2360.0	1827.4	1294.7	762.0	229.4	0.0	0.0	0.0	0.0	0.0	

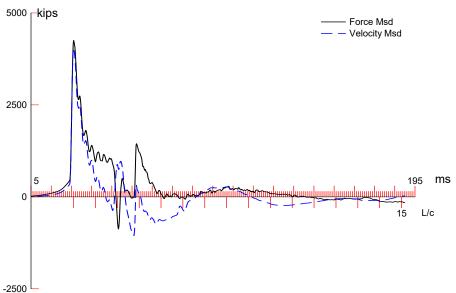
RAU = 450.1 (kips); RA2 = 659.9 (kips)

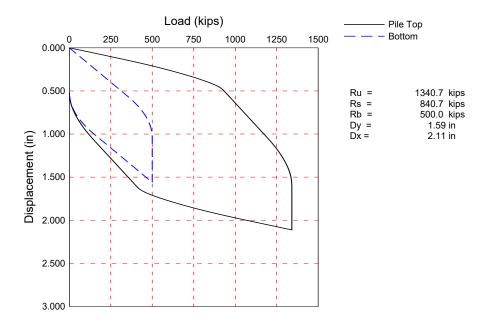
Current CAPWAP Ru = 500.3 (kips); Corresponding J(RP)=0.33;

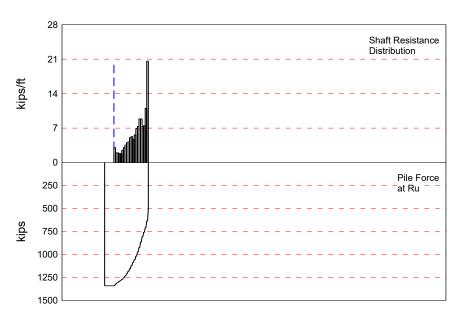
RMX requires higher damping; see PDA-W

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
1669.6	199.7	1.091	1.062	1.780	3921.2	3912.3	3774.3	26.27	14.08


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 12-Jul-2016

Test: 18-May-2016 12:31: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

			LTS	RY RE	AP SUMMA	CAPW			
	kips	se 500.0	7; at :	84	Shaft	along	1340.7	P Capacity:	otal CAPW
Smit	Unit	Unit	Sum	е	Ford	Ru	Depth	Dist.	Soil
Dampir	Resist.	Resist.	of	е	in Pil		Below	Below	Sgmnt
Facto	(Area)	(Depth)	Ru				Grade	Gages	No.
s/i	ksf	kips/ft	kips	s	kip	kips	ft	ft	
				7	1340.				
0.19	0.32	4.01	20.2	5	1320.	20.2	5.0	46.3	1
0.19	0.16	1.98	33.3		1307.	13.1	11.6	52.9	2
0.19	0.16	1.98	46.4	3	1294.	13.1	18.2	59.5	3
0.19	0.15	1.83	58.5	2	1282.	12.1	24.9	66.1	4
0.19	0.15	1.83	70.6	1	1270.	12.1	31.5	72.7	5
0.19	0.20	2.45	86.8	9	1253.	16.2	38.1	79.3	6
0.19	0.24	3.06	107.0	7	1233.	20.2	44.7	85.9	7
0.19	0.28	3.57	130.6	1	1210.	23.6	51.3	92.5	8
0.19	0.32	4.04	157.3	4	1183.	26.7	57.9	99.1	9
0.19	0.33	4.21	185.1	6	1155.	27.8	64.5	105.7	10
0.19	0.40	5.07	218.6	1	1122.	33.5	71.1	112.3	11
0.19	0.42	5.28	253.5	2	1087.	34.9	77.7	118.9	12
0.19	0.38	4.74	284.8	9	1055.	31.3	84.3	125.5	13
0.19	0.45	5.65	322.1	6	1018.	37.3	90.9	132.1	14
0.19	0.55	6.93	367.9	8	972.	45.8	97.5	138.8	15
0.19	0.58	7.34	416.4	3	924.	48.5	104.1	145.4	16
0.19	0.71	8.87	475.0	7	865.	58.6	110.7	152.0	17
0.19	0.71	8.87	533.6		807.	58.6	117.4		18
0.19	0.59	7.36	582.2	5	758.	48.6	124.0	165.2	19
0.19	0.60	7.51	631.8		708.	49.6	130.6		20
0.19	0.88	11.02	704.6		636.	72.8	137.2		21
0.19	1.64	20.60	840.7		500.	L36.1			22
0.19	0.47	5.85				38.2		t	Avg. Sha
0.04	39.79					500.0			Toe
	9	aft Toe	s			5	'Extension	Parameters	oil Model
)	110 0.800	0				(in)		uake
	4	596 0.084	0					g Factor	ase Dampin
	ס	100 100				Ru)	(% o	evel	eloading 1
		40				Ru)	(% o	evel	nloading 1
	x Top)	max= 1.019	.5 ms,	(T=	si	28.3 k	=	mp. Stress	ax. Top Co
)	T= 29.0 ms	.3 ft,	(z=	si	28.8 k	=	Stress	ax. Comp.
)	T= 48.5 ms	.3 ft,	(Z=	si	4.70 k	= -	Stress	ax. Tens.
in	(DMX)= 1.3	Top Displ.	asured	nax.	ip-ft;	43.7 k	= :	(EMX)	ax. Energy

Page 1 Analysis: 18-May-2016 KIWC, POA TPP; Pile: IP 5 PP48x1.0'', APE D180-42; Blow: 676 Robert Miner Dynamic Testing, Inc.

EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy kip-ft ft kips kips ksi ksi ft/s in 1 3.3 4181.2 28.3 243.71 15.3 1.322 -694.4 -4.70 2 4183.0 -553.7 28.3 243.30 15.3 1.319 6.6 -3.75 5 16.5 4189.6 -487.7 28.4 -3.30 241.93 15.3 1.302 8 26.4 4197.9 -465.8 28.4 -3.15 240.38 15.3 1.283 11 36.3 4216.3 -516.7 28.5 -3.50 239.27 15.2 1.263 14 46.3 4259.2 -544.5 28.8 -3.69 239.08 15.0 1.249 17 56.2 4168.8 -509.3 28.2 -3.45 229.60 14.8 1.235 20 66.1 4156.4 -550.5 28.1 -3.73 225.82 14.7 1.219 23 76.0 4110.6 -516.7 27.8 -3.50 219.17 14.5 1.201 85.9 4107.7 -435.4 27.8 -2.95 214.75 14.2 1.184 26 29 95.8 4013.6 -474.4 27.2 -3.21 204.04 14.0 1.164 32 105.7 3991.2 -423.1 27.0 -2.86 197.58 13.7 1.146 115.6 -276.1 26.1 183.53 13.3 1.126 35 3856.0 -1.87 38 125.5 3818.7 -276.8 25.9 -1.87 175.25 13.0 1.104 41 135.4 3684.0 -343.1 24.9 -2.32 160.13 12.6 1.085 44 145.4 3638.0 -263.0 24.6 -1.78 149.69 12.2 1.063 47 155.3 3398.5 -80.4 23.0 -0.54 126.68 12.2 1.045 22.4 50 165.2 3304.0 0.0 0.00 113.54 12.5 1.026 175.1 2706.3 0.0 18.3 0.00 91.20 16.0 1.006 53 54 178.4 2232.1 0.0 15.1 0.00 91.06 16.8 1.001 181.7 1432.7 0.0 9.7 0.00 74.16 17.2 0.996 55 56 185.0 1136.6 0.0 7.7 0.00 43.26 17.3 0.991 Absolute 46.3 28.8 (T =29.0 ms) 3.3 -4.70 (T =48.5 ms)

Test: 18-May-2016 12:31:

CAPWAP(R) 2006-3

OP: RMDT

Page 2 Analysis: 18-May-2016

 KIWC, POA TPP; Pile: IP 5
 Test: 18-May-2016 12:31:

 PP48x1.0'', APE D180-42; Blow: 676
 CAPWAP(R) 2006-3

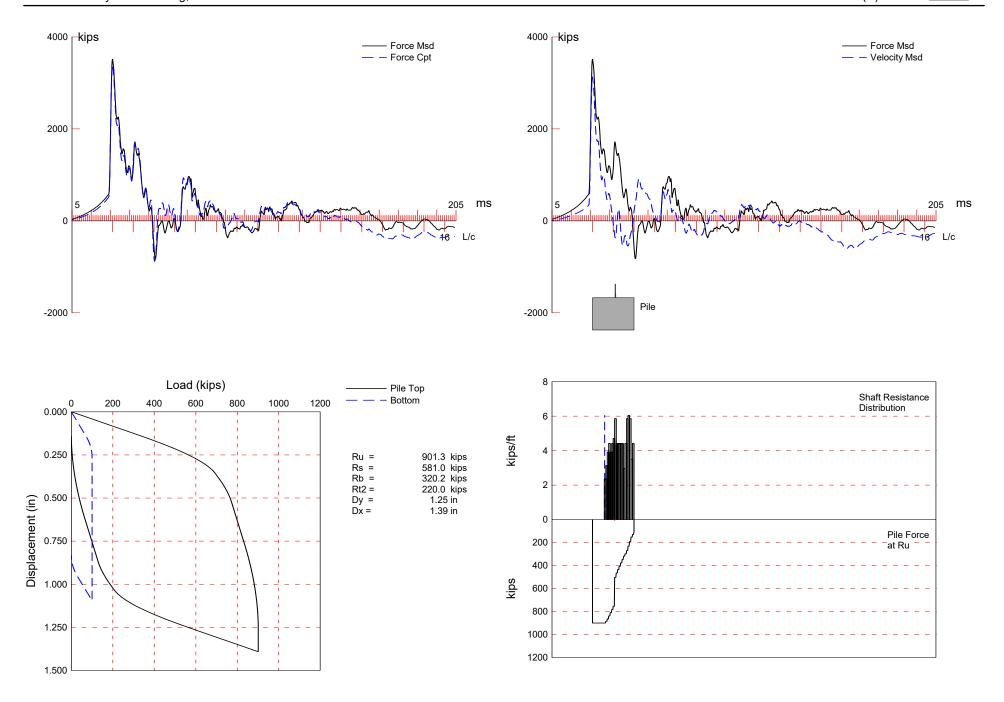
 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	3412.4	2918.4	2424.4	1930.4	1436.4	942.4	448.4	0.0	0.0	0.0	
RX	3412.4	2918.4	2424.4	1930.4	1564.7	1434.7	1382.8	1340.8	1298.9	1257.0	
RU	3430.7	2938.6	2446.4	1954.2	1462.0	969.8	477.7	0.0	0.0	0.0	

RAU = 1139.5 (kips); RA2 = 1647.3 (kips)

Current CAPWAP Ru = 1340.7 (kips); Corresponding J(RP) = 0.42; J(RX) = 0.70

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3194.7	244.2	0.522	0.522	1.313	4282.4	4282.4	4070.2	26.27	15.18


PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	\mathtt{in}^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		

Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 18-May-2016

CAPWAP SUMMARY RESULTS Total CAPWAP Capacity: 901.3; along Shaft 320.2 kips 581.0; at Toe Unit Unit Soil Dist. Depth Ru Force Sum Smith Quake Samnt Below Below in Pile of Resist. Resist. Damping No. Gages Grade Ru (Depth) (Area) Factor ft ft kips/ft s/ft kips kips kips ksf in 901.3 1 59.5 3.4 15.6 885.7 15.6 4.55 0.36 0.120 0.100 2 66.1 10.0 20.7 864.9 36.3 3.14 0.25 0.120 0.100 3 16.6 839.0 62.2 0.31 72.7 25.9 3.92 0.120 0.100 4 79.3 23.3 29.2 809.8 91.5 4.42 0.35 0.120 0.100 29.9 25.9 5 85.9 783.9 117.4 3.92 0.31 0.120 0.100 6 92.5 36.5 29.2 754.7 146.6 4.42 0.35 0.120 0.100 7 99.1 43.1 31.1 723.5 177.7 4.71 0.37 0.120 0.100 220.2 0.799 0.800 2nd Toe 8 105.7 49.7 38.7 464.6 436.6 5.86 0.47 0.120 0.100 4.42 0.35 9 112.3 56.3 29.2 435.4 465.8 0.120 0.100 10 118.9 62.9 29.2 406.2 495.1 4.42 0.35 0.120 0.100 11 125.5 69.5 29.2 377.0 524.3 4.42 0.35 0.120 0.100 4.42 0.35 12 132.1 76.1 29.2 347.8 553.5 0.120 0.100 138.8 82.7 29.1 318.6 582.6 4.41 0.35 0.120 0.100 13 14 145.4 89.3 19.6 299.0 602.2 2.97 0.24 0.120 0.100 15 152.0 95.9 29.2 269.8 631.5 4.42 0.35 0.120 0.100 158.6 102.5 38.7 231.1 670.2 5.86 0.47 0.120 0.100 16 17 165.2 109.1 39.9 191.1 710.1 6.04 0.48 0.120 0.100 171.8 115.8 38.7 748.9 18 152.4 5.86 0.47 0.120 0.100 19 178.4 122.4 23.1 129.3 772.0 3.50 0.28 0.120 0.100 20 185.0 129.0 29.2 100.1 801.2 4.42 0.35 0.120 0.100 Avg. Shaft 29.1 4.51 0.36 0.120 0.100 100.1 7.96 0.150 0.200 Toe Soil Model Parameters/Extensions Shaft Toe Case Damping Factor 0.260 0.056 Unloading Quake (% of loading quake) 30 30 Reloading Level (% of Ru) 100 100 0.200 0.000 Soil Support Dashpot Soil Support Weight (kips) 8.67 0.00 (T= 26.4 ms, max= 1.189 x Top)max. Top Comp. Stress 23.0 ksi (Z= 99.1 ft, T= 32.1 ms)27.4 ksi max. Comp. Stress (Z= 100.8 ft, T= 42.3 ms)max. Tens. Stress -8.60 ksi = = 151.6 kip-ft; max. Measured Top Displ. (DMX)= 1.23 in max. Energy (EMX)

Test: 01-Jun-2016 10:37:

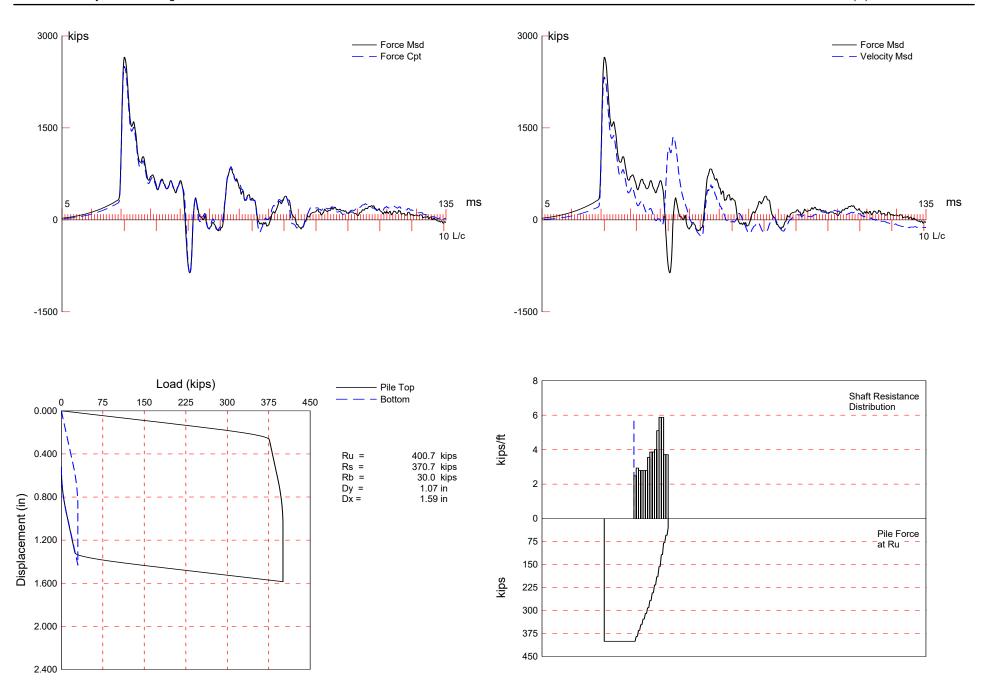
CAPWAP(R) 2006-3

OP: RMDT

Page 1 Analysis: 01-Jun-2016

KIWC, POA TPP; Pile: IP 6 (Loc. 4) PP48x1.0'', APE D180-42; Blow: 2074

Test: 01-Jun-2016 10:37: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT EXTREMA TABLE


			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	1.7	3399.4	-862.4	23.0	-5.84	151.62	12.1	1.077
2	3.3	3401.4	-838.6	23.0	-5.68	151.59	12.1	1.076
8	13.2	3413.8	-656.7	23.1	-4.45	151.44	12.0	1.070
14	23.1	3426.9	-793.0	23.2	-5.37	151.28	12.0	1.060
20	33.0	3440.6	-699.9	23.3	-4.74	151.11	11.9	1.049
26	42.9	3457.4	-550.0	23.4	-3.72	150.93	11.9	1.032
32	52.9	3482.4	-624.2	23.6	-4.23	150.74	11.8	1.011
38	62.8	3483.6	-440.9	23.6	-2.99	148.15	11.6	0.994
44	72.7	3480.0	-430.1	23.6	-2.91	144.93	11.4	0.977
50	82.6	3399.1	-389.3	23.0	-2.64	137.31	11.2	0.963
56	92.5	3944.8	-360.2	26.7	-2.44	133.84	9.5	0.951
62	102.4	2454.9	-1229.4	11.7	-5.84	70.24	8.5	0.942
68	112.3	2407.8	-929.7	16.3	-6.30	66.47	8.4	0.944
74	122.2	2323.8	-872.3	15.7	-5.91	61.23	8.2	0.943
80	132.1	2294.4	-693.8	15.5	-4.70	56.74	8.1	0.940
86	142.1	2201.9	-714.6	14.9	-4.84	50.87	8.1	0.940
92	152.0	2191.3	-587.8	14.8	-3.98	45.16	9.2	0.939
98	161.9	2091.0	-323.7	14.2	-2.19	35.34	10.0	0.939
104	171.8	1970.4	-280.5	13.3	-1.90	27.62	11.3	0.935
110	181.7	770.1	-35.4	5.2	-0.24	19.28	13.3	0.933
111	183.3	526.6	-32.7	3.6	-0.22	19.27	13.4	0.933
112	185.0	377.7	-30.4	2.6	-0.21	15.27	13.5	0.932
Absolute	99.1			27.4			(T =	32.1 ms)
	100.8				-8.60		(T =	42.3 ms)

Page 2 Analysis: 01-Jun-2016 KIWC, POA TPP; Pile: IP 6 (Loc. 4)
PP48x1.0'', APE D180-42; Blow: 2074
Robert Miner Dynamic Testing, Inc.

	_									
				CASE	METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	2933.4	2559.6	2185.9 1	812.1 1	438.3	1064.6	690.8	317.0	0.0	0.0
RX	2933.4	2559.6	2185.9 1	812.1 1	438.3	1064.6	690.8	507.8	507.8	507.8
RU	3373.1	3043.3	2713.6 2	383.8 2	054.0	1724.2	1394.4	1064.6	734.8	405.0
RAU = Current	136.5 (k:	ips); RA2 = 901.3 (3.4 (kips	•	RP)= 0.	54; J(RX)	= 0.54		
VM	X TVI	P VT1*Z	FT1	. FM	x	DMX	DFN	SET	EMX	QUS
ft/	s ms	s kips	kips	kip	s	in	in	in	kip-ft	kips
11.7	4 26.18	8 3148.7	3522.4	3522.	4 1.	232	0.143	0.143	143.0	2497.1

			PILE PROF	ILE AND PI	LE MODEL			
	Depth	ı	Area	E-Modu	ılus	Spec. Weight		Perim.
	ft	=	in²		ksi	lb/ft³	ft	
	0.00)	147.65	3104	13.9	492.000	12.566	
	102.00)	147.65	3104	13.9	492.000		12.566
	102.00)	400.00	3104	13.9	492.000		12.566
	102.50)	400.00	3104	13.9	492.000		12.566
	102.50)	147.65	3104	13.9	492.000		12.566
	185.00)	147.65	3104	31043.9			12.566
Toe Area			12.566	ft²				
Segmnt	Dist.	Impedance	Imped.		Tension	Comp	ression	Perim.
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	
	ft	kips/ft/s	%	in		in		ft
1	1.65	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
62	102.41	382.06	0.00	0.000	0.000	-0.000	0.000	12.566
63	104.06	292.89	0.00	0.000	0.000	-0.000	0.000	12.566
64	105.71	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
112	185.00	268.12	0.00	0.000	0.000	-0.000	0.000	12.566

Pile Damping 1.0 %, Time Incr 0.097 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

max. Comp. Stress

max. Tens. Stress

max. Energy (EMX)

=

=

17.5 ksi

-5.69 ksi

CAPWAP SUMMARY RESULTS Total CAPWAP Capacity: 400.7; along Shaft 370.7; at Toe 30.0 kips Soil Dist. Ru Unit Unit Smith Depth Force Sum Samnt Below Below in Pile of Resist. Resist. Damping No. Gages Grade Ru (Depth) (Area) Factor ft ft kips kips/ft ksf s/ft kips kips 400.7 1 92.5 6.5 16.4 384.3 16.4 2.52 0.20 0.300 2 99.1 13.1 19.4 364.9 35.8 2.94 0.23 0.300 3 105.7 19.7 18.4 54.2 0.22 346.5 2.78 0.300 18.4 4 112.3 26.3 328.1 72.6 2.78 0.22 0.300 5 118.9 32.9 18.4 309.7 91.0 2.78 0.22 0.300 6 125.5 39.5 18.4 291.3 109.4 2.78 0.22 0.300 7 132.1 46.1 23.5 267.8 132.9 3.56 0.28 0.300 8 138.8 52.8 25.5 242.3 158.4 3.86 0.31 0.300 9 145.4 59.4 25.5 216.8 183.9 3.86 0.31 0.300 10 152.0 66.0 26.5 210.4 0.32 190.3 4.01 0.300 11 158.6 72.6 33.7 156.6 244.1 5.10 0.41 0.300 12 165.2 79.2 38.8 117.8 282.9 5.87 0.47 0.300 13 171.8 85.8 38.8 79.0 321.7 5.87 0.47 0.300 178.4 14 92.4 24.5 54.5 346.2 3.71 0.30 0.300 15 185.0 99.0 24.5 30.0 370.7 3.71 0.30 0.300 Avg. Shaft 24.7 3.74 0.30 0.300 Toe 30.0 2.39 0.300 Soil Model Parameters/Extensions Shaft Toe Quake 0.100 0.700 (in) Case Damping Factor 0.415 0.034 Unloading Quake (% of loading quake) 100 30 Reloading Level (% of Ru) 100 100 (% of Ru) Unloading Level 16 Soil Plug Weight (kips) 0.30 max. Top Comp. Stress 17.0 ksi (T= 26.5 ms, max= 1.034 x Top)

Test: 25-May-2016 13:54:

CAPWAP(R) 2006-3

OP: RMDT

Page 1 Analysis: 12-Jul-2016

(Z= 92.5 ft, T= 31.9 ms)

(Z= 13.2 ft, T= 47.5 ms)

90.2 kip-ft; max. Measured Top Displ. (DMX)= 1.11 in

KIWC, POA TPP; Pile: IP 7
PP48x1.0'', APE D180-42; Blow: 648
Robert Miner Dynamic Testing. Inc.

13.2

Robert Miner Dynamic Testing, Inc. OP: RMDT EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy ft kips kips kip-ft ft/s ksi ksi in 1 3.3 2505.5 -831.5 17.0 90.20 9.2 1.128 -5.63 2 2505.9 -815.0 17.0 -5.52 90.17 9.2 1.128 6.6 5 16.5 2507.5 -838.1 17.0 -5.67 90.09 9.2 1.127 8 26.4 2509.8 -706.1 17.0 -4.78 90.00 9.2 1.124 11 36.3 2512.8 -784.3 17.0 -5.31 89.91 9.2 1.117 14 46.3 2516.1 -735.5 17.0 -4.98 89.81 9.1 1.109 17 56.2 2519.9 -629.6 17.1 -4.26 89.71 9.1 1.101 20 66.1 2526.9 -704.3 17.1 -4.77 89.61 9.1 1.091 9.0 23 76.0 2535.6 -593.6 17.2 -4.02 89.51 1.082 85.9 2562.3 -615.5 17.3 -4.17 89.40 8.9 1.071 26 29 95.8 2546.0 -649.4 17.2 -4.40 85.83 8.8 1.060 32 105.7 2517.9 -485.9 17.0 -3.29 81.70 8.6 1.062 115.6 2427.0 -637.2 74.11 8.5 1.064 35 16.4 -4.31 -558.0 38 125.5 2406.7 16.3 -3.78 70.30 8.3 1.065 41 135.4 2310.7 -458.1 15.6 -3.10 61.66 8.1 1.065 56.32 44 145.4 2272.5 -541.4 15.4 -3.67 7.9 1.063 47 155.3 2155.1 -382.7 14.6 -2.59 45.16 9.3 1.061 2103.3 50 165.2 -273.3 14.2 -1.85 37.56 9.5 1.059 175.1 1667.5 -341.3 11.3 -2.31 19.21 11.7 1.058 53 178.4 1354.3 54 -177.6 9.2 -1.20 19.17 12.4 1.058 181.7 814.0 -64.4 5.5 -0.44 13.05 12.8 1.058 55 56 185.0 293.8 -6.5 2.0 -0.04 6.72 13.0 1.058 Absolute 92.5 17.5 (T =31.9 ms)

-5.69

(T =

47.5 ms)

Test: 25-May-2016 13:54:

CAPWAP(R) 2006-3

Page 2 Analysis: 12-Jul-2016

 KIWC, POA TPP; Pile: IP 7
 Test: 25-May-2016 13:54:

 PP48x1.0'', APE D180-42; Blow: 648
 CAPWAP(R) 2006-3

 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	1537.3	1188.8	840.2	491.7	143.1	0.0	0.0	0.0	0.0	0.0	
RX	1537.3	1188.8	840.2	598.1	468.6	435.3	422.9	416.4	412.9	412.3	
RU	1469.2	1113.8	758.4	403.1	47.7	0.0	0.0	0.0	0.0	0.0	

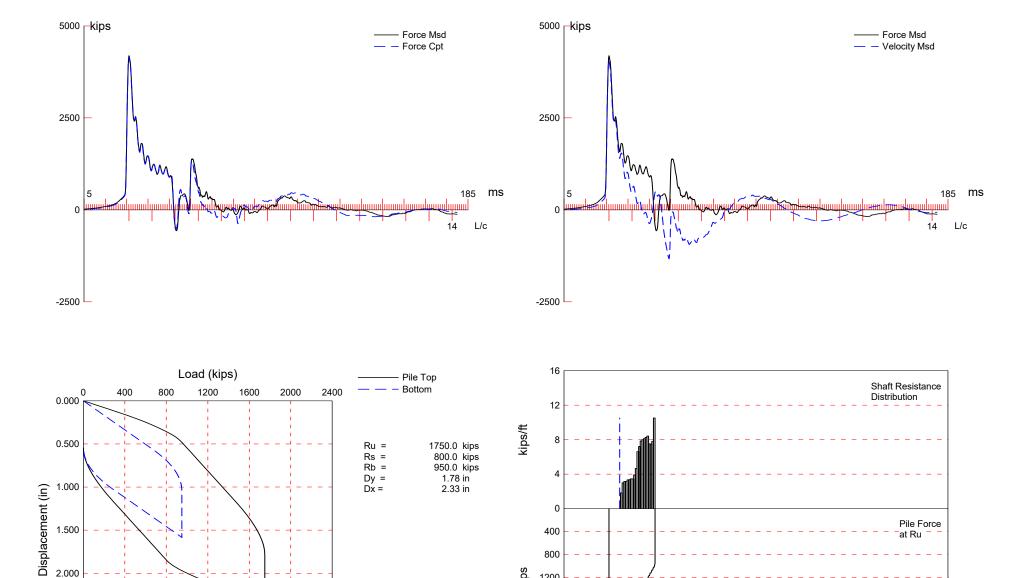
RAU = 384.9 (kips); RA2 = 583.0 (kips)

Current CAPWAP Ru = 400.7 (kips); Corresponding J(RP)= 0.33; matches RX9 within 5%

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
1345.3	91.2	0.522	0.522	1,105	2669.5	2669.5	2353.2	26.27	8.78

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	${\tt in^2}$	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 12-Jul-2016

2.500

3.000

kips

1600

2000 2400 KIWC, POA TPP; Pile: IP 7 (Loc. 5) Test: 25-May-2016 14:36: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT CAPWAP SUMMARY RESULTS

Total CAP	WAP Capacity	r: 1750	0.0; along	Shaft	800.0; at	Toe 950.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				1750.0				
1	52.9	6.7	12.0	1738.0	12.0	1.79	0.14	0.180
2	59.5	13.3	19.8	1718.2	31.8	3.00	0.24	0.180
3	66.1	19.9	20.8	1697.4	52.6	3.15	0.25	0.180
4	72.7	26.5	20.8	1676.6	73.4	3.15	0.25	0.180
5	79.3	33.1	22.0	1654.6	95.4	3.33	0.26	0.180
6	85.9	39.8	22.2	1632.4	117.6	3.36	0.27	0.180
7	92.5	46.4	22.8	1609.6	140.4	3.45	0.27	0.180
8	99.1	53.0	22.8	1586.8	163.2	3.45	0.27	0.180
9	105.7	59.6	25.8	1561.0	189.0	3.90	0.31	0.180
10	112.3	66.2	30.8	1530.2	219.8	4.66	0.37	0.180
11	118.9	72.8	43.7	1486.5	263.5	6.61	0.53	0.180
12	125.5	79.4	47.7	1438.8	311.2	7.22	0.57	0.180
13	132.1	86.0	51.9	1386.9	363.1	7.86	0.63	0.180
14	138.8	92.6	52.8	1334.1	415.9	7.99	0.64	0.180
15	145.4	99.2	53.6	1280.5	469.5	8.11	0.65	0.180
16	152.0	105.8	54.6	1225.9	524.1	8.26	0.66	0.180
17	158.6	112.4	55.6	1170.3	579.7	8.42	0.67	0.180
18	165.2	119.0	49.6	1120.7	629.3	7.51	0.60	0.180
19	171.8	125.6	49.6	1071.1	678.9	7.51	0.60	0.180
20	178.4	132.3	51.6	1019.5	730.5	7.81	0.62	0.180
21	185.0	138.9	69.5	950.0	800.0	10.52	0.84	0.180
Avg. Sh	aft		38.1			5.76	0.46	0.180
To	e		950.0				75.60	0.060
Soil Mode	l Parameters	/Extensi	ions		S	haft To	e	
Quake		(i	.n)		0	0.100 0.80	0	
	ing Factor	`	,			0.537 0.21		
Unloading		(%	of loadir	og guake)		30 10		
Reloading	_	_	of Ru)	-5 4ua,		100 10		
max Top (Comp. Stress	: =	28.1 ks	ei (T	= 26.5 mg	max= 1.019	x Ton)	
max. Comp	_	· – =	28.6 ks	-	=	T= 29.4 ms		
max. Tens		=	-3.87 ks	_	_	T= 74.0 ms	-	
max. Energ		_	235.6 ki	_	=	l Top Displ.	-	9 in
max. Ener	al (mur)	-	233.0 KI	.p-rc, ma	A. Measured	. TOP DISPI.	(THA) - I . I	. , 111

Page 1 Analysis: 25-May-2016 KIWC, POA TPP; Pile: IP 7 (Loc. 5) PP48x1.0'', APE D180-42; Blow: 1435 Robert Miner Dynamic Testing, Inc.

54

55 56

Absolute

178.4

181.7

185.0

52.9

59.5

2263.6

1597.0

1481.1

0.0

0.0

0.0

EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy ft kips kips kip-ft ksi ksi ft/s in 1 3.3 4151.3 -478.8 28.1 -3.24 235.63 15.2 1.199 2 4153.0 -425.7 28.1 -2.88 235.19 15.2 1.196 6.6 -2.67 5 16.5 4158.7 -394.9 28.2 233.76 15.2 1.196 8 26.4 4166.2 -421.4 28.2 -2.85 232.78 15.2 1.191 11 36.3 4175.7 -461.8 28.3 -3.13 232.43 15.1 1.178 14 46.3 4199.4 -486.0 28.4 -3.29 232.03 15.0 1.163 17 56.2 4203.9 -566.3 28.5 -3.83 228.26 14.8 1.148 20 66.1 4185.7 -518.9 28.3 -3.51 222.43 14.6 1.130 -451.1 14.4 23 76.0 4090.8 27.7 -3.05 212.50 1.105 85.9 4069.8 -470.8 27.6 -3.19 207.14 14.1 1.083 26 95.8 -344.5 29 3971.0 26.9 -2.33 197.07 13.9 1.059 32 105.7 3965.1 -273.0 26.8 -1.85 191.21 13.6 1.030 115.6 -279.1 26.2 179.33 13.2 1.004 35 3872.6 -1.89 -168.0 38 125.5 3837.9 26.0 -1.14 170.13 12.8 0.977 41 135.4 3625.2 -35.1 24.5 -0.24 151.29 12.4 0.952 44 145.4 3560.4 -133.0 24.1 -0.90 140.62 12.0 0.923 47 155.3 3326.3 0.0 22.5 0.00 120.52 11.6 0.893 0.0 22.0 0.00 109.73 0.866 50 165.2 3244.1 11.3 175.1 2701.8 0.0 18.3 0.00 91.26 15.0 0.841 53

15.3

10.8

10.0

28.6

0.00

0.00

0.00

-3.87

90.97

81.35

70.24

15.7

16.1

16.1

(T =

(T =

0.833

0.825

0.817

29.4 ms)

74.0 ms)

Test: 25-May-2016 14:36:

CAPWAP(R) 2006-3

OP: RMDT

Page 2 Analysis: 25-May-2016

 KIWC, POA TPP; Pile: IP 7 (Loc. 5)
 Test: 25-May-2016 14:36:

 PP48x1.0'', APE D180-42; Blow: 1435
 CAPWAP(R) 2006-3

 Robert Miner Dynamic Testing, Inc.
 OP: RMDT

	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	3660.7	3199.4	2738.2	2276.9	1815.6	1354.4	893.1	431.9	0.0	0.0	
RX	3660.7	3199.4	2738.2	2276.9	1932.4	1829.3	1728.0	1627.5	1580.8	1539.3	
RU	3751.2	3299.0	2846.8	2394.5	1942.3	1490.1	1037.9	585.7	133.5	0.0	

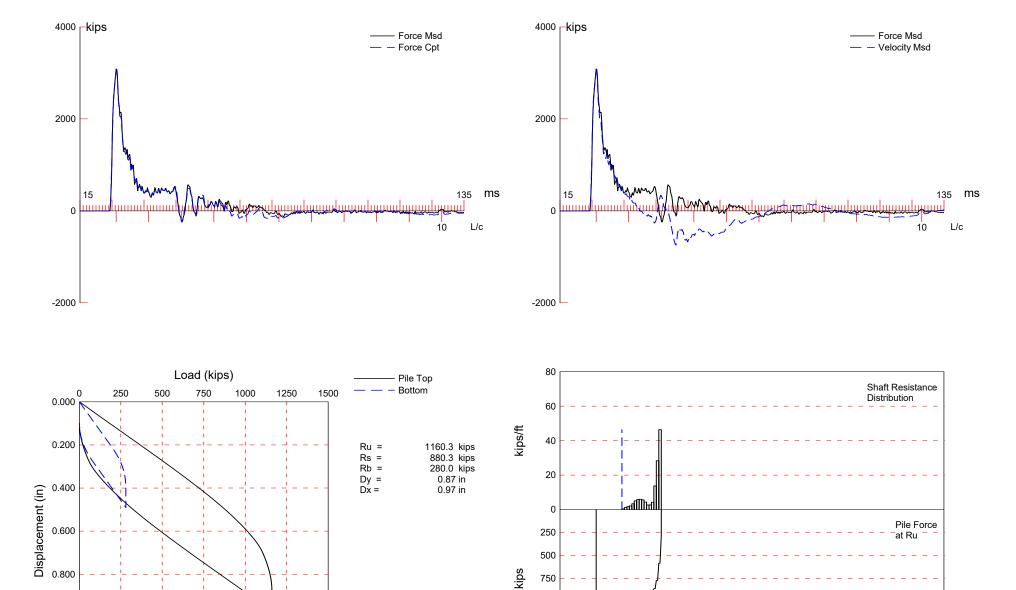
RAU = 1151.6 (kips); RA2 = 1760.7 (kips)

Current CAPWAP Ru = 1750.0 (kips); Corresponding J(RP) = 0.41; J(RX) = 0.58

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3258.4	236.2	0.545	0.546	1.194	4211.7	4211.7	4061.6	26.27	15.15

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in²	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft ²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 25-May-2016

1.000

1.200

750 1000

1250 1500

max. Energy (EMX)

Test: 03-May-2016 21:29: CAPWAP(R) 2006-3 OP: RMDT

			CAPWA	P SUMMARY	RESULTS				
Total CAPV	WAP Capacity	r: 1160	0.3; along	Shaft	880.3; at	Toe	280.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist.	Damping
No.	Gages	Grade			Ru	(De	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	ki	ps/ft	ksf	s/ft
				1160.3					
1	75.5	6.5	2.5	1157.8	2.5		0.38	0.03	0.219
2	82.1	13.1	8.1	1149.7	10.6		1.23	0.10	0.219
3	88.6	19.6	11.7	1138.0	22.3		1.78	0.14	0.219
4	95.2	26.2	14.1	1123.9	36.4		2.15	0.17	0.219
5	101.8	32.8	22.4	1101.5	58.8		3.41	0.27	0.219
6	108.3	39.3	33.3	1068.2	92.1		5.07	0.40	0.219
7	114.9	45.9	38.4	1029.8	130.5		5.85	0.47	0.219
8	121.5	52.5	39.3	990.5	169.8		5.99	0.48	0.219
9	128.0	59.0	37.3	953.2	207.1		5.68	0.45	0.219
10	134.6	65.6	28.6	924.6	235.7		4.36	0.35	0.219
11	141.2	72.2	17.7	906.9	253.4		2.70	0.21	0.219
12	147.7	78.7	18.1	888.8	271.5		2.76	0.22	0.219
13	154.3	85.3	28.0	860.8	299.5		4.26	0.34	0.219
14	160.9	91.9	90.2	770.6	389.7	:	13.74	1.09	0.219
15	167.4	98.4	186.0	584.6	575.7	:	28.33	2.25	0.219
16	174.0	105.0	304.6	280.0	880.3	•	46.39	3.69	0.219
Avg. Sh	aft		55.0				8.38	0.67	0.219
To	e		280.0					272.43	0.099
Soil Model	l Parameters	/Extens	ions			Shaft	Toe	1	
Quake		(i	n)			0.190	0.300)	
Case Dampi	ing Factor					0.720	0.103	}	
Unloading	Quake	(%	of loadir	ng quake)		50	100)	
Reloading	Level	(%	of Ru)			100	100)	
Unloading	Level	(%	of Ru)			40			
Soil Suppo	ort Dashpot					1.000	0.000)	
Soil Suppo	ort Weight	(k	ips)			8.62	0.00)	
max. Top (Comp. Stress	=	20.9 ks	si (I	'= 26.7 ms	, max=	1.004	Top)	
max. Comp	. Stress	=	21.0 ks	si (Z	= 82.1 ft	, T=	31.5 ms)	
max. Tens.	. Stress	=	-2.15 ks	si (2	= 75.5 ft	, T=	69.5 ms)	

= 96.1 kip-ft; max. Measured Top Displ. (DMX)= 0.67 in

KIWC, POA TPP; Pile: IP 8 (Loc. 6)
PP48x1.0'', APE 15-4; Blow: 2023
Robert Miner Dynamic Testing, Inc.

Test: 03-May-2016 21:29: CAPWAP(R) 2006-3 OP: RMDT

	EXTREMA TABLE									
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.		
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.		
No.	Gages			Stress	Stress	Energy				
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in		
1	3.3	3094.1	-177.9	20.9	-1.20	96.15	11.5	0.670		
2	6.6	3092.5	-186.8	20.9	-1.26	96.06	11.5	0.666		
5	16.4	3087.8	-197.6	20.9	-1.34	95.76	11.5	0.661		
8	26.3	3082.9	-270.6	20.9	-1.83	95.43	11.5	0.656		
11	36.1	3079.1	-282.3	20.8	-1.91	95.09	11.5	0.650		
14	46.0	3079.0	-249.2	20.8	-1.69	94.72	11.5	0.643		
17	55.8	3078.7	-294.8	20.8	-2.00	94.36	11.5	0.635		
20	65.7	3081.2	-303.9	20.9	-2.06	94.15	11.5	0.625		
23	75.5	3096.4	-317.1	21.0	-2.15	93.91	11.4	0.613		
26	85.4	3090.4	-307.6	20.9	-2.08	92.45	11.3	0.601		
29	95.2	3101.5	-312.9	21.0	-2.12	90.81	11.1	0.586		
32	105.1	3061.0	-286.0	20.7	-1.94	86.76	10.8	0.573		
35	114.9	3043.7	-273.4	20.6	-1.85	83.15	10.5	0.559		
38	124.8	2886.3	-252.4	19.5	-1.71	75.48	10.2	0.545		
41	134.6	2826.8	-219.2	19.1	-1.48	71.67	10.1	0.531		
44	144.5	2741.9	-211.7	18.6	-1.43	67.11	9.9	0.517		
47	154.3	2843.2	-288.0	19.3	-1.95	65.08	9.3	0.502		
50	164.2	2267.6	-160.2	15.4	-1.08	54.50	11.1	0.487		
51	167.4	2000.5	-140.2	13.5	-0.95	54.36	11.6	0.482		
52	170.7	1332.2	-44.8	9.0	-0.30	39.02	11.7	0.477		
53	174.0	1349.3	-28.0	9.1	-0.19	15.63	11.7	0.473		
Absolute	82.1			21.0			(T =	31.5 ms)		
	75.5				-2.15		(T =	69.5 ms)		

Page 2 Analysis: 04-May-2016

KIWC, POA TPP; Pile: IP 8 (Loc. 6) PP48x1.0'', APE 15-4; Blow: 2023 Robert Miner Dynamic Testing, Inc. Test: 03-May-2016 21:29: CAPWAP(R) 2006-3

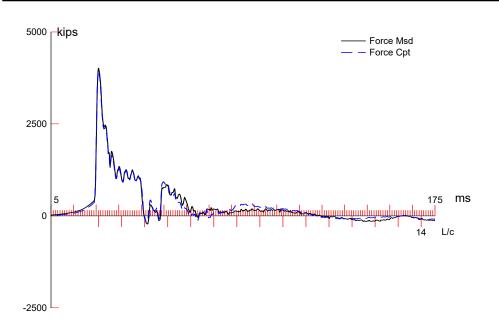
OP: RMDT

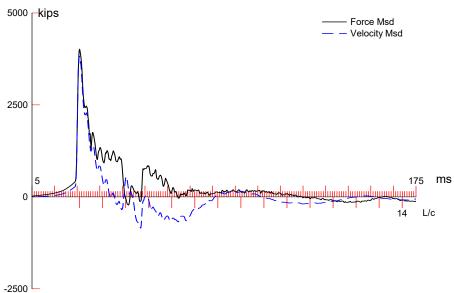
	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	2836.4	2496.7	2156.9	1817.1	1477.4	1137.6	797.8	458.1	118.3	0.0	
RX	2836.4	2496.7	2157.5	1820.6	1483.7	1247.1	1112.7	1016.2	919.8	823.3	
RU	2792.0	2447.8	2103.7	1759.5	1415.3	1071.1	726.9	382.7	38.5	0.0	

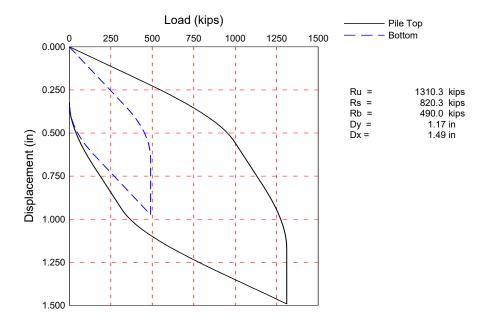
RAU = 774.9 (kips); RA2 = 774.9 (kips)

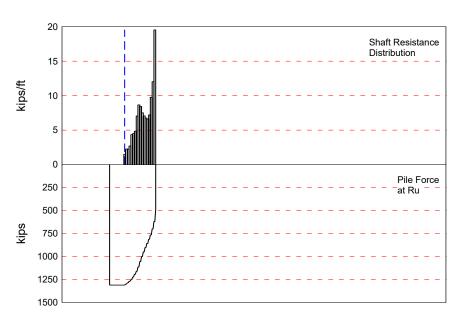
Current CAPWAP Ru = 1160.3 (kips); Corresponding J(RP) = 0.49; J(RX) = 0.56

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3021.1	96.4	0.100	0.089	0.666	3107.7	3107.7	3126.3	26.49	11.66


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
174.00	147.65	31043.9	492.000	12.566
Toe Area	1.028	ft²		


Top Segment Length 3.28 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.192 ms, Wave Speed 17100.0 ft/s, 2L/c 20.4 ms

Page 3 Analysis: 04-May-2016

Test: 07-May-2016 11:20: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

			CAPWA	P SUMMARY	RESULTS			
Total CAP	WAP Capacit	y: 1310	.3; along	Shaft	820.3; at	Toe 490.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				1310.3				
1	60.0	1.6	10.0	1300.3	10.0	6.16	0.49	0.215
2	66.7	8.3	15.0	1285.3	25.0	2.25	0.18	0.215
3	73.4	15.0	15.0	1270.3	40.0	2.25	0.18	0.215
4	80.0	21.6	18.0	1252.3	58.0	2.70	0.21	0.215
5	86.7	28.3	29.0	1223.3	87.0	4.35	0.35	0.215
6	93.4	35.0	30.0	1193.3	117.0	4.50	0.36	0.215
7	100.0	41.6	32.3	1161.0	149.3	4.84	0.39	0.215
8	106.7	48.3	47.0	1114.0	196.3	7.05	0.56	0.215
9	113.4	55.0	57.7	1056.3	254.0	8.65	0.69	0.215
10	120.0	61.6	56.3	1000.0	310.3	8.44	0.67	0.215
11	126.7	68.3	50.1	949.9	360.4	7.51	0.60	0.215
12	133.4	75.0	47.1	902.8	407.5	7.06	0.56	0.215
13	140.1	81.7	45.1	857.7	452.6	6.76	0.54	0.215
14	146.7	88.3	44.1	813.6	496.7	6.61	0.53	0.215
15	153.4	95.0	48.1	765.5	544.8	7.21	0.57	0.215
16	160.1	101.7	65.1	700.4	609.9	9.76	0.78	0.215
17	166.7	108.3	80.2	620.2	690.1	12.03	0.96	0.215
18	173.4	115.0	130.2	490.0	820.3	19.52	1.55	0.215
Avg. Sh	naft		45.6			7.13	0.57	0.215
To	oe .		490.0				38.99	0.090
Soil Mode	l Parameter	s/Extensi	ons		S	Shaft To	e	
Quake		(i:	n)		(0.140 0.50	0	
Case Damp	ing Factor				(0.662 0.16	5	
Unloading	Quake	(%	of loadir	ng quake)		30 10	0	
Reloading	Level	(%	of Ru)			100 10	0	
Unloading	Level	(%	of Ru)			0		
Soil Plug	Weight		ips)			0.5	0	
max. Top	Comp. Stres	s =	26.7 ks	si (I	= 26.5 ms	, max= 1.021	x Top)	
max. Comp	. Stress	=	27.3 ks	si (Z	= 60.0 ft	, T= 29.8 ms)	
max. Tens	. Stress	=	-1.66 ks	si (Z	= 46.7 ft	, T= 72.8 ms)	
max. Ener	gy (EMX)	=	209.7 ki	ip-ft; ma	x. Measure	d Top Displ.	(DMX)= 1.0	7 in

KIWC, POA TPP; Pile: IP 9
PP48x1.0'', APE D180-42; Blow: 902
Robert Miner Dynamic Testing, Inc.

OP: RMDT EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy kip-ft ft kips kips ksi ksi ft/s in 1 3.3 3943.4 14.6 1.120 -136.2 26.7 -0.92 209.67 2 3945.0 -186.5 26.7 209.17 14.6 1.119 6.7 -1.26 -1.36 5 16.7 3950.5 -200.9 26.7 207.56 14.6 1.112 8 26.7 3957.2 -177.0 26.8 -1.20 206.44 14.5 1.102 11 36.7 -158.8 26.9 -1.08 206.20 14.5 1.091 3965.6 14 46.7 3976.6 -245.0 26.9 -1.66 205.93 14.4 1.079 17 56.7 4009.6 -219.2 27.1 -1.48 205.40 14.3 1.062 20 66.7 4017.2 -162.6 27.2 -1.10 202.36 14.1 1.040 23 76.7 3957.4 -175.2 26.8 -1.19 195.22 13.9 1.019 86.7 3967.5 -188.9 26.9 190.64 13.6 0.995 26 -1.28 29 96.7 3832.7 -199.8 26.0 -1.35 178.37 13.2 0.975 32 106.7 3835.1 -178.7 26.0 -1.21 171.30 12.7 0.951 -200.7 24.3 151.30 12.2 0.925 35 116.7 3583.7 -1.36 38 126.7 3494.8 -164.2 23.7 -1.11 140.67 11.8 0.905 41 136.7 3256.5 -155.3 22.0 -1.05 123.07 11.4 0.883 44 146.7 3202.2 -139.6 21.7 -0.95 114.82 11.0 0.866 47 156.7 3026.5 -57.4 20.5 -0.39 98.18 10.9 0.845 0.838 48 160.1 3046.8 -54.6 20.6 -0.37 97.90 12.1 49 163.4 2722.1 -48.6 18.4 -0.33 86.30 13.3 0.832 50 166.7 2425.2 -47.9 16.4 -0.32 86.15 14.1 0.826 170.1 1715.2 -40.6 -0.27 71.60 14.5 0.822 51 11.6 52 173.4 1386.0 -36.9 9.4 -0.25 48.30 14.7 0.817 Absolute 60.0 27.3 (T =29.8 ms) 46.7 (T =72.8 ms) -1.66

Test: 07-May-2016 11:20:

CAPWAP(R) 2006-3

Page 2 Analysis: 08-May-2016

KIWC, POA TPP; Pile: IP 9

PP48x1.0'', APE D180-42; Blow: 902

Robert Miner Dynamic Testing, Inc.

Test: 07-May-2016 11:20:
CAPWAP(R) 2006-3

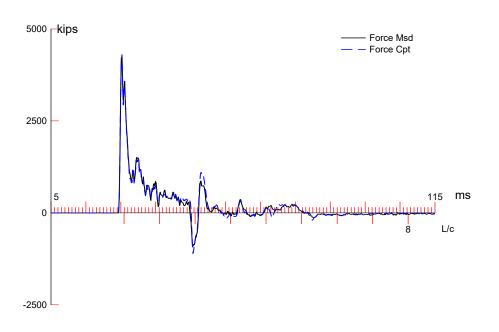
OP: RMDT

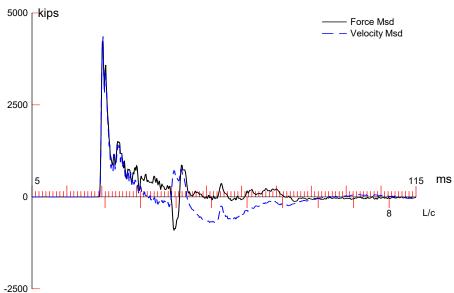
	CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
RP	3694.2	3280.7	2867.2	2453.7	2040.2	1626.7	1213.2	799.7	386.2	0.0	
RX	3717.6	3297.5	2877.4	2457.3	2037.2	1617.1	1281.6	1165.7	1119.4	1119.4	
RU	3808.8	3397.8	2986.9	2575.9	2164.9	1754.0	1343.0	932.0	521.0	110.1	

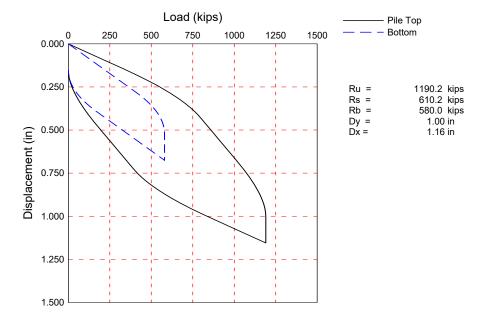
RAU = 1096.1 (kips); RA2 = 1361.2 (kips)

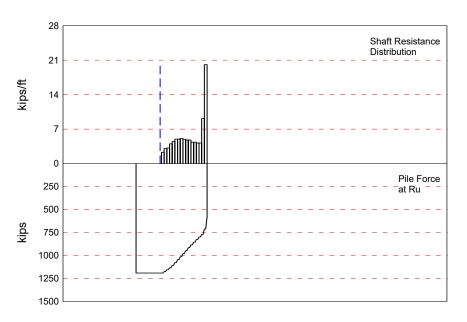
Current CAPWAP Ru = 1310.3 (kips); Corresponding J(RP) = 0.58; J(RX) = 0.59

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
14.56	26.28	3845.4	3983.9	4037.1	1.071	0.323	0.324	209.5	3605.0


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	\mathtt{in}^2	ksi	lb/ft³	ft
0.00	147.65	30681.9	492.000	12.566
173.40	147.65	30681.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.33 ft, Top Impedance 266.56 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.196 ms, Wave Speed 17000.0 ft/s, 2L/c 20.4 ms

Page 3 Analysis: 08-May-2016

Test: 26-May-2016 15:37: CAPWAP(R) 2006-3 OP: RMDT

			CAPWA	P SUMMARY	RESULTS			
Total CAPV	MAP Capacity	: 1190.	2; along	Shaft	610.2; at	Toe 580.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				1190.2				
1	68.9	7.9	15.2	1175.0	15.2	1.92	0.15	0.180
2	75.5	14.5	20.2	1154.8	35.4	3.08	0.24	0.180
3	82.1	21.1	20.8	1134.0	56.2	3.17	0.25	0.180
4	88.6	27.6	26.4	1107.6	82.6	4.02	0.32	0.180
5	95.2	34.2	29.5	1078.1	112.1	4.49	0.36	0.180
6	101.8	40.8	32.6	1045.5	144.7	4.96	0.40	0.180
7	108.3	47.3	32.6	1012.9	177.3	4.96	0.40	0.180
8	114.9	53.9	33.5	979.4	210.8	5.10	0.41	0.180
9	121.5	60.5	32.5	946.9	243.3	4.95	0.39	0.180
10	128.0	67.0	31.5	915.4	274.8	4.80	0.38	0.180
11	134.6	73.6	31.5	883.9	306.3	4.80	0.38	0.180
12	141.2	80.2	28.5	855.4	334.8	4.34	0.35	0.180
13	147.7	86.7	28.5	826.9	363.3	4.34	0.35	0.180
14	154.3	93.3	27.5	799.4	390.8	4.19	0.33	0.180
15	160.9	99.9	27.5	771.9	418.3	4.19	0.33	0.180
16	167.4	106.4	60.0	711.9	478.3	9.14	0.73	0.180
17	174.0	113.0	131.9	580.0	610.2	20.09	1.60	0.180
Avg. Sh	aft		35.9			5.40	0.43	0.180
To	e		580.0				46.15	0.100
Soil Model	Parameters	/Extensio	ons			Shaft To	е	
Quake		(in	.)			0.100 0.40	0	
Case Dampi	ng Factor					0.410 0.21	.6	
Unloading	Quake	(%	of loadir	ng quake)		30 7	0	
Reloading		_	of Ru)			100 10	0	
Unloading	Level	(%	of Ru)			22		
Soil Suppo	ort Dashpot	-	-			0.400 0.00	0	
Soil Suppo	_	(ki	ps)			8.62 0.0		
max. Top (Comp. Stress	=	29.1 ks	si (I	'= 25.7 ms	, max= 1.000	x Top)	
max. Comp.	Stress	=	29.1 ks	si (Z	= 3.3 ft	, T= 25.7 ms	;)	
max. Tens.	Stress	=	-7.03 ks	si (2	= 6.6 ft	, T= 45.5 ms	;)	
max. Energ	JY (EMX)	=	111.1 ki	.p-ft; ma	x. Measure	d Top Displ.	(DMX) = 0.6	59 in

Page 1 Analysis: 31-May-2016

KIWC, POA TPP; Pile: IP 10 PP48x1.0", APE 15-4; Blow: 1445

Test: 26-May-2016 15:37: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4299.4	-1034.7	29.1	-7.01	111.07	16.0	0.673
2	6.6	4297.7	-1038.2	29.1	-7.03	110.94	16.0	0.669
5	16.4	4292.4	-956.2	29.1	-6.47	110.51	16.0	0.658
8	26.3	4286.4	-963.4	29.0	-6.52	110.05	16.0	0.656
11	36.1	4279.9	-887.8	29.0	-6.01	109.55	16.0	0.654
14	46.0	4272.6	-871.0	28.9	-5.90	109.02	15.9	0.651
17	55.8	4264.8	-888.8	28.9	-6.02	108.46	15.9	0.646
20	65.7	4272.4	-806.7	28.9	-5.46	107.92	15.8	0.637
23	75.5	4257.6	-804.7	28.8	-5.45	105.79	15.6	0.627
26	85.4	4169.2	-956.0	28.2	-6.47	101.16	15.4	0.617
29	95.2	4140.5	-587.8	28.0	-3.98	97.26	15.1	0.604
32	105.1	4010.1	-751.3	27.2	-5.09	90.66	14.7	0.593
35	114.9	3972.7	-827.5	26.9	-5.60	86.64	14.4	0.576
38	124.8	3834.1	-584.9	26.0	-3.96	78.91	14.1	0.562
41	134.6	3797.4	-231.5	25.7	-1.57	73.49	13.8	0.553
44	144.5	3673.3	-777.9	24.9	-5.27	67.04	13.5	0.538
47	154.3	3638.9	-756.1	24.6	-5.12	63.67	13.3	0.520
50	164.2	3554.3	-132.7	24.1	-0.90	57.92	15.0	0.504
51	167.4	3484.2	-136.2	23.6	-0.92	57.73	16.3	0.499
52	170.7	2545.0	-114.3	17.2	-0.77	51.51	17.0	0.495
53	174.0	1721.1	-110.6	11.7	-0.75	39.26	19.1	0.491
Absolute	3.3			29.1			(T =	25.7 ms)
	6.6				-7.03		(T =	45.5 ms)

Page 2 Analysis: 31-May-2016 KIWC, POA TPP; Pile: IP 10
PP48x1.0", APE 15-4; Blow: 1445
Robert Miner Dynamic Testing, Inc.

Test: 26-May-2016 15:37: CAPWAP(R) 2006-3

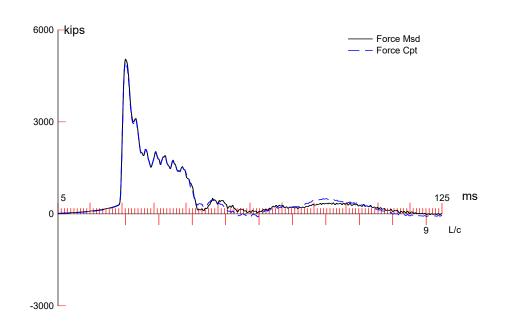
OP: RMDT

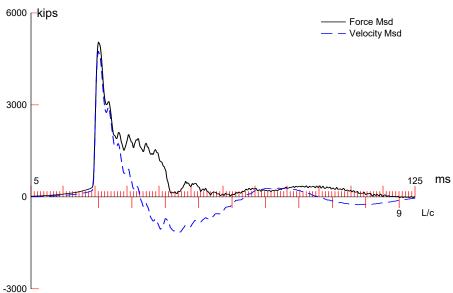
	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	3765.6	3225.3	2685.1	2144.8	1604.5	1064.2	523.9	0.0	0.0	0.0
RX	3765.6	3225.3	2685.1	2144.8	1604.5	1064.2	880.7	810.7	764.5	746.6
RU	3943.5	3421.0	2898.5	2376.0	1853.5	1331.0	808.5	286.0	0.0	0.0

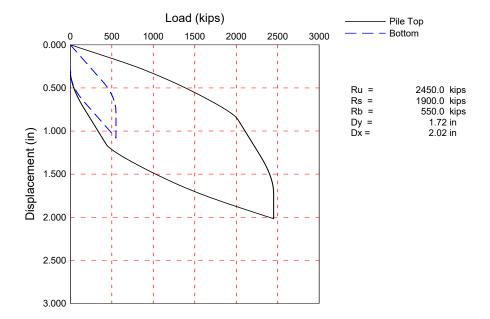
RAU = 587.7 (kips); RA2 = 882.2 (kips)

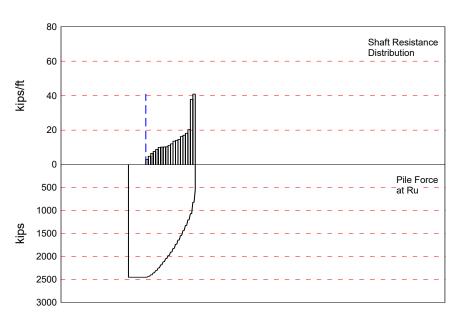
Current CAPWAP Ru = 1190.2 (kips); Corresponding J(RP) = 0.48; J(RX) = 0.48

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3180.6	112.4	0.156	0.141	0.692	4465.8	4465.8	4702.6	26.11	17.54


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
174.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.28 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.192 ms, Wave Speed 17100.0 ft/s, 2L/c 20.4 ms

Page 3 Analysis: 31-May-2016

Test: 21-Jun-2016 14:53: CAPWAP(R) 2006-3 OP: RMDT

			CAPWA	P SUMMAR	Y RESULTS			
Total CAPV	WAP Capacity	2450	.0; along	Shaft	1900.0; at	Toe 550.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				2450.0				
1	52.9	3.4	19.6	2430.4	19.6	5.68	0.45	0.200
2	59.5	10.1	32.0	2398.4	51.6	4.84	0.39	0.200
3	66.1	16.7	43.1	2355.3	94.7	6.52	0.52	0.200
4	72.7	23.3	50.3	2305.0	145.0	7.61	0.61	0.200
5	79.3	29.9	58.1	2246.9	203.1	8.79	0.70	0.200
6	85.9	36.5	65.9	2181.0	269.0	9.97	0.79	0.200
7	92.6	43.1	67.4	2113.6	336.4	10.19	0.81	0.200
8	99.2	49.7	67.5	2046.1	403.9	10.21	0.81	0.200
9	105.8	56.3	68.5	1977.6	472.4	10.36	0.82	0.200
10	112.4	62.9	73.5	1904.1	545.9	11.12	0.88	0.200
11	119.0	69.6	79.6	1824.5	625.5	12.04	0.96	0.200
12	125.6	76.2	90.0	1734.5	715.5	13.61	1.08	0.200
13	132.2	82.8	92.7	1641.8	808.2	14.02	1.12	0.200
14	138.8	89.4	96.7	1545.1	904.9	14.63	1.16	0.200
15	145.4	96.0	107.8	1437.3	1012.7	16.31	1.30	0.200
16	152.1	102.6	112.9	1324.4	1125.6	17.08	1.36	0.200
17	158.7	109.2	120.0	1204.4	1245.6	18.15	1.44	0.200
18	165.3	115.8	134.0	1070.4	1379.6	20.27	1.61	0.200
19	171.9	122.4	250.0	820.4	1629.6	37.82	3.01	0.200
20	178.5	129.1	270.4	550.0	1900.0	40.90	3.25	0.200
Avg. Sh	aft		95.0			14.72	1.17	0.200
То	e		550.0				43.77	0.060
Soil Model	l Parameters	/Extensi	.ons		i	Shaft To	e	
Quake		(i	n)			0.100 0.60	00	
Case Dampi	ing Factor		-			1.417 0.12	23	
Unloading	_	(%	of loading	ng quake)			80	
Reloading	Level		of Ru)			100 10	00	
Unloading	Level	(%	of Ru)			10		
Soil Plug	Weight	(k	ips)			0.3	35	
Soil Suppo	ort Dashpot					1.400 0.00	0	
Soil Suppo	ort Weight	(k	ips)			8.70 0.0	0	
max. Top (Comp. Stress	=	33.5 ks	si (T= 26.5 ms	, max= 1.026	x Top)	
max. Comp	. Stress	=	34.4 ks	si (z= 52.9 ft	, T= 29.4 ms	5)	
max. Tens	. Stress	=	-2.07 ks	si (z= 59.5 ft	, T= 64.8 ms	5)	
max. Energ	gy (EMX)	=	327.5 ki	ip-ft; m	ax. Measure	d Top Displ.	(DMX) = 1.2	27 in

KIWC, POA TPP; Pile: IP 1 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 14:53: CAPWAP(R) 2006-3 OP: RMDT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4947.8	-127.5	33.5	-0.86	327.54	18.1	1.291
2	6.6	4949.9	-147.6	33.5	-1.00	326.45	18.1	1.276
5	16.5	4956.7	-156.4	33.6	-1.06	322.75	18.0	1.228
8	26.4	4964.9	-208.1	33.6	-1.41	318.54	18.0	1.177
11	36.4	4974.9	-228.3	33.7	-1.55	313.75	17.9	1.123
14	46.3	5015.3	-242.9	34.0	-1.64	308.88	17.8	1.068
17	56.2	5028.7	-296.1	34.0	-2.00	298.92	17.4	1.013
20	66.1	5031.3	-273.1	34.1	-1.85	285.86	16.8	0.956
23	76.0	4812.1	-207.2	32.6	-1.40	263.11	16.2	0.923
26	85.9	4761.6	-228.5	32.2	-1.55	249.01	15.5	0.886
29	95.9	4427.1	-184.3	30.0	-1.25	221.67	14.8	0.848
32	105.8	4356.2	-185.2	29.5	-1.25	207.94	14.1	0.812
35	115.7	4048.7	-184.0	27.4	-1.25	183.13	13.3	0.774
38	125.6	3988.1	-160.4	27.0	-1.09	169.38	12.5	0.736
41	135.5	3619.0	-150.7	24.5	-1.02	143.58	11.7	0.701
44	145.4	3545.0	-135.9	24.0	-0.92	130.24	10.8	0.669
47	155.4	3159.9	-77.2	21.4	-0.52	104.29	9.9	0.641
50	165.3	2993.1	-85.3	20.3	-0.58	90.84	10.0	0.621
51	168.6	2539.5	-64.5	17.2	-0.44	76.70	10.8	0.615
52	171.9	2316.6	-62.8	15.7	-0.43	76.56	11.2	0.610
53	175.2	1423.9	-25.3	9.6	-0.17	51.85	11.4	0.605
54	178.5	1313.2	-23.2	8.9	-0.16	25.26	11.4	0.600
Absolute	52.9			34.4			(T =	29.4 ms)
	59.5				-2.07		(T =	64.8 ms)

Page 2 Analysis: 24-Jun-2016

KIWC, POA TPP; Pile: IP 1 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 14:53: CAPWAP(R) 2006-3

OP: RMDT

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	5735.4	5323.3	4911.1	4499.0	4086.8	3674.7	3262.5	2850.4	2438.2	2026.1
RX	5735.4	5323.3	4911.1	4499.0	4086.8	3674.7	3262.5	2850.4	2438.2	2026.1
RU	5956.2	5566.1	5176.0	4786.0	4395.9	4005.8	3615.7	3225.7	2835.6	2445.5

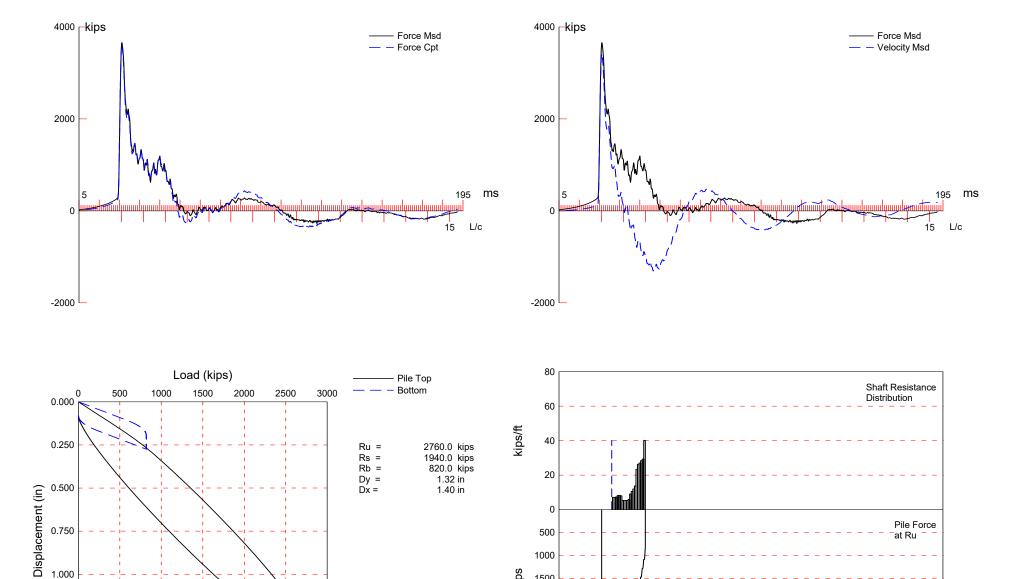
RAU = 581.4 (kips); RA2 = 1995.2 (kips)

Current CAPWAP Ru = 2450.0 (kips); Corresponding J(RP) = 0.80; J(RX) = 0.80

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	kips	in	in	in	kip-ft	kips
17.84	26.29	4783.5	5073.4	5073.4	1.274	0.304	0.300	328.5	5010.1

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
178.50	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.31 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 20.9 ms

Page 3 Analysis: 24-Jun-2016

1.250

1.500

kips

2000

2500 3000 Test: 09-Jun-2016 16:22: CAPWAP(R) 2006-3 OP: RMDT

	_		CAPWA	P SUMMAR	Y RESULTS			
Total CAPW	WAP Capacity	2760	.0; along	Shaft	1940.0; at	Toe 820.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				2760.0				
1	52.9	8.9	47.5	2712.5	47.5	5.33	0.42	0.200
2	59.5	15.5	47.0	2665.5	94.5	7.11	0.57	0.200
3	66.1	22.1	49.0	2616.5	143.5	7.42	0.59	0.200
4	72.7	28.7	53.9	2562.6	197.4	8.16	0.65	0.200
5	79.3	35.3	54.8	2507.8	252.2	8.29	0.66	0.200
6	85.9	41.9	52.8	2455.0	305.0	7.99	0.64	0.200
7	92.5	48.5	35.0	2420.0	340.0	5.30	0.42	0.200
8	99.1	55.2	35.3	2384.7	375.3	5.34	0.43	0.200
9	105.7	61.8	35.3	2349.4	410.6	5.34	0.43	0.200
10	112.3	68.4	35.3	2314.1	445.9	5.34	0.43	0.200
11	118.9	75.0	39.4	2274.7	485.3	5.96	0.47	0.200
12	125.5	81.6	59.9	2214.8	545.2	9.07	0.72	0.200
13	132.1	88.2	69.7	2145.1	614.9	10.55	0.84	0.200
14	138.8	94.8	79.3	2065.8	694.2	12.00	0.96	0.200
15	145.4	101.4	90.9	1974.9	785.1	13.76	1.09	0.200
16	152.0	108.0	154.6	1820.3		23.40	1.86	0.200
17	158.6	114.6	174.1	1646.2	1113.8	26.35	2.10	0.200
18	165.2	121.2	178.9	1467.3	1292.7	27.08	2.15	0.200
19	171.8	127.8	187.9	1279.4	1480.6	28.44	2.26	0.200
20	178.4	134.4	193.7	1085.7	1674.3	29.32	2.33	0.200
21	185.0	141.0	265.7	820.0	1940.0	40.21	3.20	0.200
Avg. Sha	aft		92.4			13.75	1.09	0.200
To	e		820.0				65.25	0.160
Soil Model	l Parameters	/Extensi	ons			Shaft To	e	
Quake		(ir	1)			0.100 0.15	0	
Case Dampi	ing Factor					1.446 0.49	0	
Reloading	Level	(%	of Ru)			100 10	0	
Unloading	Level	(%	of Ru)			60		
max. Top C	Comp. Stress	=	24.3 ks	si ('	T= 26.5 ms	, max= 1.044	x Top)	
max. Comp.	. Stress	=	25.4 ks	si (Z= 52.9 ft	, T= 29.6 ms)	
max. Tens.	. Stress	=	-3.12 ks	si (Z= 52.9 ft	, T= 60.9 ms)	
max. Energ	Jy (EMX)	=	154.2 ki	lp-ft; m	ax. Measure	d Top Displ.	(DMX) = 0.8	1 in

KIWC, POA TPP; Pile: IP 2 RESTRIKE PP48x1.0'', APE D180-42; Blow: 13

Test: 09-Jun-2016 16:22: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT EXTREMA TABLE

				REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	3588.5	-371.0	24.3	-2.51	154.24	13.0	0.843
2	6.6	3589.9	-377.2	24.3	-2.55	153.81	13.0	0.833
5	16.5	3594.7	-391.7	24.3	-2.65	152.53	12.9	0.806
8	26.4	3600.5	-405.9	24.4	-2.75	151.24	12.9	0.778
11	36.3	3607.8	-417.9	24.4	-2.83	149.74	12.8	0.747
14	46.3	3671.8	-437.2	24.9	-2.96	147.95	12.6	0.714
17	56.2	3623.2	-413.4	24.5	-2.80	139.55	12.2	0.678
20	66.1	3580.3	-400.3	24.2	-2.71	131.16	11.7	0.640
23	76.0	3366.4	-355.6	22.8	-2.41	117.10	11.3	0.606
26	85.9	3285.7	-353.2	22.2	-2.39	109.00	10.9	0.570
29	95.8	3091.6	-335.6	20.9	-2.27	97.50	10.6	0.531
32	105.7	3060.6	-358.0	20.7	-2.42	91.24	10.3	0.488
35	115.6	2940.9	-343.4	19.9	-2.32	81.87	9.9	0.443
38	125.5	2953.5	-361.8	20.0	-2.45	75.90	9.4	0.399
41	135.4	2748.1	-295.5	18.6	-2.00	64.61	8.8	0.357
44	145.4	2762.9	-282.5	18.7	-1.91	57.80	8.1	0.317
47	155.3	2444.0	-143.4	16.5	-0.97	44.43	7.2	0.277
50	165.2	2315.7	-63.8	15.7	-0.43	35.66	6.3	0.236
53	175.1	1725.9	0.0	11.7	0.00	23.43	5.8	0.200
54	178.4	1702.6	0.0	11.5	0.00	22.90	5.8	0.190
55	181.7	1453.5	0.0	9.8	0.00	18.22	5.8	0.181
56	185.0	1568.9	0.0	10.6	0.00	13.27	5.5	0.172
osolute	52.9			25.4			(T =	29.6 ms)
	52.9				-3.12		(T =	60.9 ms)

Page 2 Analysis: 10-Jun-2016 KIWC, POA TPP; Pile: IP 2 RESTRIKE PP48x1.0'', APE D180-42; Blow: 13 Robert Miner Dynamic Testing, Inc.

Test: 09-Jun-2016 16:22: CAPWAP(R) 2006-3

OP: RMDT

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	4480.5	4214.6	3948.8	3682.9	3417.0	3151.2	2885.3	2619.4	2353.6	2087.7
RX	4480.5	4214.6	3948.8	3682.9	3418.0	3153.8	2889.6	2629.8	2375.9	2122.1
RU	4862.6	4634.9	4407.3	4179.6	3952.0	3724.3	3496.6	3269.0	3041.3	2813.7

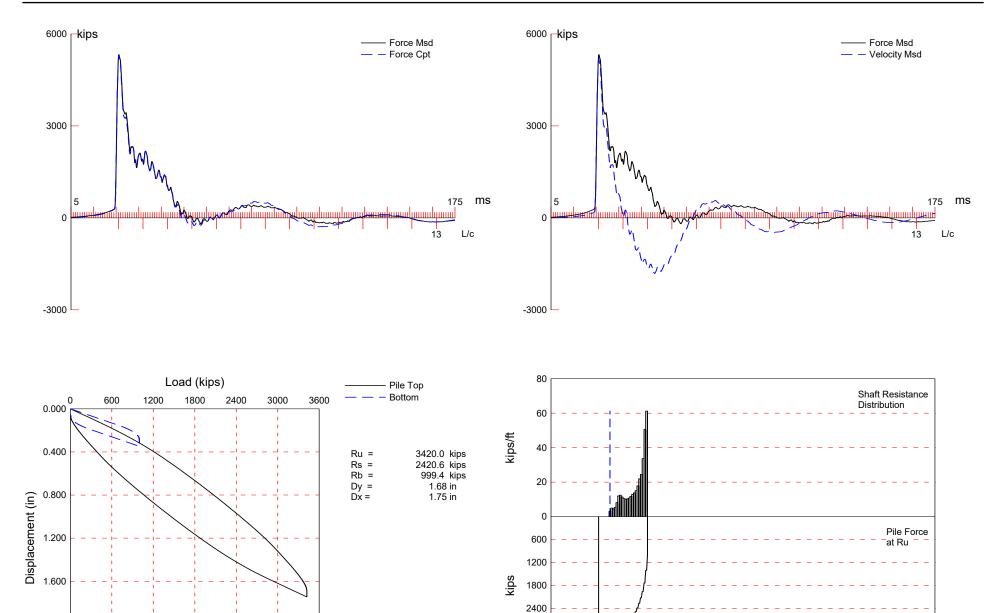
RAU = 570.1 (kips); RA2 = 1907.9 (kips)

Current CAPWAP Ru = 2760.0 (kips); Corresponding J(RP) = 0.65; J(RX) = 0.65

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
4183.9	154.7	0.080	0.080	0.807	3700.4	3681.3	3457.8	26.27	12.90

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	\mathtt{in}^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 10-Jun-2016

2.000

2.400

3000

Test: 21-Jun-2016 13:38: CAPWAP(R) 2006-3 Robert Miner Dynamic Testing, Inc. OP: RMDT

			CAPWA	P SUMMAR	Y RESULTS			
Total	CAPWAP Capacit	y: 3420	.0; along	Shaft	2420.6; at	Toe 999.4	kips	
Soi	.l Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmm	it Below	Below		in Pile	of	Resist.	Resist.	Damping
No	. Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				3420.0				
	1 46.3	2.8	20.0	3400.0		7.21	0.57	0.250
	2 52.9	9.4	32.8	3367.2		4.96	0.40	0.250
	3 59.5	16.0	30.0	3337.2	82.8	4.54	0.36	0.250
	4 66.1	22.6	35.0	3302.2	117.8	5.30	0.42	0.250
	5 72.7	29.2	53.7	3248.5	171.5	8.13	0.65	0.250
	6 79.3	35.8	79.6	3168.9		12.05	0.96	0.250
	7 85.9	42.4	82.2	3086.7	333.3	12.44	0.99	0.250
	8 92.5	49.0	75.1	3011.6	408.4	11.37	0.90	0.250
	9 99.1	55.6	69.1	2942.5	477.5	10.46	0.83	0.250
1	.0 105.7	62.2	66.8	2875.7	544.3	10.11	0.80	0.250
1	.1 112.3	68.8	67.7	2808.0	612.0	10.25	0.82	0.250
1	.2 118.9	75.5	71.1	2736.9	683.1	10.76	0.86	0.250
1	.3 125.5	82.1	77.6	2659.3	760.7	11.74	0.93	0.250
1	.4 132.1	88.7	85.1	2574.2	845.8	12.88	1.02	0.250
1	.5 138.8	95.3	90.7	2483.5	936.5	13.73	1.09	0.250
1	.6 145.4	101.9	99.4	2384.1	1035.9	15.04	1.20	0.250
1	.7 152.0	108.5	117.9	2266.2	1153.8	17.84	1.42	0.250
1	.8 158.6	115.1	144.7	2121.5	1298.5	21.90	1.74	0.250
1	.9 165.2	121.7	161.7	1959.8	1460.2	24.47	1.95	0.250
2	20 171.8	128.3	222.3	1737.5	1682.5	33.65	2.68	0.250
2	178.4	134.9	333.7	1403.8	2016.2	50.51	4.02	0.250
2	22 185.0	141.5	404.4	999.4	2420.6	61.21	4.87	0.250
Avg.	Shaft		110.0			17.10	1.36	0.250
	Toe		999.4				79.53	0.070
Soil M	odel Parameter	s/Extensi	ons		i	Shaft To	e	
Quake		(i:	n)			0.100 0.22	0	
Case D	amping Factor					2.256 0.26	1	
Reload	ing Level	(%	of Ru)			100 10	0	
Unload	ing Level	(%	of Ru)			41		
max. To	op Comp. Stres	ss =	35.9 ks	si ('	T= 26.5 ms	, max= 1.030	x Top)	
max. C	omp. Stress	=	37.0 ks	si (Z= 46.3 ft	, T= 29.2 ms)	
max. T	ens. Stress	=	-4.05 ks	si (Z= 72.7 ft	, T= 63.9 ms)	
max. E	nergy (EMX)	=	369.0 ki	ip-ft; m	ax. Measure	d Top Displ.	(DMX)= 1.2	29 in

KIWC, POA TPP; Pile: IP 2 2ND RESTRIKE PP48x1.0'', APE D180-42; Blow: 8 Robert Miner Dynamic Testing, Inc.

175.1

178.4

181.7

185.0

46.3

72.7

53 54

55

56

Absolute

2237.7

2341.4

1734.4

1811.6

-18.8

-23.6

0.0

0.0

OP: RMDT EXTREMA TABLE Pile Dist. max. min. max. max. max. max. max. Sgmnt Below Force Force Comp. Tens. Trnsfd. Veloc. Displ. No. Gages Stress Stress Energy ft kips kips kip-ft ksi ksi ft/s in 1 3.3 5305.0 -300.6 35.9 369.05 19.4 1.304 -2.04 2 5305.7 -307.7 35.9 -2.08 367.47 19.4 1.286 6.6 -358.5 -2.43 5 16.5 5308.8 35.9 362.51 19.3 1.231 8 26.4 5317.3 -449.8 36.0 -3.05 357.19 19.2 1.174 352.21 11 5350.5 -501.0 36.2 -3.39 19.1 1.119 36.3 14 46.3 5462.4 -562.7 37.0 -3.81 346.80 18.7 1.061 17 56.2 5297.4 -569.0 35.9 -3.85 324.01 18.2 1.001 20 66.1 5309.2 -585.2 35.9 -3.96 308.96 17.5 0.940 34.6 23 76.0 5114.2 -567.9 -3.84 278.67 16.5 0.876 85.9 4975.5 -541.8 33.7 252.84 15.5 0.812 26 -3.67 29 95.8 4458.6 -470.3 30.2 -3.18 213.14 14.6 0.752 32 105.7 4357.2 -465.3 29.5 -3.15 193.61 13.9 0.689 3999.2 -409.0 27.1 -2.77 164.14 13.0 0.625 35 115.6 38 125.5 3944.5 -420.7 26.7 -2.85 147.65 12.2 0.563 41 135.4 3574.1 -340.7 24.2 -2.31 121.41 11.2 0.502 145.4 3538.3 -332.1 24.0 -2.25 106.03 10.2 0.442 44 47 155.3 3157.1 -235.8 21.4 -1.60 82.41 9.1 0.383 50 165.2 3127.1 -180.0 21.2 -1.22 68.35 7.8 0.330

15.2

15.9

11.7

12.3

37.0

-0.13

-0.16

0.00

0.00

-4.05

45.48

44.45

30.92

16.77

6.7

6.7

6.6

6.3

(T =

(T =

0.282

0.268

0.256

0.243

29.2 ms)

63.9 ms)

Test: 21-Jun-2016 13:38:

CAPWAP(R) 2006-3

Page 2 Analysis: 23-Jun-2016

KIWC, POA TPP; Pile: IP 2 2ND RESTRIKE PP48x1.0'', APE D180-42; Blow: 8

Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 13:38: CAPWAP(R) 2006-3

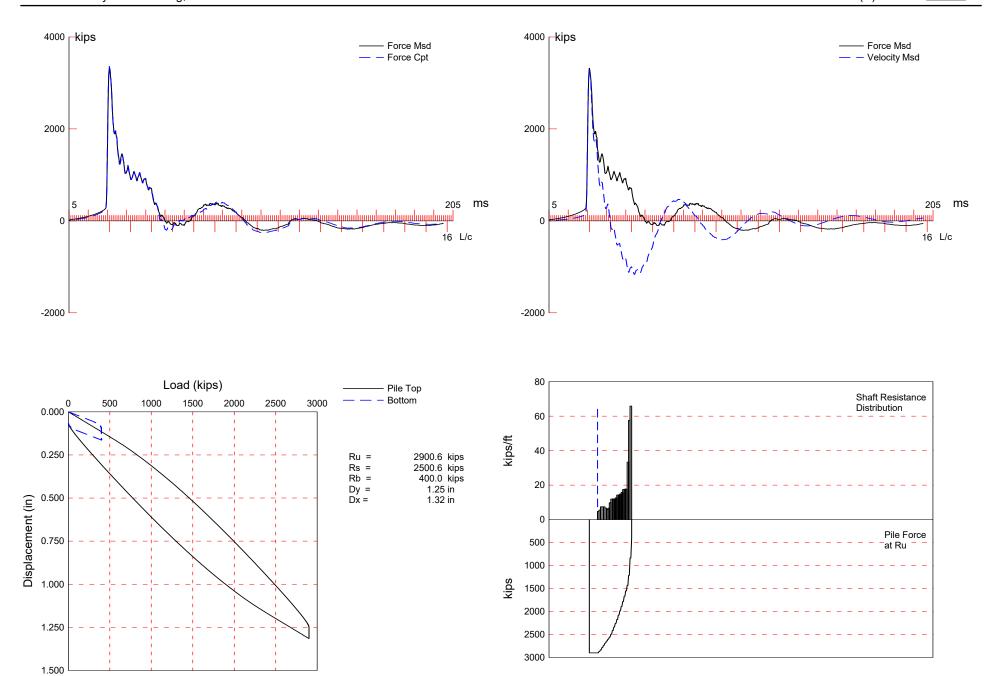
OP: RMDT

CASE METHOD 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 RP 6619.7 6223.7 5827.6 5431.5 5035.4 4639.4 4243.3 3847.2 3451.2 3055.1 6619.7 6223.7 5827.6 5431.5 5035.4 4639.4 4243.3 3847.2 3451.2 3055.1 7201.5 6863.6 6525.7 6187.9 5850.0 5512.1 5174.2 4836.3 4498.4 4160.5 RU

RAU = 404.4 (kips); RA2 = 2363.9 (kips)

Current CAPWAP Ru = 3420.0 (kips); Corresponding J(RP)= 0.81; J(RX) = 0.81

VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS ft/s kips kips kips in in in kip-ft kips ms 19.52 26.27 5233.9 5346.6 5354.8 1.290 0.062 0.062 371.3 6590.2


PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.	
	ft	in^2	ksi	lb/ft³	ft	
	0.00	147.65	31043.9	492.000	12.566	
1	.85.00	147.65	31043.9	492.000	12.566	
Toe Area		12.566	ft²			

Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 23-Jun-2016

Test: 16-Jun-2016 12:21:
CAPWAP(R) 2006-3
OP: RMDT

tal CA	PWAP Capa	city:	2900.6;	along Shaft	2500.	6; at Toe	400.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Qua
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	2
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
2.00	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	
				2900.6					
1	42.9	3.9	31.2	2869.4	31.2	8.05	0.64	0.180	0.1
2	49.5	10.5	36.5	2832.9	67.7	5.53	0.44	0.180	0.1
3	56.1	17.1	49.1	2783.8	116.8	7.44	0.59	0.180	0.1
4	62.7	23.7	49.1	2734.7	165.9	7.44	0.59	0.180	0.1
5	69.3	30.3	49.1	2685.6	215.0	7.44	0.59	0.180	0.1
6	75.9	36.9	44.2	2641.4	259.2	6.70	0.53	0.180	0.1
7	82.5	43.5	39.2	2602.2	298.4	5.94	0.33	0.180	0.1
8	89.1	50.1	43.9	2558.3	342.3	6.66	0.53	0.180	0.1
9	95.6	56.6	64.8	2493.5	407.1	9.82	0.78	0.180	0.1
10	102.2	63.2	78.7	2414.8	485.8	11.93	0.95	0.180	0.1
11	108.8	69.8	78.7	2336.1	564.5	11.93	0.95	0.180	0.1
12	115.4	76.4	78.7	2257.4	643.2	11.93	0.95	0.180	0.1
13	122.0	83.0	83.5	2173.9	726.7	12.66	1.01	0.180	0.1
14	128.6	89.6	94.0	2079.9	820.7	14.25	1.13	0.180	0.1
15	135.2	96.2	94.0	1985.9	914.7	14.25	1.13	0.180	0.1
16	141.8	102.8	98.4	1887.5	1013.1	14.92	1.19	0.180	0.1
17	148.4	109.4	104.6	1782.9	1117.7	15.86	1.26	0.180	0.1
18	155.0	116.0	115.2	1667.7	1232.9	17.46	1.39	0.180	0.1
19	161.6	122.6	116.3	1551.4	1349.2	17.63	1.40	0.180	0.0
20	168.2	129.2	117.2	1434.2	1466.4	17.77	1.41	0.180	0.0
21	174.8	135.8	220.0	1214.2	1686.4	33.35	2.65	0.180	0.0
22	181.4	142.4	379.9	834.3	2066.3	57.59	4.58	0.180	0.0
23	188.0	149.0	434.3	400.0	2500.6	65.84	5.24	0.180	0.0
Avg. Sh	naft		108.7			16.78	1.34	0.180	0.0
To	oe .		400.0				31.83	0.120	0.0
il Mode	el Parame	ters/Ext	tensions			Shaft	Toe	!	
se Dam	ping Fact	or				1.679	0.179		
loading	g Level		(% of	Ru)		100	100	1	
	g Level		(% of			45			
oil Plug Weight (ki			(kips)				0.70	1	
ax. Top Comp. Stress =		= 2	2.8 ksi	(T= 26	.4 ms, max	= 1.032 x	Top)		
		= 2	3.5 ksi	(z=42	2.9 ft, T=	28.7 ms)	1		
x. Tens	s. Stress	.	= -2	.62 ksi	(z = 42)	2.9 ft, T=	58.4 ms))	

Page 1 Analysis: 16-Jun-2016

KIWC, POA TPP; Pile: IP 3 Restirke PP48x1.0'', APE D180-42; Blow: 12 Robert Miner Dynamic Testing, Inc.

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	3363.3	-262.6	22.8	-1.78	135.91	12.1	0.779
2	6.6	3365.9	-271.2	22.8	-1.84	135.49	12.1	0.770
5	16.5	3374.0	-304.4	22.8	-2.06	134.04	12.0	0.740
8	26.4	3383.3	-325.2	22.9	-2.20	132.31	12.0	0.708
11	36.3	3419.5	-350.1	23.2	-2.37	130.29	11.8	0.672
14	46.2	3404.7	-372.6	23.1	-2.52	124.48	11.5	0.636
17	56.1	3390.0	-351.2	23.0	-2.38	118.50	11.2	0.601
20	66.0	3197.0	-323.2	21.6	-2.19	106.45	10.8	0.565
23	75.9	3139.6	-317.8	21.3	-2.15	99.65	10.4	0.528
26	85.8	2995.0	-295.1	20.3	-2.00	90.16	10.1	0.491
29	95.6	3005.0	-325.0	20.3	-2.20	84.28	9.6	0.452
32	105.5	2769.0	-268.1	18.7	-1.81	71.90	9.1	0.412
35	115.4	2710.2	-271.8	18.4	-1.84	64.44	8.5	0.372
38	125.3	2466.7	-215.5	16.7	-1.46	53.77	8.0	0.336
41	135.2	2401.0	-189.7	16.3	-1.28	47.28	7.4	0.299
44	145.1	2135.0	-140.0	14.5	-0.95	37.92	6.9	0.265
47	155.0	2082.2	-109.1	14.1	-0.74	32.65	6.3	0.231
50	164.9	1841.1	-29.8	12.5	-0.20	24.63	5.8	0.196
53	174.8	1895.0	-13.2	12.8	-0.09	20.34	4.9	0.162
56	184.7	1086.2	0.0	7.4	0.00	10.19	5.1	0.134
57	188.0	1170.5	0.0	7.9	0.00	4.62	5.0	0.128
Absolute	42.9			23.5			(T =	28.7 ms)
	42.9				-2.62		(T =	58.4 ms)

Page 2 Analysis: 16-Jun-2016

KIWC, POA TPP; Pile: IP 3 Restirke PP48x1.0'', APE D180-42; Blow: 12 Robert Miner Dynamic Testing, Inc.

Test: 16-Jun-2016 12:21: CAPWAP(R) 2006-3

OP: RMDT

	CASE METHOD									
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	4163.4	3914.4	3665.5	3416.5	3167.6	2918.6	2669.7	2420.8	2171.8	1922.9
RX	4163.4	3914.4	3665.5	3416.5	3167.6	2918.6	2669.7	2420.8	2171.8	1922.9
RU	4667.2	4468.7	4270.1	4071.5	3873.0	3674.4	3475.9	3277.3	3078.8	2880.2

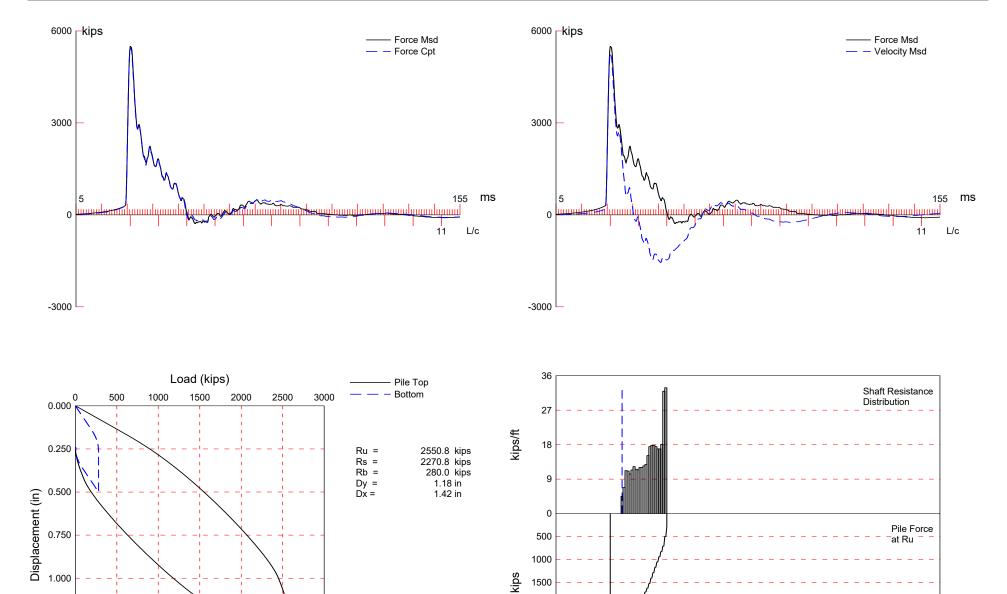
RAU = 0.0 (kips); RA2 = 1641.5 (kips)

Current CAPWAP Ru = 2900.6 (kips); Corresponding J(RP) = 0.51; J(RX) = 0.51

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
3900.1	136.5	0.067	0.067	0.773	3344.1	3337.1	3315.7	26.23	12.37

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.	
ft	in^2	ksi	lb/ft³	ft	
0.00	147.65	31043.9	492.000	12.566	
188.00	147.65	31043.9	492.000	12.566	
Toe Area	12.566	ft²			


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 22.0 ms

Page 3 Analysis: 16-Jun-2016

1.250

1.500

2000

2500 3000 Test: 15-Jun-2016 11:07: CAPWAP(R) 2006-3 OP: RMDT

Sgmnt No. Below Gages Below ft in File kips of Ru (Depth) (Area) Resist. Resist. Resist. Pampin Ru (Depth) Dampin Ru (Area) Factor Ru (Depth) Ru (Depth) (Area) Factor Ru (Area) 1 43.1 3.1 30.0 2520.8 30.0 9.53 0.76 0.21 2 49.7 9.8 45.0 2475.8 75.0 6.79 0.54 0.21 3 56.4 16.4 74.4 2401.4 149.4 11.22 0.89 0.21 4 63.0 23.0 73.8 2327.6 223.2 11.13 0.89 0.21 5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 0.21 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4	Robert	Miner	Dynamic '	Testir	ng, In		D diner-	v DEG	. mc					OP: RMDT
Soil Dist. Depth Ru Force Sum Unit Unit Smit Sgmnt Below Below in Pile of Resist. Resist. Damptin No. Gages Grade ft kips	_													
Segmit Below Below Factor Fac	Total	CAPWAP	Capacity	: 25	550.8;	along	Shaft	2270.8	; at	Toe	280.	0 kips		
No. Gages Grade ft kips kips kips kips/ft ksf s/f 2550.8	So	il	Dist.	Depth		Ru			Sum	ı	Unit	Ur	nit	Smith
### Ft	Sgm	nt	Below	Below			in Pile)	of	F	Resist.	Resis	st.	Damping
1	No	٠.	Gages	Grade					Ru		_	(Are	ea)	Factor
1 43.1 3.1 30.0 2520.8 30.0 9.53 0.76 0.21 2 49.7 9.8 45.0 2475.8 75.0 6.79 0.54 0.21 3 56.4 16.4 74.4 2401.4 149.4 11.22 0.89 0.21 4 63.0 23.0 73.8 2327.6 223.2 11.13 0.89 0.21 5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 0.21 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 661.2 11.43 0.91 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 220.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Max. Tong Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Tens. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Tens. Stress = 37.75 ksi (Z= 49.7 ft, T= 57.2 ms)			ft	ft	:	kips	kips	1	kips	k	tips/ft	k	sf	s/ft
2 49.7 9.8 45.0 2475.8 75.0 6.79 0.54 0.21 3 56.4 16.4 74.4 2401.4 149.4 11.22 0.89 0.21 4 63.0 23.0 73.8 2327.6 223.2 11.13 0.89 0.21 5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 0.21 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Max. Tong Stress = 36.9 ksi (T= 26.6 ms, max=1.040 x Top) max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max=1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 57.2 ms) max. Tens. Stress = 37.5 ksi (Z= 49.7 ft, T= 57.2 ms)														
3 56.4 16.4 74.4 2401.4 149.4 11.22 0.89 0.21 4 63.0 23.0 73.8 2327.6 223.2 11.13 0.89 0.21 5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Ray. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 May. Shaft 98.7 15.24 1.21 0.21 May. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 May. Shaft 98.7 15.24 1.21 0.21 May. Shaft 198 Weight (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (Kips) 0.22 Max. Tens. Stress = 36.9 ksi (T= 26.6 ms, max=1.040 x Top) Max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = 37.75 ksi (Z= 49.7 ft, T= 57.2 ms)														0.210
4 63.0 23.0 73.8 2327.6 223.2 11.13 0.89 0.21 5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 0.21 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.22 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 1 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 11 14.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 17 149.2 109.3 118.0 1287.6 1263.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.22 1.22 1.22 1.23 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24														0.210
5 69.6 29.7 68.6 2259.0 291.8 10.34 0.82 0.21 6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 10.9.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.99 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 No.21 No.22 No														0.210
6 76.3 36.3 75.5 2183.5 367.3 11.38 0.91 0.21 7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 270.8 32.84 2.61 0.21 Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Comp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = 38.4 ksi (Z= 49.7 ft, T= 57.2 ms)														0.210
7 82.9 42.9 81.3 2102.2 448.6 12.26 0.98 0.21 8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 7053.6 1497.2 17.49 1.39 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.20 Soil Model Parameters/Extensions Shaft Toe Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (2= 49.7 ft, T= 29.7 ms) max. Top Comp. Stress = 38.4 ksi (2= 49.7 ft, T= 27.7 ms) max. Tens. Stress = 38.4 ksi (2= 49.7 ft, T= 57.2 ms)														0.210
8 89.5 49.6 76.8 2025.4 525.4 11.58 0.92 0.21 9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.22 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.20 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = 38.4 ksi (Z= 49.7 ft, T= 57.2 ms)			76.3	36.3		75.5	2183.5		367.3		11.38	0.	91	0.210
9 96.2 56.2 75.8 1949.6 601.2 11.43 0.91 0.21 10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Top Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)			82.9	42.9					148.6		12.26	0.	98	0.210
10 102.8 62.8 80.0 1869.6 681.2 12.06 0.96 0.21 11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.20 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 0.100 100 Unloading Level (% of Ru) 0.20 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 0.20 Case Damping Factor 1.778 0.313 Unloading Level (% of Ru) 0.20 Case Damping Factor 1.778 0.313 Unloading Level (% of Ru) 0.20 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Omp. Stress = 36.9 ksi (T= 26.6 ms, max = 1.040 x Top) max. Top Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Top Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)				49.6		76.8	2025.4	: !	525.4		11.58	0.	92	0.210
11 109.4 69.5 80.0 1789.6 761.2 12.06 0.96 0.21 12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 20 169.1 129.1 112.0 941.6 1609.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.22 Avg. Shaft 15.9 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25				56.2		75.8	1949.6		501.2		11.43	0.	91	0.210
12 116.1 76.1 82.7 1706.9 843.9 12.47 0.99 0.21 13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	:	10	102.8	62.8		80.0	1869.6		581.2		12.06	0.	96	0.210
13 122.7 82.7 85.0 1621.9 928.9 12.82 1.02 0.21 14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	11	109.4	69.5		80.0	1789.6		761.2		12.06	0.	96	0.210
14 129.3 89.4 100.4 1521.5 1029.3 15.14 1.20 0.21 15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.21 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	12	116.1	76.1		82.7	1706.9) {	343.9		12.47	0.	99	0.210
15 135.9 96.0 115.9 1405.6 1145.2 17.48 1.39 0.21 16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 2270.8 32.84 2.61 0.22 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	13	122.7	82.7		85.0	1621.9	9	28.9		12.82	1.	02	0.210
16 142.6 102.6 118.0 1287.6 1263.2 17.79 1.42 0.21 17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	14	129.3	89.4	1	00.4	1521.5	10	29.3		15.14	1.	20	0.210
17 149.2 109.3 118.0 1169.6 1381.2 17.79 1.42 0.21 18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	15	135.9	96.0	1	15.9	1405.6	11	L45.2		17.48	1.	39	0.210
18 155.8 115.9 116.0 1053.6 1497.2 17.49 1.39 0.21 19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 220.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 220.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 220.0 220.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	16	142.6	102.6	1	18.0	1287.6	12	263.2		17.79	1.	42	0.210
19 162.5 122.5 112.0 941.6 1609.2 16.89 1.34 0.21 20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	=	17	149.2	109.3	1	18.0	1169.6	13	381.2		17.79	1.	42	0.210
20 169.1 129.1 112.0 829.6 1721.2 16.89 1.34 0.21 21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	-	18	155.8	115.9	1	16.0	1053.6	14	197.2		17.49	1.	39	0.210
21 175.7 135.8 120.0 709.6 1841.2 18.10 1.44 0.21 22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	-	19	162.5	122.5	1	12.0	941.6	16	509.2		16.89	1.	34	0.210
22 182.4 142.4 211.8 497.8 2053.0 31.94 2.54 0.21 23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	:	20	169.1	129.1	1	12.0	829.6	17	721.2		16.89	1.	34	0.210
23 189.0 149.0 217.8 280.0 2270.8 32.84 2.61 0.21 Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	:	21	175.7	135.8	1	20.0	709.6	18	341.2		18.10	1.	44	0.210
Avg. Shaft 98.7 15.24 1.21 0.21 Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	:	22	182.4	142.4	2	11.8	497.8	20	53.0		31.94	2.	54	0.210
Toe 280.0 22.28 0.30 Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	:	23	189.0	149.0	2	17.8	280.0	22	270.8		32.84	2.	61	0.210
Soil Model Parameters/Extensions Shaft Toe Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Avg	. Shaft	=			98.7					15.24	1.	21	0.210
Quake (in) 0.100 0.200 Case Damping Factor 1.778 0.313 Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)		Toe			2	80.0						22.	28	0.300
Case Damping Factor Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Soil M	odel P	arameters	/Exter	sions					Shaf	t T	oe		
Unloading Quake (% of loading quake) 80 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Quake				(in)					0.10	0 0.2	00		
Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Case D	amping	Factor							1.77	8 0.3	13		
Unloading Level (% of Ru) 18 Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Unload	ling Qu	ake		(% of	loadir	ng quake)			8	0 1	00		
Soil Plug Weight (kips) 0.22 max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Reload	ling Le	vel		(% of	Ru)				10	0 1	00		
max. Top Comp. Stress = 36.9 ksi (T= 26.6 ms, max= 1.040 x Top) max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Unload	ling Le	vel		(% of	Ru)				1	8			
max. Comp. Stress = 38.4 ksi (Z= 49.7 ft, T= 29.7 ms) max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	Soil P	lug We	ight		(kips))					0.	22		
max. Tens. Stress = -3.75 ksi (Z= 49.7 ft, T= 57.2 ms)	max. I	op Com	p. Stress		= 3	36.9 ks	si (T= 26	.6 ms	, ma	x= 1.040	x Top)		
	max. C	omp. S	tress		= 3	38.4 ks	si (Z= 49	.7 ft	, T=	29.7 m	ıs)		
max. Energy (EMX) = 343.2 kip-ft; max. Measured Top Displ. (DMX)= 1.15 in	max. T	ens. S	tress		= -3	3.75 ks	si (Z= 49	.7 ft	, T=	57.2 m	ıs)		
	max. E	nergy	(EMX)		= 34	13.2 ki	ip-ft; m	ax. Me	asure	d To	p Displ.	(DMX)=	1.1	5 in

KIWC, POA TPP; Pile: IP 4 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	5450.4	-268.3	36.9	-1.82	343.20	19.8	1.162
2	6.6	5452.8	-291.0	36.9	-1.97	342.07	19.8	1.146
5	16.6	5460.9	-356.9	37.0	-2.42	338.27	19.8	1.098
8	26.5	5471.2	-435.6	37.0	-2.95	334.09	19.7	1.047
11	36.5	5537.6	-498.4	37.5	-3.37	329.58	19.4	0.994
14	46.4	5588.0	-542.5	37.8	-3.67	316.61	18.8	0.940
17	56.4	5611.3	-542.3	38.0	-3.67	300.09	17.9	0.883
20	66.3	5154.6	-512.5	34.9	-3.47	260.80	17.0	0.827
23	76.3	5092.4	-527.8	34.5	-3.57	241.26	16.1	0.770
26	86.2	4647.6	-467.4	31.5	-3.16	206.82	15.2	0.714
29	96.2	4556.9	-470.2	30.9	-3.18	189.03	14.4	0.659
32	106.1	4165.7	-440.5	28.2	-2.98	161.08	13.5	0.605
35	116.1	4094.6	-422.9	27.7	-2.86	147.65	12.7	0.564
38	126.0	3756.7	-383.7	25.4	-2.60	126.25	11.8	0.531
41	135.9	3683.1	-364.8	24.9	-2.47	114.19	10.8	0.498
44	145.9	3201.4	-292.5	21.7	-1.98	91.84	9.9	0.467
47	155.8	3074.0	-274.0	20.8	-1.86	81.47	9.0	0.442
50	165.8	2673.5	-198.3	18.1	-1.34	64.18	8.2	0.419
53	175.7	2484.8	-171.1	16.8	-1.16	55.96	8.0	0.396
56	185.7	1416.8	-56.9	9.6	-0.39	34.74	8.5	0.381
57	189.0	1462.2	-58.7	9.9	-0.40	21.28	8.4	0.376
Absolute	49.7			38.4			(T =	29.7 ms)
	49.7				-3.75		(T =	57.2 ms)

Page 2 Analysis: 15-Jun-2016

KIWC, POA TPP; Pile: IP 4 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

Test: 15-Jun-2016 11:07: CAPWAP(R) 2006-3

OP: RMDT

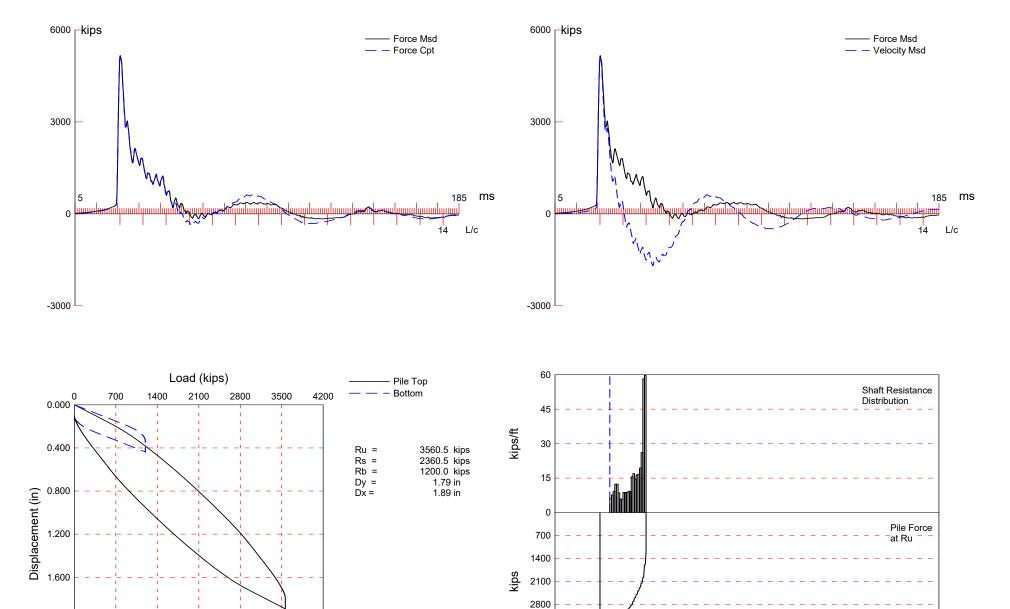
				CA	SE METHO	D				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	6183.0	5716.4	5249.8	4783.2	4316.6	3850.0	3383.5	2916.9	2450.3	1983.7
RX	6183.0	5716.4	5249.8	4783.2	4316.6	3850.0	3383.5	2916.9	2450.3	1983.7
RU	7106.0	6731.8	6357.5	5983.2	5608.9	5234.7	4860.4	4486.1	4111.8	3737.6
RAU =	0.0 (k	ips); R	A2 = 1	613.5 (k	ips)					

Current CAPWAP Ru = 2550.8 (kips); Corresponding J(RP) = 0.78; J(RX) = 0.78

QUS VMX TVP VT1*Z FT1FMX DMX DFN SET EMX in ft/s kips kips kips in in kip-ft kips ms 19.82 26.37 5314.6 5534.1 5534.1 1.148 0.240 0.240 344.1 5950.4

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	${\tt in^2}$	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
189.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.32 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.194 ms, Wave Speed 17100.0 ft/s, 2L/c 22.1 ms

Page 3 Analysis: 15-Jun-2016

2.000

2.400

3500 4200

Test: 09-Jun-2016 16:08: CAPWAP(R) 2006-3 OP: RMDT

CAPWAP	SUMMARY	RESULTS

Total CAPV	WAP Capacit	y: 3560	.5; along	g Shaft	2360.5; at	Toe 1200.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				3560.5				
1	46.3	5.3	40.6	3519.9	40.6	7.70	0.61	0.190
2	52.9	11.9	50.9	3469.0	91.5	7.70	0.61	0.190
3	59.5	18.5	61.5	3407.5	153.0	9.31	0.74	0.190
4	66.1	25.1	81.9	3325.6	234.9	12.40	0.99	0.190
5	72.7	31.7	81.9	3243.7	316.8	12.40	0.99	0.190
6	79.3	38.3	56.7	3187.0	373.5	8.58	0.68	0.190
7	85.9	44.9	38.8	3148.2	412.3	5.87	0.47	0.190
8	92.5	51.5	38.8	3109.4	451.1	5.87	0.47	0.190
9	99.1	58.1	58.2	3051.2	509.3	8.81	0.70	0.190
10	105.7	64.7	58.2	2993.0	567.5	8.81	0.70	0.190
11	112.3	71.3	58.2	2934.8	625.7	8.81	0.70	0.190
12	118.9	77.9	61.3	2873.5	687.0	9.28	0.74	0.190
13	125.5	84.6	61.3	2812.2	748.3	9.28	0.74	0.190
14	132.1	91.2	103.2	2709.0	851.5	15.62	1.24	0.190
15	138.8	97.8	112.5	2596.5	964.0	17.03	1.35	0.190
16	145.4	104.4	96.9	2499.6	1060.9	14.67	1.17	0.190
17	152.0	111.0	108.7	2390.9	1169.6	16.45	1.31	0.190
18	158.6	117.6	110.6	2280.3	1280.2	16.74	1.33	0.190
19	165.2	124.2	128.4	2151.9	1408.6	19.43	1.55	0.190
20	171.8	130.8	172.8	1979.1	1581.4	26.15	2.08	0.190
21	178.4	137.4	384.6	1594.5	1966.0	58.21	4.63	0.190
22	185.0	144.0	394.5	1200.0	2360.5	59.71	4.75	0.190
Avg. Sh	aft		107.3			16.39	1.30	0.190
То	е		1200.0				95.49	0.080
Soil Model	l Parameter	s/Extensi	ons.		i	Shaft To	e	
Quake		(i	n)			0.100 0.26	50	
Case Dampi	ing Factor		-			1.673 0.35		
Reloading Level (% of Ru)						100 10	00	
Unloading	Level		of Ru)			60		
Soil Plug	Weight	(k	ips)			1.0	0	
max. Top (Comp. Stres	s =	35.2 k	si (1	r= 26.5 ms	, max= 1.040	x Top)	
max. Comp.	_	=	36.6 k			, T= 29.2 ms	_	
max. Tens.	-4.04 k			, T= 62.6 ms				
max. Energ	gy (EMX)	=	327.7 k			d Top Displ.		L9 in

KIWC, POA TPP; Pile: IP 5 RESTRIKE PP48x1.0'', APE D180-42; Blow: 7 Robert Miner Dynamic Testing, Inc.

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	5199.9	-392.5	35.2	-2.66	327.66	19.0	1.186
2	6.6	5201.1	-418.3	35.2	-2.83	326.79	18.9	1.173
5	16.5	5205.7	-482.7	35.2	-3.27	323.97	18.9	1.132
8	26.4	5217.8	-506.9	35.3	-3.43	320.92	18.8	1.088
11	36.3	5262.6	-552.8	35.6	-3.74	317.43	18.7	1.042
14	46.3	5408.0	-596.1	36.6	-4.04	313.17	18.1	0.991
17	56.2	5200.6	-529.2	35.2	-3.58	286.78	17.4	0.938
20	66.1	5164.1	-540.0	35.0	-3.66	269.15	16.5	0.888
23	76.0	4662.4	-422.5	31.6	-2.86	231.88	15.9	0.840
26	85.9	4550.0	-422.6	30.8	-2.86	217.14	15.5	0.790
29	95.8	4398.8	-426.0	29.8	-2.88	199.27	14.9	0.739
32	105.7	4329.5	-400.7	29.3	-2.71	185.05	14.3	0.684
35	115.6	4063.8	-371.4	27.5	-2.51	162.53	13.7	0.624
38	125.5	4054.4	-362.8	27.5	-2.46	149.86	13.0	0.570
41	135.4	3750.8	-259.7	25.4	-1.76	126.76	12.0	0.514
44	145.4	3622.9	-229.4	24.5	-1.55	112.05	11.2	0.465
47	155.3	3258.7	-100.3	22.1	-0.68	91.35	10.3	0.416
50	165.2	3324.9	-59.0	22.5	-0.40	79.48	9.2	0.364
53	175.1	2816.3	0.0	19.1	0.00	59.01	7.8	0.313
54	178.4	2788.1	0.0	18.9	0.00	57.85	7.9	0.298
55	181.7	1995.7	0.0	13.5	0.00	40.76	8.0	0.285
56	185.0	2119.3	0.0	14.3	0.00	25.40	7.9	0.272
Absolute	46.3			36.6			(T =	29.2 ms)
	46.3				-4.04		(T =	62.6 ms)

Page 2 Analysis: 10-Jun-2016

KIWC, POA TPP; Pile: IP 5 RESTRIKE PP48x1.0'', APE D180-42; Blow: 7 Robert Miner Dynamic Testing, Inc.

Test: 09-Jun-2016 16:08: CAPWAP(R) 2006-3

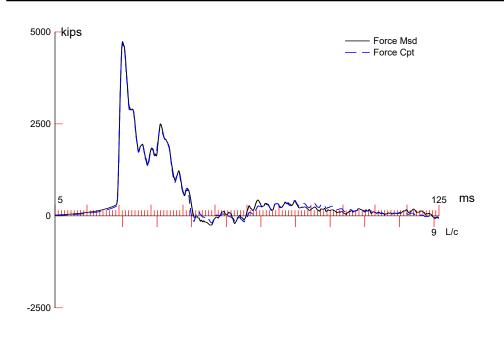
OP: RMDT

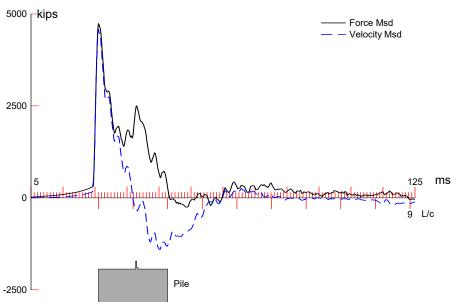
CASE METHOD										
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	6248.4	5831.9	5415.4	4998.8	4582.3	4165.8	3749.2	3332.7	2916.2	2499.6
RX	6248.4	5831.9	5415.4	4998.8	4582.3	4165.8	3749.2	3332.7	2916.2	2499.6
RU	6905.0	6554.2	6203.3	5852.4	5501.6	5150.7	4799.8	4449.0	4098.1	3747.2

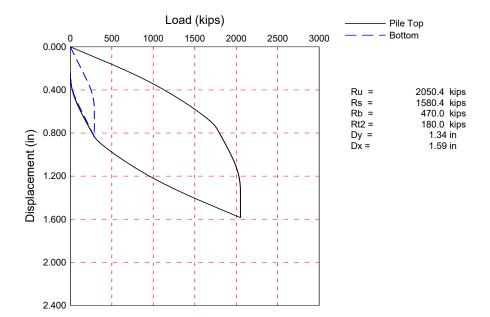
RAU = 924.1 (kips); RA2 = 2292.7 (kips)

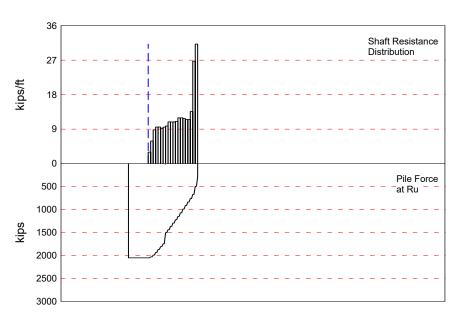
Current CAPWAP Ru = 3560.5 (kips); Corresponding J(RP) = 0.65; J(RX) = 0.65

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
6116.0	329.3	0.100	0.102	1.192	5228.8	5228.8	5184.9	26.27	19.34


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.	
ft	in^2	ksi	lb/ft³	ft	
0.00	147.65	31043.9	492.000	12.566	
185.00	147.65	31043.9	492.000	12.566	
Toe Area	12.566	ft²			


Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 10-Jun-2016

				CAPWAP SUMM	IARY RESU	JLTS			
Total CA	PWAP Capa	city:	2050.4;	along Shaft	1580.	4; at Toe	470.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	ir
				2050.4					
1	59.5	3.5	19.8	2030.6	19.8	5.61	0.45	0.200	0.100
2	66.1	10.1	38.9	1991.7	58.7	5.89	0.47	0.200	0.100
3	72.7	16.7	58.2	1933.5	116.9	8.81	0.70	0.200	0.100
4	79.3	23.3	63.1	1870.4	180.0	9.55	0.76	0.200	0.100
5	85.9	30.0	63.1	1807.3	243.1	9.55	0.76	0.200	0.100
6	92.5	36.6	60.8	1746.5	303.9	9.20	0.73	0.200	0.100
7	99.1	43.2	62.9	1683.6	366.8	9.52	0.76	0.200	0.100
2nd	Toe		180.0					0.642	0.550
8	105.7	49.8	64.9	1438.7	611.7	9.82	0.78	0.200	0.100
9	112.3	56.4	71.9	1366.8	683.6	10.88	0.87	0.200	0.100
10	118.9	63.0	71.9	1294.9	755.5	10.88	0.87	0.200	0.100
11	125.5	69.6	71.9	1223.0	827.4	10.88	0.87	0.200	0.100
12	132.1	76.2	72.9	1150.1	900.3	11.03	0.88	0.200	0.100
13	138.8	82.8	78.9	1071.2	979.2	11.94	0.95	0.200	0.100
14	145.4	89.4	78.9	992.3	1058.1	11.94	0.95	0.200	0.100
15	152.0	96.0	77.9	914.4	1136.0	11.79	0.94	0.200	0.100
16	158.6	102.6	75.9	838.5	1211.9	11.49	0.91	0.200	0.100
17	165.2	109.2	75.9	762.6	1287.8	11.49	0.91	0.200	0.100
18	171.8	115.8	89.9	672.7	1377.7	13.61	1.08	0.200	0.100
19	178.4	122.5	176.6	496.1	1554.3	26.73	2.13	0.200	0.100
20	185.0	129.1	206.1	290.0	1760.4	31.19	2.48	0.200	0.100
Avg. Sh	naft		79.0			12.25	0.97	0.200	0.100
To	oe .		290.0				23.08	0.060	0.450
Soil Mode	el Parame	eters/Ex	tensions			Shaft	Toe	1	
Case Dam	ping Fact	or				1.179	0.065	;	
Unloading	g Quake		(% of	loading qual	ce)	50	75	;	
Reloading	g Level		(% of	Ru)		100	100)	
Unloading	g Level		(% of			10			
	port Dash	pot				1.100	0.000)	
Soil Supp	port Weig	ht	(kips)			8.67	0.00)	
max. Top	Comp. St	ress	= 3	1.9 ksi	(T= 26	5.5 ms, max	= 1.074 x	Top)	
max. Com	p. Stress	3	= 3	4.2 ksi	(Z= 92	2.5 ft, T=	32.3 ms))	
max. Ten	s. Stress	3	= -4	.21 ksi	(Z= 99).1 ft, T=	59.7 ms))	
max. Ene	rgy (EMX))	= 28	6.3 kip-ft;	max. Me	asured Top	Displ. (DMX)= 1.16	in

Page 1 Analysis: 24-Jun-2016

KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 13:47: CAPWAP(R) 2006-3 OP: RMDT

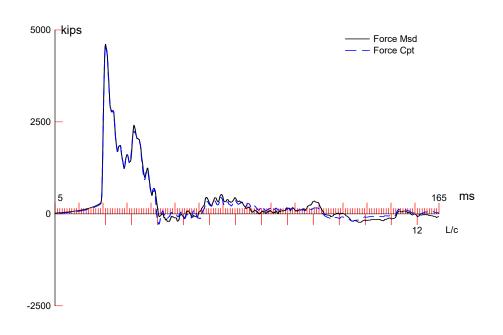
			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4704.8	-205.9	31.9	-1.39	286.28	17.2	1.183
2	6.6	4705.9	-240.5	31.9	-1.63	284.75	17.2	1.165
5	16.5	4709.6	-258.5	31.9	-1.75	278.74	17.2	1.104
8	26.4	4714.5	-356.8	31.9	-2.42	271.88	17.1	1.039
11	36.3	4721.0	-373.1	32.0	-2.53	266.47	17.1	0.981
14	46.3	4730.3	-514.7	32.0	-3.48	260.93	17.0	0.922
17	56.2	4788.7	-558.0	32.4	-3.78	260.09	16.7	0.868
20	66.1	4838.9	-588.5	32.8	-3.98	255.28	16.2	0.844
23	76.0	4626.8	-562.9	31.3	-3.81	235.30	15.5	0.815
26	85.9	4897.8	-552.8	33.2	-3.74	223.69	14.8	0.783
29	95.8	4939.8	-614.1	33.4	-4.16	203.83	11.9	0.754
32	105.7	3486.8	-470.2	22.7	-3.06	141.25	11.3	0.727
35	115.6	3223.4	-409.3	21.8	-2.77	123.35	10.7	0.701
38	125.5	3154.3	-353.7	21.4	-2.39	114.52	10.1	0.676
41	135.4	2897.4	-274.6	19.6	-1.86	97.94	9.6	0.651
44	145.4	2824.0	-256.6	19.1	-1.74	89.42	9.0	0.629
47	155.3	2553.2	-153.9	17.3	-1.04	73.16	8.5	0.609
50	165.2	2519.3	-104.3	17.1	-0.71	65.41	8.0	0.593
53	175.1	2025.7	-29.6	13.7	-0.20	49.25	10.3	0.581
54	178.4	1719.5	-33.0	11.6	-0.22	49.19	10.6	0.577
55	181.7	986.3	0.0	6.7	0.00	32.80	10.8	0.574
56	185.0	872.6	0.0	5.9	0.00	13.88	10.8	0.571
Absolute	92.5			34.2			(T =	32.3 ms)
	99.1				-4.21		(T =	59.7 ms)

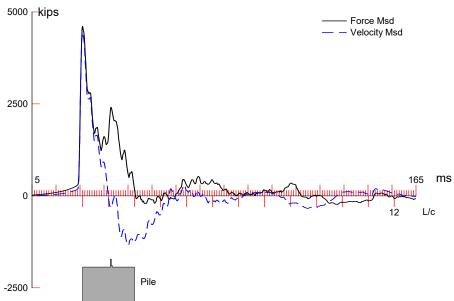
Page 2 Analysis: 24-Jun-2016

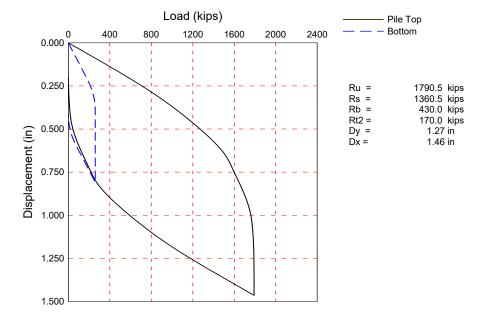
KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

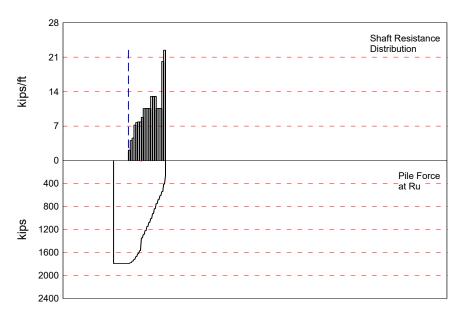
Test: 21-Jun-2016 13:47: CAPWAP(R) 2006-3

OP: RMDT


RODEL C MI	ner Dynar	MIC TESCII	g, mc.						,	r. Kill
				CASE	METHO)				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	5431.5	5033.8	4636.2 4	1238.5	8840.8	3443.2	3045.5	2647.8	2250.2	1852.5
RX	5431.5	5033.8	4636.2 4	1238.5	8840.8	3443.2	3045.5	2647.8	2250.2	1852.5
RU	6392.7	6091.1	5789.5	488.0	186.4	4884.9	4583.3	4281.8	3980.2	3678.6
RAU =	74.2 (k	ips); RA2	= 136	4.4 (kip	s)					
Current C	APWAP Ru	= 2050.4	(kips);	Correspo	nding 3	J(RP) = 0	.85; J(R	K) = 0.8	5	
VMX	TVI	VT1*Z	FT1	L FN	ΙX	DMX	DFN	SET	EMX	QUS
ft/s	ms	s kips	kips	s kip	s	in	in	in	kip-ft	kips
17.32	26.27	7 4643.5	4764.7	7 4764.	7 1	.156	0.250	0.250	287.5	4905.4
			חדו פ	DDOETT E	AND D	LIE MODE	-			
			PILE	PROFILE	AND P.	гте море.	Ь			


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft ³	ft
0.00	147.65	31043.9	492.000	12.566
102.00	147.65	31043.9	492.000	12.566
102.00	400.00	31043.9	492.000	12.566
102.49	400.00	31043.9	492.000	12.566
102.49	147.65	31043.9	492.000	12.566
185.00	147.65	31043.9	492.000	12.566


Toe Area 12.566 ft²


Segmnt	Segmnt Dist.		Imped.		Tension	Com	pression	Perim.
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	
	ft	kips/ft/s	%	in		in		ft
1	3.30	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
31	102.41	325.09	0.00	0.000	0.000	-0.000	0.000	12.566
32	105.71	279.12	0.00	0.000	0.000	-0.000	0.000	12.566
33	109.02	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
56	185.00	268.12	0.00	0.000	0.000	-0.000	0.000	12.566

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

max. Top Comp. Stress

max. Comp. Stress

max. Tens. Stress

max. Energy (EMX)

OP: RMDT CAPWAP SUMMARY RESULTS 1790.5; along Shaft 430.0 kips Total CAPWAP Capacity: 1360.5; at Toe Unit Unit Soil Dist. Depth Ru Force Sum Smith Quake Samnt Below Below in Pile of Resist. Resist. Damping No. Gages Grade Ru (Depth) (Area) Factor ft ft kips/ft s/ft kips kips kips ksf in 1790.5 1 59.5 3.7 14.0 1776.5 14.0 3.80 0.30 0.196 0.100 2 66.1 10.3 26.9 1749.6 40.9 4.07 0.32 0.196 0.100 3 16.9 0.36 72.7 30.2 1719.4 71.1 4.57 0.196 0.100 4 79.3 23.5 47.6 1671.8 118.7 7.20 0.57 0.196 0.100 5 85.9 30.1 51.1 1620.7 169.8 7.73 0.62 0.196 0.100 6 92.5 36.7 51.9 1568.8 221.7 7.86 0.63 0.196 0.100 7 99.1 43.3 51.9 1516.9 273.6 7.86 0.63 0.196 0.100 170.0 0.700 0.640 2nd Toe 8 105.7 49.9 58.1 1288.8 501.7 8.79 0.70 0.196 0.100 571.6 10.58 0.84 9 112.3 56.5 69.9 1218.9 0.196 0.100 10 118.9 63.1 69.9 1149.0 641.5 10.58 0.84 0.196 0.100 11 125.5 69.8 69.9 1079.1 711.4 10.58 0.84 0.196 0.100 12 132.1 76.4 69.9 1009.2 781.3 10.58 0.84 0.196 0.100 138.8 83.0 86.2 923.0 867.5 13.05 1.04 0.196 0.100 13 14 145.4 89.6 86.1 836.9 953.6 13.03 1.04 0.196 0.100 15 152.0 96.2 86.2 750.7 1039.8 13.05 1.04 0.196 0.100 158.6 102.8 69.9 680.8 1109.7 10.58 0.84 0.196 0.100 16 17 165.2 109.4 69.9 610.9 1179.6 10.58 0.84 0.196 0.100 171.8 116.0 69.9 0.84 18 541.0 1249.5 10.58 0.196 0.100 19 178.4 122.6 132.9 408.1 1382.4 20.11 1.60 0.196 0.100 20 185.0 129.2 148.1 260.0 1530.5 22.42 1.78 0.196 0.100 Avg. Shaft 68.0 10.53 0.84 0.196 0.100 260.0 20.69 0.110 0.300 Toe Soil Model Parameters/Extensions Shaft Toe Case Damping Factor 0.993 0.107 Unloading Quake (% of loading quake) 30 100 Reloading Level (% of Ru) 100 100 Unloading Level (% of Ru) 5 Soil Plug Weight (kips) 0.40

Test: 21-Jun-2016 13:47:

CAPWAP(R) 2006-3

Page 1 Analysis: 12-Jul-2016

31.0 ksi

34.3 ksi

-4.13 ksi

=

=

(T= 26.5 ms, max= 1.106 x Top)

(Z= 92.5 ft, T= 32.3 ms)

(Z= 66.1 ft, T= 56.0 ms)

= 268.8 kip-ft; max. Measured Top Displ. (DMX)= 1.15 in

KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 10 Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 13:47: CAPWAP(R) 2006-3 OP: RMDT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4579.4	-249.5	31.0	-1.69	268.80	16.8	1.156
2	6.6	4581.5	-244.8	31.0	-1.66	267.62	16.7	1.141
5	16.5	4588.4	-287.5	31.1	-1.95	262.68	16.7	1.086
8	26.4	4596.4	-300.7	31.1	-2.04	256.37	16.7	1.023
11	36.3	4605.9	-391.6	31.2	-2.65	251.42	16.6	0.968
14	46.3	4618.4	-419.3	31.3	-2.84	248.35	16.6	0.912
17	56.2	4666.7	-490.0	31.6	-3.32	248.26	16.4	0.864
20	66.1	4694.7	-609.4	31.8	-4.13	244.95	16.0	0.845
23	76.0	4590.6	-582.2	31.1	-3.94	232.89	15.5	0.819
26	85.9	4855.6	-603.8	32.9	-4.09	223.83	14.8	0.788
29	95.8	4992.5	-530.7	33.8	-3.59	206.74	11.9	0.760
32	105.7	3520.9	-504.3	22.9	-3.28	144.02	11.5	0.734
35	115.6	3268.0	-484.0	22.1	-3.28	126.45	10.9	0.710
38	125.5	3196.7	-402.3	21.6	-2.72	117.47	10.3	0.686
41	135.4	2957.5	-336.2	20.0	-2.28	100.56	9.7	0.661
44	145.4	2869.3	-307.2	19.4	-2.08	90.69	9.1	0.639
47	155.3	2542.7	-176.9	17.2	-1.20	71.63	8.6	0.618
50	165.2	2490.7	-143.5	16.9	-0.97	63.95	8.1	0.605
53	175.1	2086.3	-72.3	14.1	-0.49	48.83	10.4	0.591
54	178.4	1806.3	-65.8	12.2	-0.45	48.74	10.9	0.588
55	181.7	1130.5	-37.7	7.7	-0.26	34.69	11.1	0.585
56	185.0	914.9	-33.9	6.2	-0.23	18.91	11.3	0.582
Absolute	92.5			34.3			(T =	32.3 ms)
	66.1				-4.13		(T =	56.0 ms)

Page 2 Analysis: 12-Jul-2016

KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 10 Robert Miner Dynamic Testing, Inc.

26.27 4500.4

16.78

1

3.30

31 102.41

32 105.71

33 109.02

56 185.00

268.12

325.09

279.12

268.12

268.12

Test: 21-Jun-2016 13:47: CAPWAP(R) 2006-3

270.3

0.000

0.000

0.000

0.000

0.000

OP:	RMDT
-----	------

4814.8

12.566

12.566

12.566

12.566

12.566

				CA	ASE METHO	D				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	5233.3	4842.4	4451.5	4060.6	3669.7	3278.7	2887.8	2496.9	2106.0	1715.1
RX	5233.3	4842.4	4451.5	4060.6	3669.7	3278.7	2887.8	2496.9	2106.0	1715.1
RU	6243.1	5953.2	5663.3	5373.3	5083.4	4793.5	4503.5	4213.6	3923.7	3633.7
RAU =	0.0 (k	ips); R	A2 = 1	247.7 (k	rips)					
Current (CAPWAP Ru	1 = 1790.	5 (kips)	; Corres	sponding	J(RP)= 0	.88; J(RX	38.0 = (3	3	
VM	x TV	P VT1	*Z I	7T1	FMX	DMX	DFN	SET	EMX	QUS
ft./s	s m	s kii	os ki	ps	kips	in	in	in	kip-ft	kips

PILE PROFILE AND PILE MODEL

1.147

0.000

0.000

0.000

0.000

0.000

-0.000

-0.000

-0.000

-0.000

-0.000

0.200 0.200

4642.1 4642.1

			PILE PROF	TIE AND PILE	MODEL			
	Depth	1	Area	E-Modulu	ıs S	Spec. Weight		Perim.
	ft	:	in²	ks	si	lb/ft ³		ft
	0.00)	147.65	31043.	. 9	492.000		12.566
	102.00)	147.65	31043.	.9	492.000		12.566
	102.00)	400.00	31043.	.9	492.000		12.566
	102.49)	400.00	31043.	. 9	492.000		12.566
	102.49)	147.65	31043.	. 9	492.000		12.566
	185.00)	147.65	31043.	. 9	492.000		12.566
Toe Area			12.566	ft²				
Segmnt	Dist.	Impedance	Imped.	ī	ension	Comp	ression	Perim.
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	
	ft	kips/ft/s	%	in		in		ft

0.000

0.000

0.000

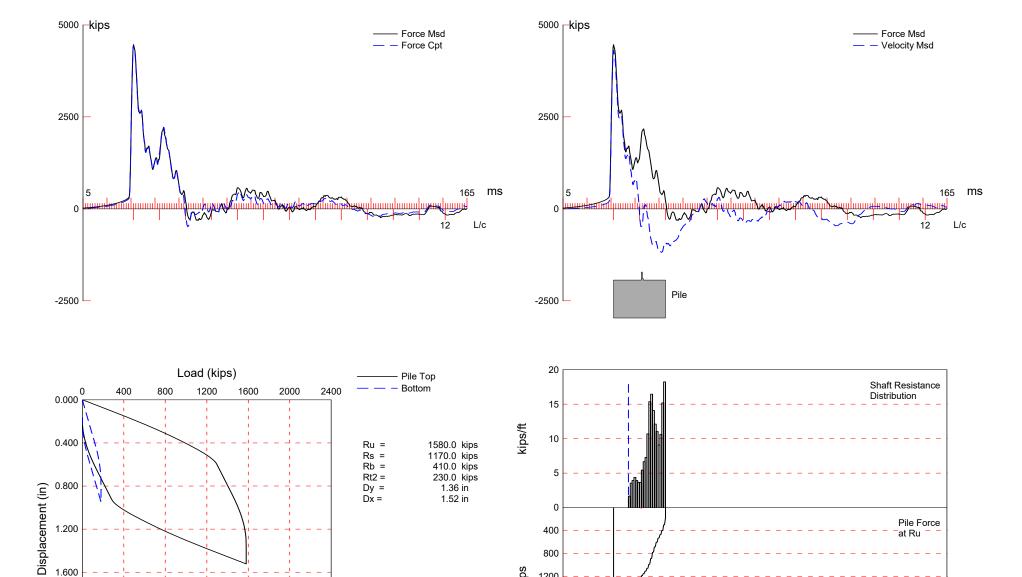
0.000

0.000

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

0.00

0.00


0.00

0.00

0.00

2.000

2.400

kips

1600

2000 2400

OP: RMDT CAPWAP SUMMARY RESULTS Total CAPWAP Capacity: 1580.0; along Shaft 410.0 kips 1170.0; at Toe Unit Unit Smith Soil Dist. Depth Ru Force Sum Quake Samnt Below Below in Pile of Resist. Resist. Damping No. Gages Grade Ru (Depth) (Area) Factor ft ft kips/ft ksf s/ft kips kips kips in 1580.0 1569.0 1 59.5 4.0 11.0 11.0 2.75 0.22 0.170 0.100 2 66.1 10.6 23.5 1545.5 34.5 3.56 0.28 0.170 0.100 3 17.2 60.5 0.31 72.7 26.0 1519.5 3.94 0.170 0.100 4 79.3 23.8 29.0 1490.5 89.5 4.39 0.35 0.170 0.100 30.4 26.0 5 85.9 1464.5 115.5 3.94 0.31 0.170 0.100 6 92.5 37.0 24.2 1440.3 139.7 3.66 0.29 0.170 0.100 7 99.1 43.6 24.2 1416.1 163.9 3.66 0.29 0.170 0.100 230.0 0.700 0.700 2nd Toe 8 105.7 50.3 36.0 1150.1 429.9 5.45 0.43 0.170 0.100 44.0 473.9 6.66 0.53 9 112.3 56.9 1106.1 0.170 0.100 10 118.9 63.5 48.1 1058.0 522.0 7.28 0.58 0.170 0.100 11 125.5 70.1 70.7 987.3 592.7 10.70 0.85 0.170 0.100 132.1 885.8 15.36 1.22 12 76.7 101.5 694.2 0.170 0.100 138.8 83.3 108.7 777.1 802.9 16.45 1.31 0.170 0.100 13 14 145.4 89.9 93.1 684.0 896.0 14.09 1.12 0.170 0.100 15 152.0 96.5 80.0 604.0 976.0 12.11 0.96 0.170 0.100 158.6 103.1 73.0 531.0 1049.0 11.05 0.88 0.170 0.100 16 17 165.2 109.7 60.0 471.0 1109.0 9.08 0.72 0.170 0.100 171.8 70.2 400.8 0.85 0.100 18 116.3 1179.2 10.62 0.170 19 178.4 122.9 100.3 300.5 1279.5 15.18 1.21 0.170 0.100 20 185.0 129.5 120.5 180.0 1400.0 18.24 1.45 0.170 0.100 Avg. Shaft 58.5 9.03 0.72 0.170 0.100 180.0 14.32 0.160 0.600 Toe Soil Model Parameters/Extensions Shaft Toe Case Damping Factor 0.742 0.107 Unloading Ouake (% of loading guake) 100

Test: 21-Jun-2016 13:48:

CAPWAP(R) 2006-3

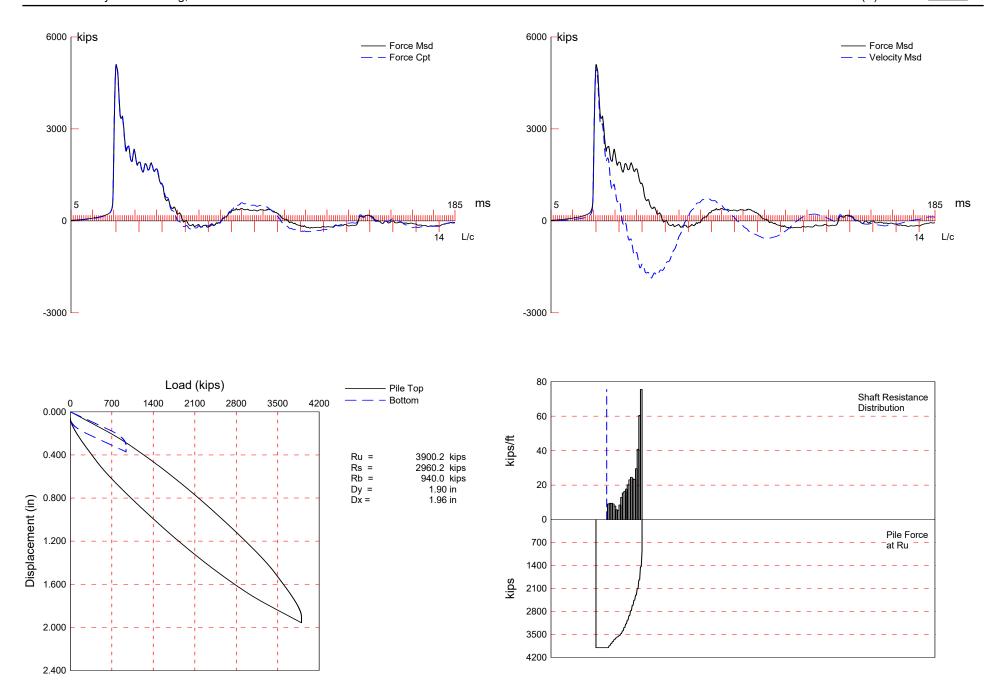
Unitoading Quake	(% OI TOAUTING QUAKE	50 100
Reloading Level	(% of Ru)	100 100
Unloading Level	(% of Ru)	10
Soil Plug Weight	(kips)	0.90
max. Top Comp. Stress	= 30.0 ksi	(T= 26.5 ms, max= 1.178 x Top)
max. Comp. Stress	= 35.3 ksi	(Z= 99.1 ft, T= 32.1 ms)
max. Tens. Stress	= -4.21 ksi	(Z= 95.8 ft, T= 55.4 ms)
max. Energy (EMX)	= 245.6 kip-ft;	max. Measured Top Displ. (DMX)= 1.09 in

KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 31 Robert Miner Dynamic Testing, Inc.

Test: 21-Jun-2016 13:48: CAPWAP(R) 2006-3 OP: RMDT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4428.1	-426.8	30.0	-2.89	245.63	16.2	1.110
2	6.6	4429.8	-349.1	30.0	-2.36	244.57	16.2	1.095
5	16.5	4435.4	-294.3	30.0	-1.99	239.97	16.2	1.042
8	26.4	4441.9	-349.4	30.1	-2.37	235.96	16.1	0.992
11	36.3	4449.6	-361.0	30.1	-2.44	230.62	16.1	0.935
14	46.3	4459.6	-348.5	30.2	-2.36	229.82	16.0	0.876
17	56.2	4494.8	-479.4	30.4	-3.25	229.73	15.9	0.833
20	66.1	4519.2	-588.5	30.6	-3.98	227.45	15.6	0.826
23	76.0	4415.6	-597.3	29.9	-4.04	218.19	15.3	0.809
26	85.9	4790.1	-521.1	32.4	-3.53	213.17	14.8	0.786
29	95.8	5164.6	-621.1	35.0	-4.21	205.52	11.6	0.767
32	105.7	3316.6	-428.4	21.6	-2.79	130.61	11.2	0.747
35	115.6	3186.3	-441.8	21.6	-2.99	120.31	10.8	0.728
38	125.5	3211.1	-376.2	21.7	-2.55	114.42	10.2	0.708
41	135.4	2939.2	-389.0	19.9	-2.63	94.52	9.6	0.688
44	145.4	2801.8	-351.4	19.0	-2.38	82.42	9.0	0.669
47	155.3	2494.2	-218.2	16.9	-1.48	63.39	8.5	0.657
50	165.2	2423.1	-230.9	16.4	-1.56	55.42	8.3	0.650
53	175.1	2079.8	-121.9	14.1	-0.83	41.43	10.8	0.640
54	178.4	1816.9	-89.2	12.3	-0.60	41.37	11.5	0.637
55	181.7	1225.6	-18.8	8.3	-0.13	30.25	11.9	0.635
56	185.0	847.1	0.0	5.7	0.00	16.35	12.1	0.633
Absolute	99.1			35.3			(T =	32.1 ms)
	95.8				-4.21		(T =	55.4 ms)

Page 2 Analysis: 12-Jul-2016


KIWC, POA TPP; Pile: IP 6 RESTRIKE PP48x1.0'', APE D180-42; Blow: 31

Test: 21-Jun-2016 13:48: CAPWAP(R) 2006-3

Robert Min	ner Dynam	nic Testin	g, Inc.						(OP: RMDT
				CASE	METHO)				
J =	0.0	0.1	0.2	0.3	0.4	0.	5 0.	6 0.	7 0.8	0.9
RP	4989.3	4603.0	1216.7 3	8830.5	3444.2	3057.	9 2671.	7 2285.4	4 1899.1	1512.9
RX	4989.3	4603.0	1216.7 3	8830.5	3444.2	3057.	9 2671.	7 2285.4	4 1899.1	1512.9
RU	5932.7	5640.7	348.8 5	056.9	1764.9	4473.	0 4181.	1 3889.	1 3597.2	3305.3
RAU =	0.0 (ki	.ps); RA2	= 87	5.4 (kip	s)					
Current C	APWAP Ru	= 1580.0	(kips);	Correspo	nding (J(RP)=	0.88; Ј	(RX) = 0.8	88	
VMX	TVP	VT1*Z	FT1	L FM	ΙX	DMX	DFN	SET	EMX	QUS
ft/s	ms	kips	kips	s kip	s	in	in	in	kip-ft	kips
16.27	26.27	4361.4	4490.6	4490.	6 1	.092	0.167	0.167	246.8	4706.1
			PILE	PROFILE	AND P	LE MOD	EL			
	Depth	1	Area	ı	E-Mod	ulus	Spec	. Weight		Perim.
	ft		in ²			ksi		lb/ft3		ft
	0.00)	147.65	5	310	43.9		492.000		12.566
	102.00)	147.65	5	310	43.9		492.000		12.566
	102.00	1	400.00)	310	43.9		492.000		12.566
	102.49	1	400.00)	310	43.9		492.000		12.566
	102.49	1	147.65	5	310	43.9		492.000		12.566
	185.00)	147.65	5	310	43.9		492.000		12.566
Toe Area			12.566	5 f	t ²					

Segmnt		Impedance	Imped.		Tension	Com	pression	Perim.
Number	B.G.		Change	Slack	Eff.	Slack	Eff.	
	ft	kips/ft/s	%	in		in		ft
1	3.30	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
31	102.41	325.09	0.00	0.000	0.000	-0.000	0.000	12.566
32	105.71	279.12	0.00	0.000	0.000	-0.000	0.000	12.566
33	109.02	268.12	0.00	0.000	0.000	-0.000	0.000	12.566
56	185.00	268.12	0.00	0.000	0.000	-0.000	0.000	12.566

Pile Damping 1.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Test: 08-Jun-2016 13:37: CAPWAP(R) 2006-3 OP: RMDT

Robert Miner	Dynamic 1	esting,		D CIMMAD	V DECITIVE			OP: RMDI
1 @		2000			Y RESULTS	- 040.0	, ,	
Total CAPWAP		3900	.2; along	Shaft	2960.2; at		kips	
		Depth	Ru	Force			Unit	Smith
Sgmnt		Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	· -	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				3900.2				
1	52.9	6.9	59.8	3840.4	59.8	8.70	0.69	0.170
2	59.5	13.5	62.7	3777.7	122.5	9.49	0.76	0.170
3	66.1	20.1	62.5	3715.2	185.0	9.46	0.75	0.170
4	72.7	26.7	59.9	3655.3	244.9	9.07	0.72	0.170
5	79.3	33.3	51.8	3603.5	296.7	7.84	0.62	0.170
6	85.9	39.9	37.8	3565.7	334.5	5.72	0.46	0.170
7	92.5	46.5	35.3	3530.4	369.8	5.34	0.43	0.170
8	99.1	53.1	55.8	3474.6	425.6	8.45	0.67	0.170
	105.7	59.7	84.7	3389.9			1.02	0.170
10	112.3	66.3	102.2	3287.7	612.5	15.47	1.23	0.170
	118.9	72.9	108.6	3179.1			1.31	0.170
	125.5	79.5	117.3	3061.8			1.41	0.170
	132.1	86.2	133.9	2927.9			1.61	0.170
	138.8	92.8	152.6	2775.3			1.84	0.170
	145.4	99.4	162.4	2612.9			1.96	0.170
		106.0	155.9	2457.0			1.88	0.170
		112.6	154.3	2302.7			1.86	0.170
		119.2	194.9	2107.8			2.35	0.170
		125.8	269.7	1838.1			3.25	0.170
		132.4	399.4	1438.7			4.81	0.170
		139.0	498.7	940.0			6.01	0.170
Avg. Shaft	:		141.0			21.29	1.69	0.170
Toe			940.0				74.80	0.060
Soil Model P	arameters/	'Extensi	ons.			Shaft To	e	
Quake		(i				0.100 0.24		
Case Damping	Factor	(_	,			1.877 0.21		
Unloading Qu		(%	of loadin	og guake)		50 3		
Reloading Le			of Ru)	.g 4,		100 10		
Unloading Le			of Ru)			50		
max. Top Com	p. Stress	=	34.5 ks	si (T= 26.5 ms	, max= 1.046	x Top)	
max. Comp. S	tress	=	36.1 ks	si (z= 52.9 ft	, T= 29.6 ms)	
max. Tens. S	tress	=	-5.06 ks	si (z= 99.1 ft	, T= 66.8 ms)	
max. Energy	(EMX)	=	368.0 ki	.p-ft; m	ax. Measure	d Top Displ.	(DMX)=1.	36 in

KIWC, POA TPP; Pile: IP 7 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

Test: 08-Jun-2016 13:37: CAPWAP(R) 2006-3 OP: RMDT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	5090.2	-363.7	34.5	-2.46	368.04	18.6	1.370
2	6.6	5089.5	-374.3	34.5	-2.53	366.95	18.5	1.355
5	16.5	5088.0	-403.2	34.4	-2.73	363.13	18.5	1.307
8	26.4	5096.9	-488.2	34.5	-3.31	358.45	18.4	1.253
11	36.3	5114.0	-559.2	34.6	-3.79	352.70	18.3	1.194
14	46.3	5216.2	-646.8	35.3	-4.38	345.89	17.9	1.129
17	56.2	5143.8	-667.3	34.8	-4.52	324.14	17.3	1.062
20	66.1	5058.3	-679.7	34.2	-4.60	302.54	16.7	0.996
23	76.0	4725.3	-674.2	32.0	-4.56	268.94	16.2	0.929
26	85.9	4634.1	-691.8	31.4	-4.68	250.95	15.8	0.859
29	95.8	4516.1	-723.1	30.6	-4.90	229.28	15.2	0.786
32	105.7	4549.0	-736.4	30.8	-4.99	211.95	14.4	0.713
35	115.6	4182.5	-671.6	28.3	-4.55	178.56	13.4	0.643
38	125.5	4119.0	-648.5	27.9	-4.39	158.94	12.4	0.578
41	135.4	3685.9	-531.5	25.0	-3.60	127.59	11.2	0.514
44	145.4	3554.0	-496.8	24.1	-3.36	108.66	10.1	0.451
47	155.3	3050.0	-343.3	20.7	-2.32	81.32	9.0	0.391
50	165.2	3054.5	-302.8	20.7	-2.05	68.04	7.8	0.335
53	175.1	2173.6	-87.7	14.7	-0.59	44.47	7.0	0.284
54	178.4	2263.6	-86.5	15.3	-0.59	43.29	7.0	0.268
55	181.7	1667.4	0.0	11.3	0.00	29.54	7.0	0.256
56	185.0	1747.9	0.0	11.8	0.00	14.62	6.6	0.243
solute	52.9			36.1			(T =	29.6 ms)
	99.1				-5.06		(T =	66.8 ms)
	99.1				-5.06		(T =	66.8 ms

Page 2 Analysis: 08-Jun-2016

KIWC, POA TPP; Pile: IP 7 RESTRIKE PP48x1.0'', APE D180-42; Blow: 5 Robert Miner Dynamic Testing, Inc.

Test: 08-Jun-2016 13:37: CAPWAP(R) 2006-3

OP: RMDT

				CA	SE METHOI)				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	6359.6	5980.9	5602.3	5223.6	4844.9	4466.3	4087.6	3708.9	3330.2	2951.6
RX	6359.6	5980.9	5602.3	5223.6	4844.9	4466.3	4087.6	3708.9	3330.2	2951.6
RU	6903.9	6579.6	6255.4	5931.1	5606.9	5282.6	4958.4	4634.1	4309.9	3985.7
RAU =	0.0 (k	ips); R	A2 = 2'	745.5 (k:	ips)					

Current CAPWAP Ru = 3900.2 (kips); Corresponding J(RP) = 0.65; J(RX) = 0.65

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
6241.5	369.0	0.060	0.064	1.359	5146.3	5146.3	5000.1	26.27	18.65

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.	
ft	in^2	ksi	lb/ft³	ft	
0.00	147.65	31043.9	492.000	12.566	
185.00	147.65	31043.9	492.000	12.566	
Toe Area	12.566	ft²			

Top Segment Length 3.30 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 2.0 %, Time Incr 0.193 ms, Wave Speed 17100.0 ft/s, 2L/c 21.6 ms

Page 3 Analysis: 08-Jun-2016

2.000

2.400

2000

2500 3000

Test: 10-Jun-2016 10:14: CAPWAP(R) 2006-3 OP: RMDT

			CAPW	AP SUMMAR	Y RESULTS			
Total CAPW	MAP Capacity	y: 2780	.6; along	Shaft	2450.6; at	Toe 330.0) kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				2780.6				
1	75.5	6.5	56.1	2724.5	56.1	8.59	0.68	0.165
2	82.1	13.1	50.4	2674.1	106.5	7.68	0.61	0.165
3	88.6	19.7	39.3	2634.8	145.8	5.99	0.48	0.165
4	95.2	26.2	39.3	2595.5	185.1	5.99	0.48	0.165
5	101.8	32.8	47.3	2548.2	232.4	7.20	0.57	0.165
6	108.3	39.4	64.0	2484.2	296.4	9.75	0.78	0.165
7	114.9	45.9	72.0	2412.2	368.4	10.97	0.87	0.165
8	121.5	52.5	90.1	2322.1	458.5	13.72	1.09	0.165
9	128.0	59.1	119.3	2202.8	577.8	18.17	1.45	0.165
10	134.6	65.6	134.4	2068.4	712.2	20.47	1.63	0.165
11	141.2	72.2	135.0	1933.4	847.2	20.56	1.64	0.165
12	147.7	78.8	142.0	1791.4	989.2	21.63	1.72	0.165
13	154.3	85.3	190.9	1600.5	1180.1	29.07	2.31	0.165
14	160.9	91.9	278.1	1322.4	1458.2	42.35	3.37	0.165
15	167.4	98.5	480.2	842.2	1938.4	73.13	5.82	0.165
16	174.0	105.0	512.2	330.0	2450.6	78.01	6.21	0.165
Avg. Sha	aft		153.2			23.33	1.86	0.165
Toe	е		330.0				26.26	0.065
Soil Model	. Parameter:	s/Extensi	ons			Shaft T	oe	
Quake		(i	n)			0.100 0.3	50	
Case Dampi	ng Factor					1.508 0.0	80	
Damping Ty	pe					Smi	th	
Unloading	Quake	(%	of loading	ng quake)		65 1	00	
Reloading	Level	(%	of Ru)			100 1	00	
Unloading	Level	(%	of Ru)			15		
max. Top C	omp. Stress	s =	34.5 ks	si (T= 26.5 ms	, max= 1.043	x Top)	
max. Comp.	Stress	=	36.0 ks	si (Z= 75.5 ft	, T= 30.7 m	s)	
max. Tens.	Stress	=	-5.47 ks	si (z= 108.3 ft	, T= 66.0 m	s)	
max. Energ	y (EMX)	=	339.8 k	ip-ft; m	ax. Measure	d Top Displ.	(DMX) = 1.2	29 in

Page 1 Analysis: 14-Jun-2016

KIWC, POA TPP; Pile: IP 8 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

Test: 10-Jun-2016 10:14: CAPWAP(R) 2006-3 OP: RMDT

	EXTREMA TABLE											
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.				
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.				
No.	Gages			Stress	Stress	Energy						
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in				
1	3.3	5100.4	-286.2	34.5	-1.94	339.75	18.7	1.356				
2	6.6	5102.2	-301.2	34.5	-2.04	338.97	18.7	1.343				
5	16.4	5108.0	-350.0	34.6	-2.37	336.11	18.6	1.302				
8	26.3	5114.8	-397.6	34.6	-2.69	332.33	18.6	1.254				
11	36.1	5122.6	-455.7	34.7	-3.09	328.33	18.5	1.205				
14	46.0	5132.0	-534.2	34.7	-3.62	324.57	18.5	1.157				
17	55.8	5143.2	-590.9	34.8	-4.00	319.78	18.4	1.103				
20	65.7	5183.3	-688.7	35.1	-4.66	313.99	18.3	1.043				
23	75.5	5319.1	-744.1	36.0	-5.04	306.73	17.7	0.976				
26	85.4	5020.3	-759.8	34.0	-5.14	277.52	17.3	0.915				
29	95.2	4986.7	-773.7	33.8	-5.24	262.78	16.8	0.850				
32	105.1	4825.2	-797.4	32.7	-5.40	241.18	16.2	0.790				
35	114.9	4799.5	-790.9	32.5	-5.36	224.95	15.4	0.730				
38	124.8	4527.5	-694.0	30.7	-4.70	197.10	14.4	0.677				
41	134.6	4440.3	-677.4	30.1	-4.59	177.73	13.3	0.625				
44	144.5	3967.6	-548.6	26.9	-3.71	145.10	12.1	0.579				
47	154.3	4062.1	-495.4	27.5	-3.35	130.19	10.6	0.536				
50	164.2	2890.1	-320.5	19.6	-2.17	88.12	10.4	0.502				
51	167.4	2710.4	-317.8	18.4	-2.15	88.10	10.6	0.492				
52	170.7	1541.9	-124.7	10.4	-0.84	50.86	10.6	0.486				
53	174.0	1611.2	-123.6	10.9	-0.84	11.21	10.3	0.479				
Absolute	75.5			36.0			(T =	30.7 ms)				
	108.3				-5.47		(T =	66.0 ms)				

Page 2 Analysis: 14-Jun-2016

KIWC, POA TPP; Pile: IP 8 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

Test: 10-Jun-2016 10:14: CAPWAP(R) 2006-3

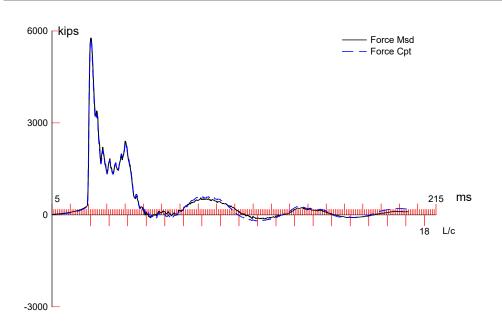
OP: RMDT

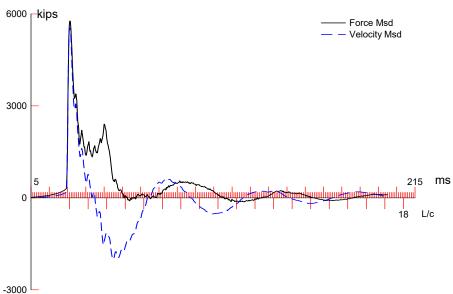
	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	6249.2	5854.5	5459.8	5065.1	4670.4	4275.7	3881.0	3486.3	3091.6	2696.9		
RX	6249.2	5854.5	5459.8	5065.1	4670.4	4275.7	3881.0	3486.3	3091.6	2702.0		
RU	6273.2	5880.9	5488.6	5096.3	4704.0	4311.7	3919.4	3527.1	3134.8	2742.5		

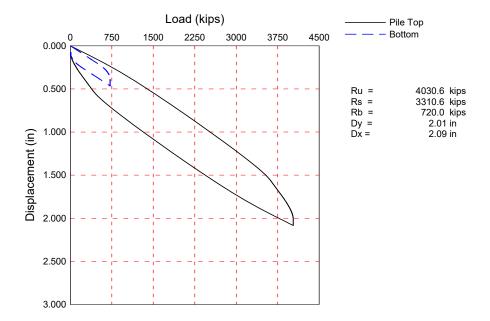
RAU = 927.0 (kips); RA2 = 2376.4 (kips)

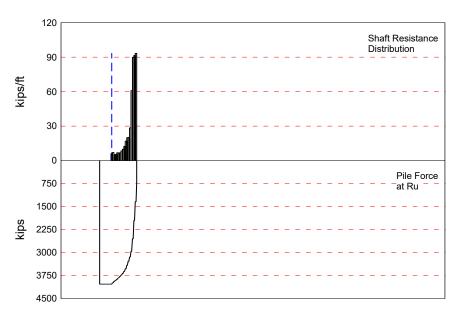
Current CAPWAP Ru = 2780.6 (kips); Corresponding J(RP) = 0.88; J(RX) = 0.88

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
5582.3	339.2	0.171	0.167	1,287	5319.7	5319.7	4876.5	26.30	18.19


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
174.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.28 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.192 ms, Wave Speed 17100.0 ft/s, 2L/c 20.4 ms

Page 3 Analysis: 14-Jun-2016

Test: 10-Jun-2016 09:59: CAPWAP(R) 2006-3 OP: RMDT

	-		CAPWA	P SUMMAR	Y RESULTS			
Total CA	APWAP Capacit	y: 4030	.6; along	Shaft	3310.6; at	Toe 720.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				4030.6				
1	60.0	1.6	40.0	3990.6	40.0	24.46	1.95	0.170
2	66.7	8.3	47.8	3942.8	87.8	7.17	0.57	0.170
3	73.4	15.0	35.0	3907.8	122.8	5.25	0.42	0.170
4	80.0	21.6	35.0	3872.8	157.8	5.25	0.42	0.170
5	86.7	28.3	45.7	3827.1	203.5	6.85	0.55	0.170
6	93.4	35.0	45.0	3782.1	248.5	6.75	0.54	0.170
7	100.0	41.7	45.8	3736.3	294.3	6.87	0.55	0.170
8	106.7	48.3	56.2	3680.1	350.5	8.43	0.67	0.170
9	113.4	55.0	66.7	3613.4	417.2	10.00	0.80	0.170
10	120.0	61.7	83.5	3529.9	500.7	12.52	1.00	0.170
11	126.7	68.3	113.4	3416.5	614.1	17.00	1.35	0.170
12	133.4	75.0	133.0	3283.5	747.1	19.94	1.59	0.170
13	140.1	81.7	135.0	3148.5	882.1	20.24	1.61	0.170
14	146.7	88.3	190.0	2958.5	1072.1	28.49	2.27	0.170
15	153.4	95.0	406.0	2552.5	1478.1	60.88	4.84	0.170
16	160.1	101.7	600.0	1952.5	2078.1	89.97	7.16	0.170
17	166.7	108.3	610.0	1342.5	2688.1	91.47	7.28	0.170
18	173.4	115.0	622.5	720.0	3310.6	93.34	7.43	0.170
Avg.	Shaft		183.9			28.78	2.29	0.170
,	Toe		720.0				57.30	0.040
Soil Mod	del Parameter	s/Extensi	ons			Shaft To	e	
Quake		(iı	n)			0.100 0.30	10	
~	mping Factor	\	,			2.099 0.10		
Unloadir		(%	of loadir	ng guake)			0	
	ng Level		of Ru)	-5 4,		100 10		
Unloadir	_	-	of Ru)			10		
	ıg Weight		ips)			0.2	:0	
max Tor	comp. Stres	s =	38.5 ks	:i ('	T= 26.5 ms	, max= 1.038	x Ton)	
_	np. Stress	=	40.0 ks	_		, T= 30.0 ms		
	ns. Stress	=	-5.52 ks	•	Z= 106.7 ft			
	ergy (EMX)	=	409.1 ki	_		d Top Displ.	-	87 in
	31 (11111)	-	102.1 KJ	, m	Magare	~ 10b probr.	(2222)- 100	,,

KIWC, POA TPP; Pile: IP 9 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	5691.2	-209.2	38.5	-1.42	409.08	20.9	1.414
2	6.7	5692.4	-218.5	38.5	-1.48	407.88	20.9	1.399
5	16.7	5696.8	-243.6	38.6	-1.65	405.16	20.8	1.358
8	26.7	5704.5	-321.4	38.6	-2.18	401.80	20.8	1.313
11	36.7	5716.0	-409.5	38.7	-2.77	397.51	20.7	1.261
14	46.7	5737.8	-518.3	38.8	-3.51	392.07	20.7	1.203
17	56.7	5856.9	-636.2	39.7	-4.31	386.26	20.3	1.144
20	66.7	5808.6	-689.1	39.3	-4.67	369.49	19.8	1.086
23	76.7	5571.2	-698.0	37.7	-4.73	340.79	19.3	1.023
26	86.7	5564.1	-763.7	37.7	-5.17	323.56	18.8	0.950
29	96.7	5338.8	-788.3	36.1	-5.34	291.41	18.2	0.865
32	106.7	5347.9	-815.5	36.2	-5.52	272.03	17.5	0.786
35	116.7	5119.6	-783.5	34.7	-5.30	237.41	16.7	0.698
38	126.7	5130.8	-770.2	34.7	-5.21	210.24	15.5	0.603
41	136.7	4665.9	-705.9	31.6	-4.78	168.86	14.2	0.520
44	146.7	4986.2	-666.7	33.8	-4.51	146.46	12.2	0.444
47	156.7	4176.3	-500.3	28.3	-3.39	99.86	9.1	0.378
48	160.1	4201.3	-515.4	28.4	-3.49	99.49	8.1	0.358
49	163.4	2846.3	-330.8	19.3	-2.24	67.37	8.3	0.342
50	166.7	2936.4	-338.3	19.9	-2.29	66.34	8.1	0.328
51	170.1	1819.1	-191.0	12.3	-1.29	39.59	8.2	0.317
52	173.4	1874.9	-187.9	12.7	-1.27	13.14	7.9	0.305
Absolute	60.0			40.0			(T =	30.0 ms)
	106.7				-5.52		(T =	65.5 ms)

Page 2 Analysis: 14-Jun-2016

KIWC, POA TPP; Pile: IP 9 RESTRIKE PP48x1.0'', APE D180-42; Blow: 3 Robert Miner Dynamic Testing, Inc.

Test: 10-Jun-2016 09:59: CAPWAP(R) 2006-3

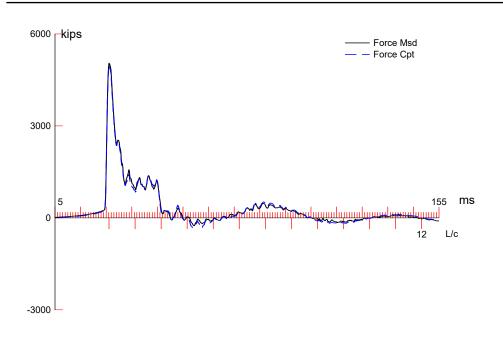
OP: RMDT

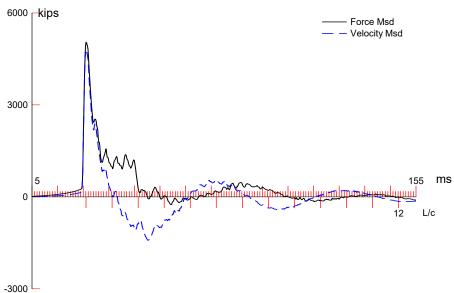
	-		5.										
	CASE METHOD												
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
RP	7241.8	6826.5	6411.1	5995.8	5580.5	5165.1	4749.8	4334.5	3919.1	3503.8			
RX	7241.8	6826.5	6411.1	5995.8	5580.5	5165.1	4749.8	4334.5	3919.1	3503.8			
RU	7442.2	7046.9	6651.6	6256.3	5861.0	5465.7	5070.4	4675.2	4279.9	3884.6			

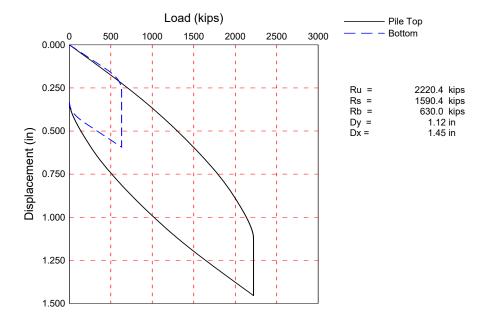
RAU = 1855.3 (kips); RA2 = 2700.7 (kips)

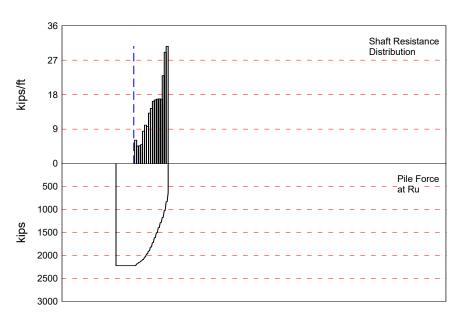
Current CAPWAP Ru = 4030.6 (kips); Corresponding J(RP) = 0.77; J(RX) = 0.77

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
6803.7	409.5	0.075	0.062	1.370	5801.6	5801.6	5593.5	26.33	20.86


PILE PROFILE AND PILE MODEL


Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
173.40	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		


Top Segment Length 3.33 ft, Top Impedance 268.13 kips/ft/s


Pile Damping 1.0 %, Time Incr 0.195 ms, Wave Speed 17100.0 ft/s, 2L/c 20.3 ms

Page 3 Analysis: 14-Jun-2016

P 10 RESTRIKE Test: 10-Jun-2016 13:04:
2; Blow: 2 CAPWAP(R) 2006-3
esting, Inc. OP: RMDT

CAPWAP SUMMARY RESULTS

			CAPWA	P SUMMAR	Y RESULTS			
Total CAP	WAP Capacit	y: 2220.	4; along	Shaft	1590.4; at	Toe 630.0) kips	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
				2220.4				
1	68.9	8.0	40.2	2180.2	40.2	5.04	0.40	0.190
2	75.5	14.5	30.1	2150.1	70.3	4.58	0.36	0.190
3	82.1	21.1	30.6	2119.5	100.9	4.66	0.37	0.190
4	88.6	27.7	32.6	2086.9	133.5	4.96	0.40	0.190
5	95.2	34.2	55.6	2031.3	189.1	8.47	0.67	0.190
6	101.8	40.8	66.0	1965.3	255.1	10.05	0.80	0.190
7	108.3	47.4	63.7	1901.6	318.8	9.70	0.77	0.190
8	114.9	53.9	86.5	1815.1	405.3	13.17	1.05	0.190
9	121.5	60.5	94.6	1720.5	499.9	14.41	1.15	0.190
10	128.0	67.1	106.9	1613.6	606.8	16.28	1.30	0.190
11	134.6	73.6	109.0	1504.6	715.8	16.60	1.32	0.190
12	141.2	80.2	110.6	1394.0	826.4	16.84	1.34	0.190
13	147.7	86.8	110.8	1283.2	937.2	16.87	1.34	0.190
14	154.3	93.3	110.6	1172.6	1047.8	16.84	1.34	0.190
15	160.9	99.9	150.7	1021.9	1198.5	22.95	1.83	0.190
16	167.4	106.5	190.9	831.0	1389.4	29.07	2.31	0.190
17	174.0	113.0	201.0	630.0	1590.4	30.61	2.44	0.190
Avg. Sh	aft		93.6			14.07	1.12	0.190
To	е		630.0				50.13	0.070
Soil Mode	l Parameter	s/Extensio	ons		1	Shaft To	oe	
Quake		(in				0.100 0.20	0.0	
~	ing Factor	(11)	.,			1.127 0.10		
Unloading	_	(%	of loadir	ar anaka)			34	
Reloading			of Ru)	ig quanc,			00	
Unloading			of Ru)			40		
Soil Plug			.ps)			0.	70	
max. Top (Comp. Stres	s =	33.6 ks	si (T= 26.5 ms	, max= 1.030	x Top)	
max. Comp	_	=	34.6 ks	-		, T= 30.5 m		
max. Tens		=	-4.14 ks	-	Z= 75.5 ft	-	-	
max. Energ		=		•		d Top Displ.	•	8 in

Page 1 Analysis: 13-Jun-2016

KIWC, POA TPP; Pile: IP 10 RESTRIKE PP48x1.0'', APE D180-42; Blow: 2 Robert Miner Dynamic Testing, Inc.

Test: 10-Jun-2016 13:04: CAPWAP(R) 2006-3 OP: RMDT

			EXT	TREMA TABLI	3			
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4960.3	-317.2	33.6	-2.15	281.05	18.2	1.133
2	6.6	4961.1	-316.4	33.6	-2.14	280.42	18.2	1.122
5	16.4	4963.9	-394.6	33.6	-2.67	278.54	18.2	1.090
8	26.3	4967.5	-470.1	33.6	-3.18	276.94	18.1	1.059
11	36.1	4972.0	-449.5	33.7	-3.04	274.87	18.1	1.024
14	46.0	4977.6	-515.8	33.7	-3.49	272.30	18.0	0.984
17	55.8	4985.9	-558.5	33.8	-3.78	269.04	18.0	0.940
20	65.7	5074.5	-570.9	34.4	-3.87	265.12	17.6	0.891
23	75.5	4999.7	-610.9	33.9	-4.14	251.95	17.2	0.839
26	85.4	4860.3	-591.6	32.9	-4.01	234.90	16.8	0.786
29	95.2	4898.3	-604.5	33.2	-4.09	224.80	16.2	0.742
32	105.1	4608.9	-531.3	31.2	-3.60	202.86	15.4	0.716
35	114.9	4603.7	-566.2	31.2	-3.83	191.45	14.6	0.687
38	124.8	4212.4	-517.9	28.5	-3.51	164.27	13.6	0.655
41	134.6	4100.4	-446.6	27.8	-3.02	149.10	12.6	0.625
44	144.5	3637.6	-323.1	24.6	-2.19	122.01	11.7	0.599
47	154.3	3588.8	-325.8	24.3	-2.21	108.50	10.7	0.571
50	164.2	2891.4	-202.0	19.6	-1.37	79.78	12.1	0.544
51	167.4	2669.4	-191.9	18.1	-1.30	79.57	12.5	0.538
52	170.7	1816.0	-96.1	12.3	-0.65	59.26	12.7	0.532
53	174.0	1743.1	-99.9	11.8	-0.68	38.43	12.7	0.526
Absolute	68.9			34.6			(T =	30.5 ms)
	75.5				-4.14		(T =	64.1 ms)

Page 2 Analysis: 13-Jun-2016

KIWC, POA TPP; Pile: IP 10 RESTRIKE PP48x1.0'', APE D180-42; Blow: 2 Robert Miner Dynamic Testing, Inc.

Test: 10-Jun-2016 13:04: CAPWAP(R) 2006-3

OP: RMDT

	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	5530.5	5088.6	4646.8	4205.0	3763.2	3321.4	2879.5	2437.7	1995.9	1554.1		
RX	5530.5	5088.6	4646.8	4205.0	3763.2	3321.4	2879.5	2437.7	1995.9	1632.9		
RU	5877.8	5470.7	5063.7	4656.6	4249.5	3842.4	3435.3	3028.2	2621.1	2214.1		

RAU = 374.8 (kips); RA2 = 1771.8 (kips)

Current CAPWAP Ru = 2220.4 (kips); Corresponding J(RP) = 0.75; J(RX) = 0.75

QUS	EMX	SET	DFN	DMX	FMX	FT1	VT1*Z	TVP	VMX
kips	kip-ft	in	in	in	kips	kips	kips	ms	ft/s
4766.9	280.4	0.333	0.333	1.079	5087.4	5087.4	4861.3	26.30	18.13

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	in^2	ksi	lb/ft³	ft
0.00	147.65	31043.9	492.000	12.566
174.00	147.65	31043.9	492.000	12.566
Toe Area	12.566	ft²		

Top Segment Length 3.28 ft, Top Impedance 268.13 kips/ft/s

Pile Damping 1.0 %, Time Incr 0.192 ms, Wave Speed 17100.0 ft/s, 2L/c 20.4 ms

Page 3 Analysis: 13-Jun-2016

Appendix D

Field Reports for Pile Installation

(Case Method and CAPWAP results originally included with the Field Reports have been removed from these reproductions of field reports. Case Method and CAPWAP results are now included in Appendix B and C, respectively.)

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

June 8, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 1 (Location 5), June 7, 2016 PP48"x1.0", APE 15-4 Hammer

Test Pile Program, Anchorage Municipality Port Modernization

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 1 (IP 1) is a vertical, 195 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using strain gages and accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE 15-4 hydraulically powered hammer drove IP 1 during our dynamic monitoring. The APE 15-4 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 30 kips and 120 kip-ft, respectively.

Test Sequence:

Installation of IP 1 began on June 7 when the APE 400 vibratory hammer drove IP 1 to a tip elevation of approximately -81 ft. Dynamic testing began at -81 ft when impact driving began, and ended when driving terminated near a tip elevation of -150 ft. The pile tip was approximately 128 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequ	ence, Location 5							
Indicator Pile No.	IP 1	IP 7						
Impact Hammer	APE 15-4	APE D180-42						
Date of Impact Driving	07 June 2016	25 May 2016						
Pile Length	195	200 ft						
Mudline Elevation	-22 ft	-26						
Self-weight Penetration	20 ft	approx. 14 ft						
Tip El. at Start of Impact Drive	-81	approx93 ft						
Tip El. at Start of PDA Test	-81	approx93 ft						
Tip El. at End of Drive	-150	-165 ft						
Final Soil Penetration	128 ft	139 ft						
Final Penetration Resistance 54/ft 22/ft								
For reference purposes this table	includes information for IP 7 w	hich was also at Location 5.						

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A and also the tip elevations referenced for this and all prior Indicator Piles are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth and tip elevation.

During the final one foot interval of driving the measured transfer energy, EMX averaged 89 kip-ft. The computed axial stress, CSX, was typically below 22 ksi and did not exceed 24 ksi.

Soil Resistance

Using a hammer blow from very near the end of driving at a soil depth of 128 ft (Tip EI. -150 ft) RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads. Table 3 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 1 yielded an ultimate resistance of 690 kips, of which 500 and 190 kips were attributed to shaft friction and end bearing, respectively.

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please do not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner. P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

June 8, 2016

Table 2. Summary of Case Method Results											
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi					
IP 3, Loc. 1	Drive	149	64/ft	96	NA	22					
IP 4, Loc. 1	Drive	149	30/ft	226	9.7	29					
IP 2, Loc. 4	Drive	141	16/ft	226	9.7	30					
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29					
IP 6, Loc. 4	Drive	129	84/ft	132	8.9	23					
IP 1, Loc. 5	Drive	128	54/ft	89	NA	21					
IP 7, Loc. 5	Drive	139	20/ft	236	9.9	29					
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22					
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27					
IP 10, Loc. 6	Drive	113	77/ft	110	NA	30					
For reference p	urposes this	table includ	des prior results	for other pile	S.						

Table 3.	Table 3. Summary of CAPWAP Results											
Pile	Hammer	ammer Test		Reported Penetration	Computed Soil Resistance, kips							
			Depth in Soil (ft)	Resistance blows/set	Total	Shaft	Toe					
IP 3 L1	APE 15-4	Drive	149	64/ft	1240	840	400					
IP 4 L1	D180-42	Drive	149 ft	30/ft	1070	940	130					
IP 2 L4	D180-42	Drive	141	16/ft	1210	780	430					
IP 5 L4	D180-42	Drive	144	23/ft	1340	840	500					
IP 6 L4	D180-42	Drive	129	84/ft	900	580	220					
IP 1 L5	APE 15-4	Drive	128	54/ft	690	500	190					
IP 7 L5	D180-42	Drive	139	20/ft	1750	800	850					
IP 8 L6	APE 15-4	Drive	105	31/3"	1160	880	280					
IP 9 L6	D180-42	Drive	115	37/ft	1310	820	490					
IP 10 L6	APE 15-4	Drive	113	77/ft	1190	610	580					
For refere	ence purpos	es this tab	le includes	prior results fo	or other pile	S.						

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

May 22, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 2 (Location 4), May 19, 2016 PP48"x1.0", APE D180-42 Hammer

Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch,

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 2 is a vertical, 200 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using four strain gages and four accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE D180-42 open end diesel hammer drove Indicator Pile 2 (IP 2) during our dynamic monitoring. The APE D180-42 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively.

Test Sequence:

Installation of IP 2 began on May 19 when the APE 400 vibratory hammer drove IP 2 to a tip elevation of approximately -93 ft, after which the APE D180-42 hammer advanced the pile. Dynamic testing began on May 19 near a tip elevation of -110 ft and ended when driving terminated near a tip elevation of -170 ft. The pile tip was approximately 141 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequence, Location 4						
	IP 2	IP 5	IP 6			
Impact Hammer	APE D180-42	APE D180-42	TBD			
Date of Impact Driving	19 May 2016	18 May 2016	TBD			
Pile Length	200 ft	200 ft				
Mudline Elevation	-29 ft	-29 ft				
Self-weight Penetration	approx. 14 ft	approx. 16 ft				
Tip El. at Start of Impact Drive	approx93 ft	approx85 ft				
Tip El. at Start of PDA Test	-110 ft	approx114 ft				
Tip El. at End of Drive	-170 ft	-173 ft				
Final Soil Penetration	141 ft	144 ft				
Final Penetration Resistance	16/ft	23 blows/ft				

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A and also the tip elevations referenced for this and all prior Indicator Piles are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth and tip elevation.

During the final one foot interval of driving the measured transfer energy, EMX averaged 226 kip-ft and the ram stroke height averaged 9.7 ft. The computed axial stress, CSX, was typically below 30 ksi and did not exceed 31ksi.

Soil Resistance

The Case Method RX7 soil resistance calculations were typically between 550 and 750 kips as the pile was driven from tip elevation -110 to -162 ft. Between -162 and -165 the soil resistance increased markedly, with RX7 resistance values of approximately 1300 kips at -165 ft tip elevation. Most of the resistance increase which occurred between -162 and -165 occurred during the end of that interval. However, very near tip elevation -164 the hammer was stopped for 4 minutes such that some degree of temporary soil setup at that depth may have increased the apparent resistance for reasons other than advancing tip depth. Considering the available data it is our

opinion that the largest resistance change with depth was likely to have occurred near tip elevation -165 ft. The Case Method RX7 resistance values ranged from approximately 1300 to 1400 kips from tip elevation -165 to -169, and decreased slightly to 1250 kips near tip elevation -170 where driving halted.

Using a hammer blow from the end of driving at a soil depth of 141ft (Tip EI. -170 ft) RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads. Table 2 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 2 yielded an ultimate resistance of 1210 kips, of which 780 and 430 kips were attributed to shaft friction and end bearing, respectively.

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please do not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner. P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

ROBERT F. MINER
No. CE 11584

May 22, 2016

Table 2. Summary of Case Method Results								
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi		
IP 4, Loc. 1	Drive	149	30/ft	226	9.7	29		
IP 2, Loc. 4	Restrike	141	16/ft	226	9.7	30		
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29		
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22		
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27		
For reference purposes this table includes prior results for other piles.								

Table 3. Summary of CAPWAP Results									
Pile Hammer Te	Hammer	Test	Approx. Depth	Reported Penetration	Computed Soil Resistance, kips				
		in Soil (ft)	Resistance blows/set	Total	Shaft	Toe			
IP 4 L1	D180-42	Drive	149 ft	30/ft	1070	940	130		
IP 2 L4	D180-42	Drive	141	16/ft	1210	780	430		
IP 5 L4	D180-42	Drive	144	23/ft	1340	840	500		
IP 8 L6	APE 15-4	Drive	105	31/3"	1160	880	280		
IP 9 L6	D180-42	Drive	115	37/ft	1310	820	490		
For reference purposes this table includes prior results for other piles.									

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

June 6, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 3 (Location 1), June 3, 2016 PP48"x1.0", APE 15-4 Hammer

Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 3 (IP 3) is a vertical, 203 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using strain gages and accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE 15-4 hydraulically powered impact hammer drove IP 3 during our dynamic monitoring. The APE 15-4 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 30 kips and 120 kip-ft, respectively.

Test Sequence:

Installation of IP 3 began on June 3 when the APE 400 vibratory hammer drove IP 3 to a tip elevation of approximately -92 ft, after which the APE 15-4 hammer advanced the pile. Dynamic testing began near tip elevation -92 ft and ended when driving terminated near a tip elevation of -184 ft. The pile tip was approximately 149 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequence, Location 1								
	IP 3	IP 4						
Impact Hammer	APE 15-4	APE 15-4 & D180-42						
Date of Impact Driving	3 June 2016	12 & 13 May2016						
Pile Length	203	205 ft						
Mudline Elevation	-35 ft	-26 ft						
Self-weight Penetration	approx. 7 ft	approx. 17 ft						
Tip El. at Start of Impact Drive	-92	approx92 ft						
Tip El. at Start of PDA Test	-92	approx92 ft						
Tip El. at Hammer Change	NA	approx139 (~113 ft depth)						
Tip El. at End of Drive	-184	-175 ft						
Final Soil Penetration	149	149 ft						
Final Penetration Resistance 64/ft 30 blows/ft (D180-42)								
For reference purposes this table includes prior results for other piles at this Location								

Number.

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A and also the tip elevations referenced for this and all prior Indicator Piles are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth and tip elevation.

During the final one foot interval of driving the measured transfer energy, EMX, averaged 96 kip-ft and the computed axial stress, CSX, was typically below 29 ksi and did not exceed 30 ksi.

Soil Resistance

Using a hammer blow from very near the end of driving at a soil depth of 149 ft (Tip El. -184 ft) RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads.

June 6, 2016 RMDT Job No. 16F03

Table 3 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 3 yielded an ultimate resistance of 1240 kips, of which 840 and 400 kips were attributed to shaft friction and end bearing, respectively

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please do not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner. P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

June 6, 2016

Table 2. Summ	ary of Case	Table 2. Summary of Case Method Results									
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi					
IP 3, Loc. 1	Drive	149	64/ft	96	NA	22					
IP 4, Loc. 1	Drive	149	30/ft	226	9.7	29					
IP 2, Loc. 4	Drive	141	16/ft	226	9.7	30					
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29					
IP 6, Loc. 4	Drive	129	84/ft	132	8.9	23					
IP 7, Loc. 5	Drive	139	20/ft	236	9.9	29					
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22					
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27					
IP 10, Loc. 6	Drive	113	77/ft	110	NA	30					
For reference p	urposes this	table includ	les prior results	s for other pile	S.						

Table 3.	Table 3. Summary of CAPWAP Results										
Pile	Hammer	Hammer Test		ox Reported h Penetration	Computed Soil Resistance, kips						
			in Soil (ft)	Resistance blows/set	Total	Shaft	Toe				
IP 3 L1	APE 15-4	Drive	149	64/ft	1240	840	400				
IP 4 L1	D180-42	Drive	149 ft	30/ft	1070	940	130				
IP 2 L4	D180-42	Drive	141	16/ft	1210	780	430				
IP 5 L4	D180-42	Drive	144	23/ft	1340	840	500				
IP 6 L4	D180-42	Drive	129	84/ft	900	580	220				
IP 7 L5	D180-42	Drive	139	20/ft	1750	800	850				
IP 8 L6	APE 15-4	Drive	105	31/3"	1160	880	280				
IP 9 L6	D180-42	Drive	115	37/ft	1310	820	490				
IP 10 L6	APE 15-4	Drive	113	77/ft	1190	610	580				
For refere	ence purpos	es this tab	le includes	prior results fo	or other pile	S.	_				

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

May 17, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses IP 4 (Location 1), May 12 & 13, 2016

PP48"x1.0", APE 15-4 Hydraulic Hammer and APE D180-42 Hammer

Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 4 is a vertical, 205 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using four strain gages and either two or four accelerometers until the tip reached elevation -171, after which depth we used two of each sensor type as the pile was driven to tip elevation -175. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

On May 12 the APE 15-4 hydraulic impact hammer drove IP 4 to a tip elevation of approximately -139 ft. On May 13 the APE D180-42 drove the pile to tip elevation -175 ft. For an APE 15-4 hammer the nominal ram weight and manufacturer's maximum rated energy are 30 kips and 120 kip-ft, respectively. The APE D180-42 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively.

Test Sequence:

Installation of IP 4 began on May 12 when the APE 400 vibratory hammer drove IP 4 to a tip elevation of approximately -92 ft. Dynamic testing began on May 12 at the start of impact driving at tip elevation -92 ft. On May 12, near a tip elevation of -139 ft the APE 15-4 was stopped at 4:10 PM and removed from the pile. Impact driving resumed May 13 at 7:40 AM and the APE D180-42 hammer drove IP 4 from -139 to -175 ft tip elevation. Near tip elevation -171 driving paused for 14 minutes while the PDA monitoring sensors were changed so as to accommodate the potential

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

for the sensors to go below the water surface. This change involved removal of all eight sensors in use prior to that depth, and attachment of two strain sensors and two accelerometers, each of which were water resistant. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Table 1. Summary of Test Sequence	Table 1. Summary of Test Sequence, Location 1							
	IP 3	IP 4						
Impact Hammer	TBD	APE 15-4 & D180-42						
Date of Impact Driving	TBD	12 & 13 May2016						
Pile Length		205 ft						
Mudline Elevation		-26 ft						
Self-weight Penetration		approx. 17 ft						
Tip El. at Start of Impact Drive		approx92 ft						
Tip El. at Start of PDA Test		approx92 ft						
Tip El. at Hammer Change		approx139 (~113 ft depth)						
Tip El. at End of Drive		-175 ft						
Final Soil Penetration		149 ft						
Final Penetration Resistance		30 blows/ft (D180-42)						

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth.

The APE 15-4 hammer drove IP 4 from 74 ft depth (~Tip EI -92) to 114 ft depth (~Tip EI -139). Between depths of approximately 76 and 101 ft energy transfer from the hammer to the pile was typically close to 100 kip-ft and was thus typically more than 80 percent of the rated energy of the APE 14-5. The CSX peak axial stress shows a gradual reduction with depth between depths of 90 and 110 ft. Beginning near 101 ft depth a gradual reduction in energy was noticeable until the hammer was removed for maintenance near a depth of 114 ft; for the final two ft of such driving the transfer energy averaged 91 kip ft.

Table 2. Summary of Case Method Results										
Pile	Test	Test Approx. Depth Penetration Resistance (ft) Approx. Approx. Penetration Resistance Energy (STK) (EMX) kip-ft Kip-ft Ksi								
IP 4	Drive	149	30/ft	226	9.7	29				
IP 8	Drive	105	31/3"	97	NA	22				
IP 9 Drive 115 37/ft 206 9.2 27										
For refer	ence purposes	s this table incl	udes prior results	s for other pile	S.					

Soil Resistance

Comparison of the Case Method soil resistance calculations for May 12 and May 13 suggest that the 14 hour interruption near 114 ft depth (Tip EI -139) caused the soil resistance to temporarily increase by a factor of approximately 1.6, or 400 kips. However, in the depth interval surrounding the overnight halt there is also a noticeable change in soil resistance; this condition, coupled with the change in hammer, produce some uncertainty regarding the amount that soil resistance increased during the 14 hour waiting time.

Using a hammer blow from the end of driving at a soil depth of 149 ft (Tip EI. -175 ft) RMDT completed CAPWAP analyses to evaluate soil resistance to axial compressive pile loads. Table 2 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 4 yielded an ultimate resistance of 1070 kips, of which 940 and 130 kips were attributed to shaft friction and end bearing, respectively.

Table 3	Table 3. Summary of CAPWAP Results											
Pile	Hammer	Hammer Test Approx. Reported Depth Penetration				l Soil Resista	ance, kips					
			in Soil (ft)	Soil Resistance		Shaft	Toe					
IP 4	D180-42	Drive	149 ft	30/ft	1070	940	130					
IP 8	APE 15-4	Drive	105	31/3"	1160	880	280					
IP 9	D180-42	Drive	115	37/ft	1310	820	490					
For ref	erence purpo	For reference purposes this table includes prior results for other piles.										

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please to not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner. P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

May 17, 2016

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

May 25, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 5 (Location 4), May 18, 2016 PP48"x1.0", APE D180-42 Hammer

Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch,

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 5 is a vertical, 200 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using four strain gages and four accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE D180-42 open end diesel hammer drove Indicator Pile 5 (IP 5) during our dynamic monitoring. The APE D180-42 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively.

Test Sequence:

Installation of IP 5 began on May 18 when the APE 400 vibratory hammer drove IP 5 to a tip elevation of approximately -85 ft, after which the APE D180-42 hammer advanced the pile. Dynamic testing began on May 18 near a tip elevation of -114 ft and ended when driving terminated near a tip elevation of -173 ft. The pile tip was approximately 144 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequence, Location 4					
	IP 5				
Impact Hammer	APE D180-42				
Date of Impact Driving	18 May 2016				
Pile Length	200 ft				
Mudline Elevation	-29 ft				
Self-weight Penetration	approx. 16 ft				
Tip El. at Start of Impact Drive	approx85 ft				
Tip El. at Start of PDA Test	approx114 ft				
Tip El. at End of Drive	-173 ft				
Final Soil Penetration	144 ft				
Final Penetration Resistance	23 blows/ft				

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth.

During the final one foot interval of driving the measured transfer energy, EMX averaged 239 kip-ft and the ram stroke height averaged 10.0 ft. These energy and stroke values are somewhat higher than those measured during final driving on previous piles in this program. The computed axial stress, CSX, was typically below 29 ksi and did not exceed 31 ksi.

Soil Resistance

The Case Method RX7 soil resistance calculations were close to 600 kips until the pile tip reached elevation -167.5 ft, after which there was rapid increase to approximately 1300 kips. However, the RX7 values remained near 1300 kips from tip elevation -168 ft to the end of driving near -173 ft.

Using a hammer blow from the end of driving at a soil depth of 144 ft (Tip EI. -173 ft) RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads. Table 2 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction

May 25, 2016 RMDT Job No. 16F03

distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 5 yielded an ultimate resistance of 1340 kips, of which 840 and 500 kips were attributed to shaft friction and end bearing, respectively.

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please to not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner, P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

May 18, 2016

Table 2.	Table 2. Summary of Case Method Results										
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi					
IP 4	Drive	149	30/ft	226	9.7	29					
IP 5	Drive	144	23/ft	239	10.0	29					
IP 8	Drive	105	31/3"	97	NA	22					
IP 9	Drive	115	37/ft	206	9.2	27					
For refer	ence purposes	s this table incl	udes prior results	s for other pile	S.						

Table 3	Table 3. Summary of CAPWAP Results									
Pile			Reported Penetration	Computed Soil Resistance, kips						
			in Cail Bosistanes		Total	Shaft	Toe			
IP 4	D180-42	Drive	149 ft	30/ft	1070	940	130			
IP 5	D180-42	Drive	144	23/ft	1340	840	500			
IP 8	APE 15-4	Drive	105	31/3"	1160	880	280			
IP 9	D180-42	Drive	115	37/ft	1310	820	490			
For ref	erence purpo	ses this	table inclu	des prior results	for other pile	es.				

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

June 2, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 6 (Location 4), June 1, 2016

PP48"x1.0" with Internal Bearing Plate, APE D180-42 Hammer Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 6 (IP 6) is a vertical, 200 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations. An internal bearing plate was present inside the pile. We understand that the plate is 2" thick, has a central 3" diameter relief hole, is backed with stiffeners and reaction tabs from above, and the plate underside is located 82.5 ft above the pile tip.

Measurement and Analysis Method:

We collected dynamic measurements using strain gages and accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE D180-42 open-end diesel hammer drove IP 6 during our dynamic monitoring. The APE D180-42 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively.

Test Sequence:

Installation of IP 6 began on June 1 when the APE 400 vibratory hammer drove IP 6 to a tip elevation of approximately -92 ft, after which the D180-42 hammer advanced the pile. Dynamic testing began near tip elevation -108 ft and ended when driving terminated near a tip elevation of -156 ft. The pile tip was approximately 129 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequence, Location 4									
	IP 2	IP 5	IP 6						
Impact Hammer	APE D180-42	APE D180-42	APE D180-42						
Date of Impact Driving	19 May 2016	18 May 2016	01 June 2016						
Pile Length	200 ft	200 ft	200 ft						
Mudline Elevation	-29 ft	-29 ft	-27 ft						
Self-weight Penetration	approx. 14 ft	approx. 16 ft	approx. 15 ft						
Tip El. at Start of Impact Drive	approx93 ft	approx85 ft	approx92 ft						
Tip El. at Start of PDA Test	-110 ft	approx114 ft	-108 ft						
Tip El. at End of Drive	-170 ft	-173 ft	-156 ft						
Final Soil Penetration	141 ft	144 ft	129 ft						
Final Penetration Resistance 16/ft 23 blows/ft 84 ft									
For reference purposes this table	e includes informati	on for other piles at	Location 4.						

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A and also the tip elevations referenced for this and all prior Indicator Piles are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth and tip elevation.

The KWIC Pile Driving Record for this and other piles is based on observation of the pile relative to the template structure attached to the floating pile barge. Because changes in the tide level effect the position of the template, penetration resistance recorded for each ft on the Pile Driving Record correspond to a distance that is slightly greater than 1 ft if the tide level was falling during driving. To account for this circumstance the Pile Driving Records indicate "No Count" for some depth intervals; this recording method provides suitable piecewise correction to the effect which a gradually lowered template reference would otherwise have on the depths listed in the Pile Driving Record. We have used the KWIC records as if the "No Count" entries were not present because use of those entries would put discontinuities in the plots of results versus depth and thus distract the reader from the trends and more important aspects of the data. The plotted and tabulated depths given in Appendix A are thus correct for the end of driving, but diverge in one ft intervals each time a "No Count" entry is present in the logs as one moves upward in the logs.

June 2, 2016 RMDT Job No. 16F03

The net effect, with respect to depth information in Appendix A, is that the depths at the end of driving are correct and the depths for the start of monitoring are shown deeper than was actually the case. Such downward shift for the shallowest depths is approximately equal to the number of "No Count" entries in the logs.

During the final one foot interval of driving the measured transfer energy, EMX, averaged 132 kip-ft and the ram stroke height averaged 8.9 ft. The computed axial stress, CSX, was typically below 24 ksi and did not exceed 29 ksi.

The ram stroke heights observed for IP 6 were somewhat lower than those recorded for other piles driven with the D180-42 for this project. We noted, qualitatively, that pile 'elastic' displacement and rebound was markedly higher for this pile at all depths, and especially at intermediate depths. Such elastic rebound is sometimes referred to as "bouncy" driving or a "large quake" condition and is often associated with a reduction in ram stroke height relative to the stroke expected for a diesel hammer operating under otherwise comparable conditions.

The transfer energy values for IP 6 are significantly lower than those for other Indicator Piles driven with the D180-42, and the modestly lower ram stroke heights do not fully account for this lower energy. CAPWAP analyses completed for a hammer blow near 129 ft depth indicate that approximately 100 ft below the PDA sensors a very large and abrupt reduction in energy transfer occured; about one-half of the energy arriving at that zone passed into the pile below that zone. Our sensors were mounted 15 ft from the pile and thus 103 ft from the internal bearing plate. It is our opinion that the interaction between the internal water or soil and the bearing plate markedly reduced energy transfer to the lower portion of the pile. We consider it likely that the energy was mostly reflected upward from the plate and internal soil resistance and thus reduced the maximum energy transfer, EMX, at our sensor location. However, we presently do not have a clear understanding of the wave mechanics associated with this apparent cause for the lower EMX values measured during driving on IP 6.

Soil Resistance

As noted above, an internal bearing plate was present 82.5 ft above the bottom of IP 6. We understand that a 3" diameter relief hole allowed material under the plate to flow upward into the interior of the upper pile section. Given a mudline elevation of -27, this plate reached the mudline when the pile tip was near Tip Elevation -109 ft and the pile depth in soil was approximately 83 ft, and our dynamic monitoring started on IP 6 just prior to that tip elevation. (As discussed above the data in Appendix A is shifted downward and suggests that monitoring started at a lower tip elevation.)

The Case Method RX7 soil resistance calculations were relatively similar for the last 30 ft of driving and were close to 600 kips. However, it is our opinion that the Case Method results are dominated by the behavior of the soil beneath the bearing plate and may thus do not reveal driveability changes normally associated with soil resistance changes much lower on the pile. Moreover, a primary use of Case Method resistance results involves assumed correlation with other methods and comparison of results for different piles and depths. Due to the presence of the bearing plate in IP 6, such relative comparisons for driveability and resistance are likely to require more data than is presently available.

Using a hammer blow from very near the end of driving at a soil depth of 129 ft (Tip El. -156 ft) RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads.

Table 3 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 6 yielded an ultimate resistance of 900 kips, of which 580 and 320 kips were attributed to shaft friction and end bearing, respectively. The total 320 kip end bearing value was split between a computed 220 kips on the bearing plate and 100 kip at the bottom of the pile. However, through our CAPWAP signal matching process the damping on the end bearing associated with the bearing plate was set to 0.8 sec/ft, which value is considered very high. Based, in part, on this high damping value for soil below the bearing plate it is our opinion that there is significant uncertainty regarding the nature of the driving resistance on the bearing plate. Also, the large displacements and rebound observed during driving on IP 6 may cause greater disturbance at the soil pile interface and (temporarily) reduce the shaft friction relative to end-of-drive friction for an open-end pile hich is driven without the larger number of high rebound hammer blows that occurred with IP6. Comparison of end-of-drive friction values for IP 6 and other piles may require extra consideration of such driving disturbance – we anticipate that restrike results for IP 6 will provide more helpful information about shaft friction on IP 6.

Although the CAPWAP computed 900 kip ultimate resistance is the lowest value computed thus far for final drive of an Indicator Pile, the penetration resistance of 84 blows per ft for final driving on IP 6 is significantly higher than values recorded for other piles driven with the D180-42 hammer. We attribute part of the increased penetration resistance (blows per ft) with IP 6 to the lower transfer energy values computed for the sensor location near the pile top of IP6. The average final transfer energy, EMX, was 132 kip-ft, and thus approximately 0.6 times the 227 kip-ft average for final driving on other piles with the D180-42. Moreover, energy transfer computed in CAPWAP analyses for a location approximately 20 ft from the pile toe was far less for IP 6 than for all other piles, including those driven with the APE 15-4 hammer. Reduced energy transfer past the bearing plate and into the bottom portion of the pile would cause a significant reduction in driveability, as would the large elastic rebound noted above. During any restrike on IP 6 the initial soil response may be stiffer on the lower portion and resistance on the plate may be initially reduced such that further information of interest may be obtained.

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please do not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner, P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

June 2, 2016

Table 2. Summ	Table 2. Summary of Case Method Results										
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi					
IP 4, Loc. 1	Drive	149	30/ft	226	9.7	29					
IP 2, Loc. 4	Drive	141	16/ft	226	9.7	30					
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29					
IP 6, Loc. 4	Drive	129	84/ft	132	8.9	23					
IP 7, Loc. 5	Drive	139	20/ft	236	9.9	29					
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22					
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27					
IP 10, Loc. 6	Drive	113	77/ft	110	NA	30					
For reference p	urposes this	table includ	les prior results	for other pile	S.						

Table 3.	Table 3. Summary of CAPWAP Results											
Pile	Hammer Test		Approx Depth	Reported Penetration	Computed Soil Resistance, kips							
			in Śoil (ft)	Resistance blows/set	Total	Shaft	Toe					
IP 4 L1	D180-42	Drive	149 ft	30/ft	1070	940	130					
IP 2 L4	D180-42	Drive	141	16/ft	1210	780	430					
IP 5 L4	D180-42	Drive	144	23/ft	1340	840	500					
IP 6 L4	D180-42	Drive	129	84/ft	900	580	220					
IP 7 L5	D180-42	Drive	139	20/ft	1750	800	850					
IP 8 L6	APE 15-4	Drive	105	31/3"	1160	880	280					
IP 9 L6	D180-42	Drive	115	37/ft	1310	820	490					
IP 10 L6	APE 15-4	Drive	113	77/ft	1190	610	580					
For refere	ence purpos	es this tab	le includes	prior results fo	or other pile	S.	_					

Robert Miner Dynamic Testing of Alaska Inc.

Dynamic Measurements and Analyses for Deep Foundations

May 25, 2016

Mr. Tanner Vetsch Kiewit Infrastructure West Company 33455 6th Ave South Federal Way, WA 98003

Re: Dynamic Pile Measurements and Analyses

IP 7 (Location 5), May 25, 2016 PP48"x1.0", APE D180-42 Hammer

Test Pile Program, Anchorage Port Modernization Program

Kiewit Job No 102887 RMDT Job 16F03

Dear Mr. Vetsch.

This report provides results obtained from dynamic pile measurements and analyses completed for the Indicator Pile referenced above. The subject measurements and analyses were completed by Robert Miner Dynamic Testing, Inc. (RMDT) at the request of Kiewit Infrastructure West Company (KIWC).

TEST DETAILS

Pile:

Indicator Pile 7 is a vertical, 200 ft long 48" O.D. open-end steel pipe pile with a wall thickness of 1.00". We understand that the pile material conforms to the specifications of the ASTM A252 Grade 3 and API 5L X52 designations.

Measurement and Analysis Method:

We collected dynamic measurements using strain gages and accelerometers attached to the pile near the pile top. Signals from these sensors were collected and processed using a Pile Driving Analyzer ® (PDA) manufactured by Pile Dynamics, Inc. Following the testing we used the CAPWAP® program to compute the soil resistance acting on the pile. A description of the PDA and CAPWAP methods was included in our report for IP 9 dated May 9, 2016.

Hammer:

An APE D180-42 open end diesel hammer drove Indicator Pile 7 (IP 7) during our dynamic monitoring. The APE D180-42 hammer is reported to have a nominal ram weight and manufacturer's maximum rated energy of 39.7 kips and 447 kip-ft, respectively.

Test Sequence:

Installation of IP 7 began on May 25 when the APE 400 vibratory hammer drove IP 7 to a tip elevation of approximately -93 ft, after which the APE D180-42 hammer advanced the pile. Dynamic testing began at -93 ft when impact driving began, and ended when driving terminated near a tip elevation of -165 ft. The pile tip was approximately 139 ft below the mud line at the conclusion of driving. Table 1 contains information about the test sequence and certain information pertinent to that sequence.

Mailing Address: P.O. Box 340, Manchester, WA, 98353, USA Phone: 360-871-5480 Location: 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353 Fax: 360-871-5483

Table 1. Summary of Test Sequence, Location 5	
Indicator Pile No.	IP 7
Impact Hammer	APE D180-42
Date of Impact Driving	25 May 2016
Pile Length	200 ft
Mudline Elevation	-26
Self-weight Penetration	approx. 14 ft
Tip El. at Start of Impact Drive	approx93 ft
Tip El. at Start of PDA Test	approx93 ft
Tip El. at End of Drive	-165 ft
Final Soil Penetration	139 ft
Final Penetration Resistance	22/ft

RESULTS

Case Method Results

Table 2 summarizes selected field Case Method results and other observed details for the end of installation driving. These results include measured transfer energy, EMX, the calculated stroke height, STK, if the D180 hammer was used, and the peak axial compressive driving stress at our sensor location, CSX.

Appendix A contains graphic and numeric summaries of the Case Method Results as a function of pile penetration. The summaries in Appendix A and also the tip elevations referenced for this and all prior Indicator Piles are based on use of the KIWC Pile Driving Record to correlate Case Method results with depth and tip elevation.

During the final one foot interval of driving the measured transfer energy, EMX averaged 236 kip-ft and the ram stroke height averaged 9.9 ft. The computed axial stress, CSX, was typically below 30 ksi and did not exceed 34 ksi.

Soil Resistance

The Case Method RX7 soil resistance calculations were typically between 400 and 600 kips as the pile was driven from tip elevation -93 to -146 ft (67 to 120 ft depth below mudline). Between -146 and -156 ft tip elevation (120 to 130 ft depth) soil resistance increased gradually, followed by a marked resistance increase with depth near tip elevation -156 ft. Near the end of driving the Case Method RX7 resistance value averaged approximately 1750 kips.

Using a hammer blow from very near the end of driving at a soil depth of 139 ft (Tip El. -165 ft)

May 25, 2016 RMDT Job No. 16F03

RMDT completed a CAPWAP analysis to evaluate soil resistance to axial compressive pile loads. Table 2 summarizes the CAPWAP results. Detailed CAPWAP results, including the computed friction distribution appear in Appendix B. Our CAPWAP analyses for the end of driving on IP 7 yielded an ultimate resistance of 1750 kips, of which 800 and 850 kips were attributed to shaft friction and end bearing, respectively.

The results presented herein apply to the conditions present when the testing occurred. Please see the cover sheet of Appendix A for information applicable to all of our measurements and analyses for this project.

Please do not hesitate to contact us if you have questions regarding this report or the work we completed for this project. It was a pleasure to work with you and all other project participants.

Sincerely,

Robert Miner, P.E.

Robert Miner Dynamic Testing of Alaska, Inc.

May 25, 2016

Table 2. Summ	ary of Case	Method Res	sults											
Pile	Test	Approx. Depth Below Grade (ft)	Approx. Penetration Resistance blows/set	Average Transfer Energy (EMX) kip-ft	Computed Ram Stroke (STK) ft	Comp. Stress (CSX) ksi								
IP 4, Loc. 1 Drive 149 30/ft 226 9.7 29														
IP 2, Loc. 4	Restrike	141	16/ft	226	9.7	30								
IP 5, Loc. 4	Drive	144	23/ft	239	10.0	29								
IP 7, Loc. 5	Drive	139	20/ft	236	9.9	29								
IP 8, Loc. 6	Drive	105	31/3"	97	NA	22								
IP 9, Loc. 6	Drive	115	37/ft	206	9.2	27								
For reference p	urposes this	table includ	les prior results	s for other pile	S.									

Table 3.	Summary o	f CAPWAP I	Results												
Pile	Hammer	Test	Approx. Depth	Reported Penetration	Compute	ed Soil Resi kips	stance,								
	in Soil Resistance blows/set Total Shaft Toe 2 4 L1 D180-42 Drive 149 ft 30/ft 1070 940 130														
IP 4 L1															
IP 2 L4	D180-42	Drive	141	16/ft	1210	780	430								
IP 5 L4	D180-42	Drive	144	23/ft	1340	840	500								
IP 7 L5	D180-42	Drive	139	20/ft	1750	800	850								
IP 8 L6	APE 15-4	Drive	105	31/3"	1160	880	280								
IP 9 L6	D180-42	Drive	115	37/ft	1310	820	490								
For refer	ence purpo	ses this tab	le includes	prior results fo	or other pile	S.									

Robert Miner

To: Tanner. Vetsch@kiewit.com

Subject: Initial Field Synopsis, IP 8, Location 6, Installed May 3, 2016, AMPM Test Pile

Hi Tanner,

This email transmittal provides a synopsis of my observations and results for the work on IP 8 yesterday, May 3, 2016.

The mudline was reported as approximately -28 ft, the pile self-weight penetration was approximately 6 ft, and the APE 400 hammer advanced the pile from approximately -34 to -84 ft elevation. The APE 15-4 advanced the pile from approximately -84 ft to approximately -133 ft elevation. RMDT collected dynamic measurements during all impact driving – there were approximately 2023 hammer blows and driving ended at about 9:30 PM.

During early driving, perhaps the first 600 blows, the APE 15-4 provided approximately 40 to 45 kip-ft of transfer energy per typical hammer blow. The energy level was later increased and at the end of driving the transfer energy was typically between 89 and 95 kip-ft. An energy transfer of 93 kip-ft represents about 78 percent of the hammers nominal 120 kip-ft maximum rating. In my opinion, the measured transfer ratio values we obtained for the end of driving are within normally expected values for this hammer type driving steel piles.

One attached page provides a plot of the measured force and velocity and computed Case Method results for the final hammer blow on IP 8. For this final hammer blow the average axial driving stress was 21.4 ksi, transfer energy was 95.4 kip-ft, and the measured blows per minute was 26. Based on the Case Method results and review of the force and velocity data I expect that the soil resistance to axial compressive loading will be between 900 and 1100 kips. Although there is appreciable friction, it is my judgement that the last 5 to 7 ft of driving were associated with an increase in end bearing. Visual or qualitative evaluation of the magnitude of end bearing using the force and velocity alone is difficult because the end bearing was not large relative to either the pile impedance or the end reflection which pertained at somewhat shallower depths. CAPWAP analysis will be completed for evaluation of resistance. Preliminary information provided to RMDT suggest that the las full ft of driving yielded approximately 93 blows per ft, and the final several inches of driving may have yielded 10 blows per inch.

Later today I expect to submit the results of CAPWAP analyses for the hammer blow shown on the attached page. This was the final blow and it was a strong blow suitable for CAPWAP analysis.

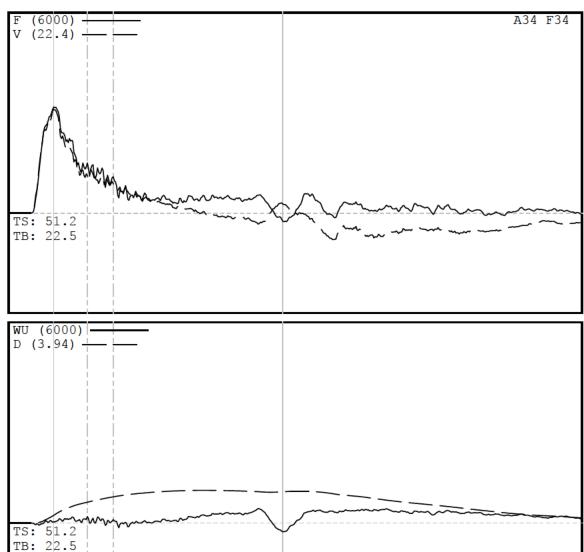
Please do not hesitate to contact me if you or other project participants have questions for me.

Sincerely,

Bert Miner

Robert Miner Dynamic Testing, Inc.

Mail: Box 340, Manchester, WA, 98353


Location: 2288 Colchester Drive East, Manchester, WA 98353

Office: 360-871-5480 Fax: 360-871-5483

Bert's Mobile: 360-981-3317 --

www.pilesound.com

KIWC, POA TPP IP 8 (Loc. 6)

Project Information

PROJECT: KIWC, POA TPP PILE NAME: IP 8 (Loc. 6) DESCR: PP48x1.0", APE 15-4

83.0 @ 60.56 ft

82.0 @ 40.94 ft

OPERATOR: RMDT FILE: IP 8_1.W01 5/3/2016 9:29:38 PM Blow Number 2023

Pile Properties

174.00 ft AR 147.65 in^2 EΜ 31052 ksi SP 0.492 k/ft3 WS 17100.0 f/s EA/C 268.1 ksec/ft 2L/C 20.40 ms 0.70[]

Quantity Results

CSX 21.4 ksi CSI 23.9 ksi EMX 95.4 k-ft FMX 3161 kips VMX 11.5 f/s BPM 26.2 bpm RX6 1147 kips RX7 1049 kips RX9 863 kips

<u>Sensors</u> F3: [H278] 99 (1)

F4: [H324] 93 (1) A3: [K3257] 340 mv/5000g's (1) A4: [K3259] 365 mv/5000g's (1) CLIP: OK

Robert Miner

To: Tanner. Vetsch@kiewit.com

Subject: Summary of Field Results and CAPWAP Analysis Results, Installation of IP 8, May

3, 2016, AMPM Test Piles

Dear Mr. Vetsch,

This email transmittal provides a summary of results for IP 8, as installed on May 3, 2016.

IP 8 is a 48" OD open-end steel pile having a wall thickness of 1.00" and a total length of 192 ft during installation. IP 8 was installed at Location 6; the mudline elevation was reported as approximately -28 ft, the pile self-weight penetration was approximately 6 ft. An APE 400 vibratory hammer advanced IP 8 from approximately -34 to -84 ft elevation. An APE 15-4 hydraulic impact hammer advanced the pile from approximately -84 ft to approximately -133 ft elevation. RMDT collected dynamic measurements during all impact driving; there were approximately 2023 hammer blows and driving ended at about 8:30 PM.

During early driving, perhaps the first 600 blows, the APE 15-4 provided approximately 40 to 45 kip-ft of transfer energy per typical hammer blow. The energy level was later increased and at the end of driving the transfer energy was typically between 89 and 95 kip-ft. An energy transfer of 93 kip-ft represents about 78 percent of the hammer's nominal 120 kip-ft maximum rating. In my opinion, the measured transfer ratio values we obtained for the end of driving are within normally expected values for this hammer type driving steel piles.

One attached page provides a plot of the measured force and velocity and computed Case Method results for the final hammer blow on IP 8. For this final hammer blow the average axial driving stress was 21.4 ksi, transfer energy was 95.4 kip-ft, and the measured blows per minute was 26. Preliminary information provided to RMDT suggest that the last full ft of driving yielded approximately 93 blows per ft, and the final several inches of driving may have yielded 10 blows per inch.

I selected the final hammer blow for CAPWAP analysis of the end of driving. The CAPWAP computed ultimate resistance is 1160 kip, of which 880 and 280 kips were attributed to shaft friction and end bearing, respectively. Attached pages provide detailed CAPWAP output including the compute distribution of the shaft friction.

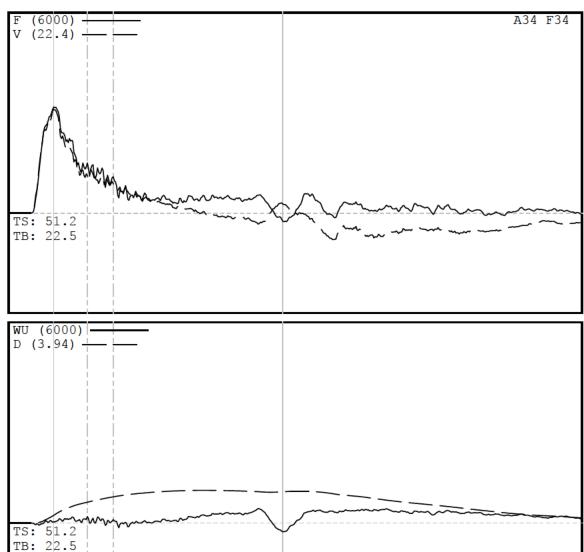
Please do not hesitate to contact me if you or other project participants have questions for me.

Sincerely,

Bert Miner

Robert Miner Dynamic Testing, Inc.

Mail: Box 340, Manchester, WA, 98353


Location: 2288 Colchester Drive East, Manchester, WA 98353

Office: 360-871-5480 Fax: 360-871-5483

Bert's Mobile: 360-981-3317 --

www.pilesound.com

KIWC, POA TPP IP 8 (Loc. 6)

Project Information

PROJECT: KIWC, POA TPP PILE NAME: IP 8 (Loc. 6) DESCR: PP48x1.0", APE 15-4

83.0 @ 60.56 ft

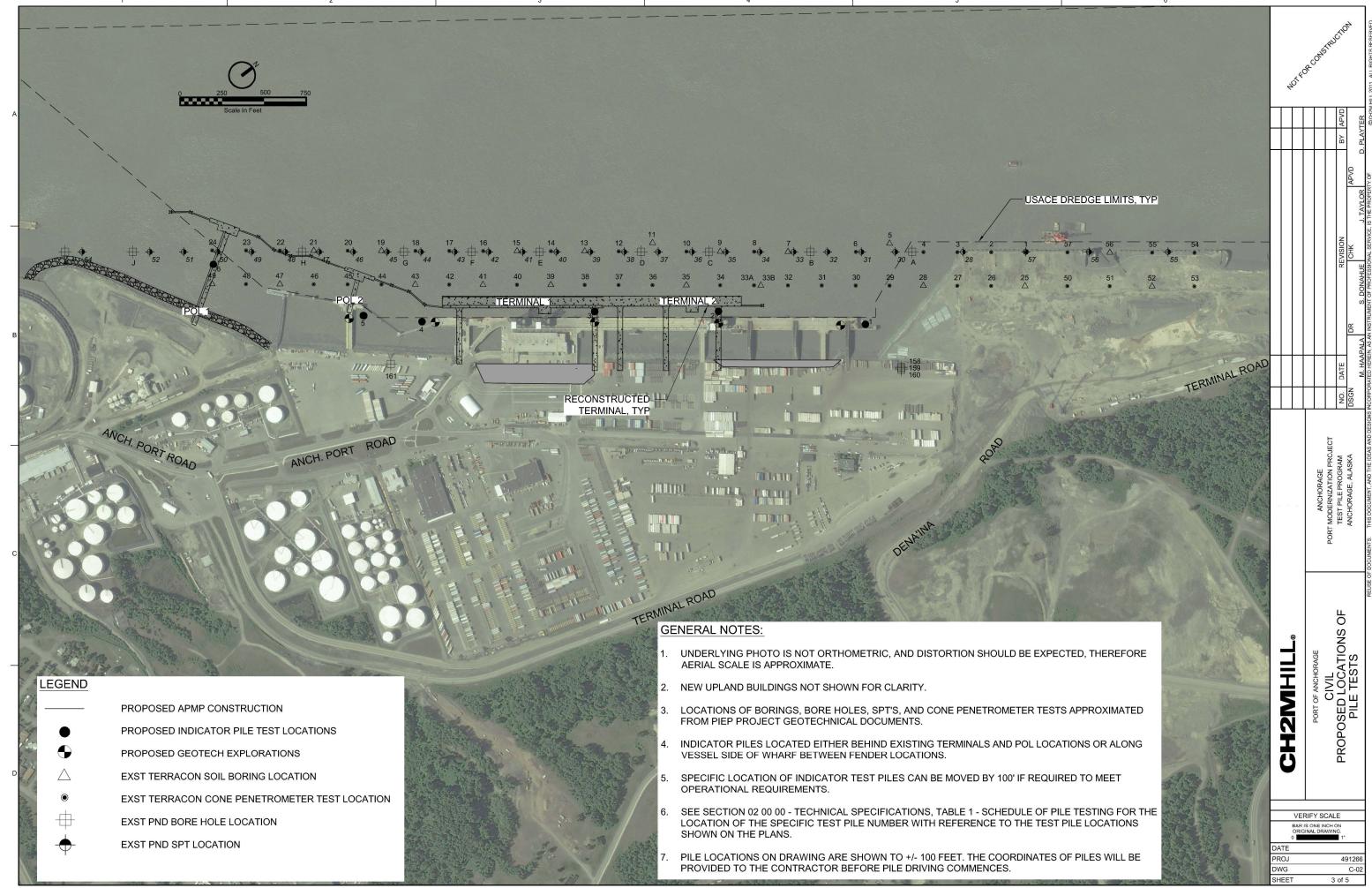
82.0 @ 40.94 ft

OPERATOR: RMDT FILE: IP 8_1.W01 5/3/2016 9:29:38 PM Blow Number 2023

Pile Properties

174.00 ft AR 147.65 in^2 EΜ 31052 ksi SP 0.492 k/ft3 WS 17100.0 f/s EA/C 268.1 ksec/ft 2L/C 20.40 ms 0.70[]

Quantity Results


CSX 21.4 ksi CSI 23.9 ksi EMX 95.4 k-ft FMX 3161 kips VMX 11.5 f/s BPM 26.2 bpm RX6 1147 kips RX7 1049 kips RX9 863 kips

<u>Sensors</u> F3: [H278] 99 (1)

F4: [H324] 93 (1) A3: [K3257] 340 mv/5000g's (1) A4: [K3259] 365 mv/5000g's (1) CLIP: OK

Appendix E

Pile Driving Records (as provided by Kiewit Infrastructure West Company)

				Pile Driving Ke		6/7/	11					Elevation	Data		
Job Name			KIWC #	7	Date	0/1/	16				Tide Reading		BELOW	1	
Contracto		ructure West Co.		Imp	act Hammer				Vibratory H	ammer	Mudline		•		Noise Abatement
Location	The state of the s	Pile #	Make	APE	Model	15 - 4		Make	APE		Sounding		-2		Resonator
		Pile Data	Ram Wt.	30 000 lbs	Ram Stroke	48	N	Model			Reference	win-	TER	Confir	ned Bubbles
Type		METER X / IN				F-1b		Access	ories QUAD	CLAMPS	Description	-15			None
Length	195 ft	Weight 102,00		pe ALUMIMICARTI		STEE		ــــــــــــــــــــــــــــــــــــــ		CUINITS	Pile Tip EL. Depth (ft)		0		6/21/6
Depth (ft)		Depth (ft)	Depth (ft) oke/RPM AD PE	BPF Stroke/RPM	Depth (ft)	BPF	Stroke/RPM	Depth		Stroke/RPM	Depth	(1 BPF	Stroke/RPM	i	Restrike Hammer Info
AD PC		AD PD BPF Str	oke/RPM AD PE	7	106		SUOKE/ILLINI	1	141	- Burneyin iii	176			Make	APE
	WEIGHT	37 RPM 1540109			107				142		177			Model	D180-42
- 25 3		-60 38 DP 2000	-75 73		-130 108				143		178			Ram Wt.	59670 16s
4		39	74		109		UNT		144		179		-	Ram Stroke	135 IN 44 6513 ft
5		40 RPM154010			110				145	-	180		-	Cushion	ALUM/MICARTA
. 6		41 DP 2100	76		111	-			147		182		1	Cap	STEEL
7 30 8		65 43 RPM (750) 0			135 113				148		183				
-/-	9	44 DP 7.500	79		114				149		184				Final Drive
11		45	80	28	115				150	-	185			*NOISE	Depth(in) Blows/in
1:	1	46 RPM 1940 1C			116		-		151	-	186	_	-	ABATE-	0,25 S.START
1		47 OP 3200	8: 1/05 8:		-140 118		UNT		152		188			MENT	2 3
735 1		49 RPM 184010		P4	115		10/0/		154	1776	189	_		,	3 4
	5	50 NP 3000	8		120				155		190	INSIDE	PLUE	* S.START	
1		51	8	6 30	121	45			156		191		MOTION	@14:49	5 4
	7	52 Rpm 935/	0:15		122			-	157		192		0/1.175		7 3
	8	-75 53 DP 3000	-//0 8		-/45 123		4141	├	158	-	193	ASTEN	R/S:-17.5		0 2
_	9	54	8		124		K ~		160 > INTE	FEARNE		CHANG			9 4
	10 LUAMPING 09:10	55	9		126		1		161				EL: -17.5	1	10 4
	22 5. STHRT 09:34		11 /,0:13 9		127				162		15.			4	
_	23 A.STAICT 109:39	- 80 58	-//5 9	3 18 STOP	750 128		STOP		163		198				
2	24	59 STOPPED 10:	18 9	4 36	129		13:02	1	164		199			Driving County (Sho	Times Total Time
	25 RPM 1570 09:41	60 S.STADT 11	9		130		-		165	-	200				10:18 44
	06 Db 1400		:44 9	6 34	13:		-	11-	167	-	200				t 11:40 Impact
	27 RAM 1690 09:43	62 30	1/20 9		133		1	11	168		20			Fin Impact	13:02 82
	29 RPM 1945 09:47	64 27	9	1.1	134	4			169		20			Start Restrike	
	30 DP 2560	65 27	10		13			1	170		20			Fin Restrike	e 14:54 Min
3	31	66 26		01 34	130		-	11-	171		20			-	
	32 5/5 09:49/09:5	67 3.1		02 43	13		-	11-	172	+	20		_	Drive Pressur	1500-3200
	33 34 RPM 15W 19:54	- 90 68 26 69 26		03 NO COUNT 04 38	13		+	11	174	1	20			RPM Range	e 1500 - 1945
	35 DP 1500	70 26	1		14				175		21	0]	7.7
-			WATE	L	10.1.1.	1111=								Cl	1-
Not		INDING - 3/4		= (-22)		1L/NE	New		27	*	ADIUS	TED F	OR PLUM	T-V	1.19
9	SOFT START VI	BE FOR 15 S	EC. WAIT		REPEAT	ZMO	PE	7/10	<u>ت</u>	51	3 310	13 1 M		_	
-	4 WAITED FOR	20 min FOR ALL CLE		BROKE OFF W	HILE	VIB ING	- NIBED	FAD	38 FT INS	TEAD OF 50	FT.			-	
57	TOPPED @ BIC	11:51 5,00 HAMM		DESIME STOP		START	12:19	1570	p 12:56	START /	STOD 1	3:02		_	
/	MPACT DELIVE.	וויקוד קטו כ וכיוו	1112/11-52	RESUME / JIVI		711-0-1	15-11/				1			_	
_														_	
_		In 1		-1				1/10	2/10	TIDE	READ	ING			
Ins	spector: (print)	YLER OFF	SET (si	gn) 144		/	(date) C	0:	4/16	processor and the same of the	NL/II	and a Tempor			
	,	Bo Youn (Sara	h)	Roll				1-1	110	09:10	+32	12:0	102 + 20		
		TO JOWN BUILD	. /	The Av	- CC	~	6	/1/	16	09:34	+32	12:1	8 + 18		
				,*		,						10.	8 + 18		
										09:49	+31	16.	11		
										10:05	+30	12.	46 +14		
										10:18	+29				
I. FID MOSE F	- 07 DA 4									/V - / IN	1/4				

11:39

ΤJ

									Pile D	riving Re	cord		/	.1.										
Job Na	me	A	PMP - Test F	ile Progran	n		KIW	/C # _	8		Date		05/1	9/16							ion Data	74		
Contra	ctor	K	iewit Infrast	ructure We	st Co.		O'THE STREET						10000	1					Tide Re	ading SEE	BELOW	_		
		,,	Pil	e Location						<u>Im</u> ;	pact Hami					V	ibratory Hamm	er	Mudline	-2	9		Noise Abat	ement
Locati	on#	_4_		Pile#	_2		Make	_	APE	0 1	Mode		D180 -4		Make		APE		Soundin	ng s	7	-1	Resonator	
THE PERSON	4	1		Pile Data	1		Ram W	_		0 lbs	Ram S		135	/[0]	Model	_	400		Referen	ce LINIA	ED TOWER	Confi	ned Bubbles	
Туре		200 F	IAMETA		I'M WA	.000		Energy			513				Access		OUAD BE	MPS	Descrip	_	70	=	None	
Length	_	200 F	-1	Weight		,000	_		HLMIN / I	MICARTA			STEEL		ـــالـ		N/4 CLA	10173	Pile Tip		10	-		
Depth (BPF S	Caral - /nna 4	Depth (fi		Seed of Pass	Depth		205	T 51 - 1 - (2214	Depth		205	Sector Instal	Depth		BDF C	1 /221/	Depth		T c /251		06/09	
-30	PD SE		Stroke/RPM 7:05		PD BPF 36 START	Stroke/RPM	AD	PD 71	BPF 18	Stroke/RPM	AD -135	PD 106	BPF 26	Stroke/RPM	AD -170			oke/RPM	H	epth (f BPF 176	Stroke/RPM	Make	Restrike Ham	merinjo
1 7		16MT	1:00		37	0.40	100	72	20	5.8	177	107	28	6.2	-	142	10-1	-0	1	177	-	. Model	D180-	L12 :
	3	IETTI		_	38 VIBE	2 12		73	17	5.9	1	108	27	6.3		143	-			178		Ram Wt.	59690	
	4	+			39			74	19	6.0		109	25	6.4		144				179		Ram Stroke	. ~ ~	101
	5			_	40			75	18	5.9	1	110	25	6.5		145		-		180		Rated Energy	1717 4 117	3 F++165
	6			-70	41		105	76	16	6.3	-140	111	24	6.5		146				181		Cushion	7	
	7			- 2 2	42		<u> </u>	77	1,6)	6.1		112	24	6.5		147				182		Сар	STEEL	
	8				43		1.00	78	20	6	1	113	24	6.6		148				183				
-	9	-			44		-108	79 .	# PDA	SENSORS		114	24	6.5		149				184		* NOS. STAFT	Final Dr	
7/12	10				45		110	80	05	5.5	1/100	115	20	6.6	-	150			_	185		*N0	Depth(in) Bl	
	11	-			46		-110	81	23	5.6	145	116	24	6.5	\vdash	151			-	186		NOISE		17
-	13	4	7:33		47 48	+	\vdash	82	23	5.7	┨┣━	117	26	6.5	\vdash	152 153			\vdash	187		ABATEMENT		16
43	14 Ham		2-00		49 ETOP	8:48		84	22	5.9	+	119	25	6.6		154		-	1	AR INSID	e PIW	TOTAL OF THE		15
~ 1	15 5.5		8:04	_	50 TAR			85	22	5.8	11-	120	22	6.8		155		-		DE ELEI	1077001	In store.		13
- X			8:11/012		51	10-0-		86	25	5.7	-150	121	21	6.4		156				250	721100	100		0 + parti
	17 ST		8:13		52			87	24	5.8		122	21	6.9		157		90		BEFO	REP/5 : -28	fre al	-	i
	18 57	ART	8:14		53			88	25	5.8		123	18	7.1		158				AFTE	R R/51-28	1.7		
	19	ent of	4.0		54			89	21	6.1		124	18	7.4		159				CHA				
_	20				55		/	90	20	6,2	1	125	13	7.9		160			_	195 PLU	G EL: -28			
	21	O LEADOT S	7.101/0.00		56		-120		21	6.3	155	126	16	8,5	\vdash	161			-	196		1	-	
文		TOP :	8:22	_	57	+		92	20	6.3	╢	127	NO C	8.8 8.8	\vdash	162 163		-	-	197		- 10		
		PRT	8:25		59	+	1	94	20	6.3	┨┝	129	1)	9.0	\vdash	164			\vdash	198		Driving 1	Times 7	Total Time
200	25	1/100	0-21		60		,	95	23	6.3	1	130	12	9.1		165				200		Start Vibe	08:04	Vibe
	26 ST	0P (8:32		61		-125	96	23	6.3	-160	131	12	9.2		166				201		Fin Vibe		50 min
-			8:34		62	-		97	25	6.4		132	12	9.1		167				202		Start Impact		Impact
	28				63			98	27	6.4		133	12	9.3		168				203		Fin Impact	11:40	66 min
	29				64 5701	8:54	·	99	25	6.3	-	134	12	9,2		169			_	204		Start Restrike		Restrike
	30				65 S. STA	17 10:28	12.4	100	24	6.3	///	135	12	8,4	-	170			<u> </u>	205		Fin Restrike	16:24	2 min
	31				66 22	5.4	-130	101	34	6.3	-165	136	10	9.7	-	171			\vdash	206		-		
-	33				68 23	5.3		102	13	6.4	┨├──	138	18	9.8	\vdash	173			\vdash	207	_	Drive Proceure	1800 - 35	500
,	34				69 18	5.7		104	24	6,4	11-	139	16	9.7		174		-	\vdash	209		RPM Range	1606-1	966
1	35 STOP	START 8	30/8:38		70 20	5.7		105	22	6.3	11-	140	16	9,7		175				210		1		
						2 /				-1-1 M	/				1.							-		
N	otes:	,		JPING	(0)	06:5	6	- ;	57 ff		57	-28		- 29 r	nudl	Ine						_		
1 2		gustea		plun		(typi)		Mai		,		Np.	5 FT)	1	7700	1 - (2)						-		
-			2T FO		BE: 1/		ECON		WAIT		REPL			WE T								-	-	
-			RT FO		PACT: 5			TIME								- 2	MONE	Tmos	1,			NOT	ES:	4
-						PDA WI								FINAL T		-1-7						16:19-	7 dead b	Jours !
-					4 To		A50		210	11.70	0 F1/	ا مدر ب	21	-INAL I	SE	- To								
-	7.70		1011	1. 0		3.7.00																	6 dead b	
1	nspector:	(1	print)					(sign)						(date)				Tid	(R	eading.	S		3 dead &	blows
													×.							-		V.1.	MMEE WI	
		VIBE	HAMI	1ER													06:53	+2	8	+1	1 10:3	5 No	T STACT	1
		TIME		PP																	11:15		. 5:1161	
		08:17	1005	2100													07-23	+2	-/	+ 8	11.15	,		
		08:24	1670														90. A9	+2	4	1 /	11:4	D		
		08=28	1650 1	1500													80-8			+ () 11.	-		
nted: 5/3/2016	6:07 PM		1725														08:29	+2						
	S.O7 FIVE	09:36	1930	3500													08:40	+2	(.					TJ
		08:53	1940	3000													08:55	5 40						
		000-7	. / . 0															, -		,				

								Pile Di	riving Re	cord	1	1												
dot	Name		APMP - Test P	ile Prograr	m		KIWC #	6		Date	w/3	/16							vation D					
Cor	ntractor		Kiewit Infrastr	ucture We	est Co.						,						Tide Re	ading	EE E	ELOW.				
			Pile	e Location					Imp	act Hammer	14- 14		7		Vibratory He		Mudlin	e .	-35			Noise Abate	ment	
Loc	ation#			Pile#	-	3	Make	APE	0 11 -	Model	15-4	/6.1	Make		APE		Sound	TAP N		1 TOP OF	65-	Resonator		
		.1 -7		ile Data	1 1111	1 Auto a 1	Ram Wt.		0 lbs	Ram Strok	e <u>48</u>	/N	Mod		auAD	DEAM <	Refere				Contin	ned Bubbles		
Тура		4 FT	DIAME			WALL	Rated Energ					zc1	- Acce	ssories	W/ 4	LIAMPS	Descrip		-184	SLIDER		None		
Leng		203		Weight		,000	Cushion Typ	e fil	MM/MICAT		ST	EEL	ـــاك	h /64\	<u>V/ 4</u>	COM1110	Dept		104			06/16/16	3	
	th (ft)			Depth (f		5 S 1 (00) 4	Depth (ft)	000	Stroke/RPM	Depth (ft)	BPF	Stroke/RPM	AD	h (ft)	BPF	Stroke/RPM	Personal Property lies	THE OWNER WHEN PERSON NAMED IN	BPF	Stroke/RPM		Restrike Hamn		
AD		BPF	Stroke/RPM	AD			AD PD	-	Stroke/KPIVI	10		Stroke/RPIVI	1 AL	141	85	Scioke/krivi	H	176	DF1	Stroke/Krivi	Make	APE	ici iiio	
-36		SELF	06:55		36 37	362	72		-	10		+	43		87 17	13:30/13:46		177			Model	7180 -4	16	
-	3	WEIGHT		-	38	9	73		 	10			1/2	143	62	12.79 19.19		178			Ram Wt.	39690	165	
\vdash	4	-		_	39		74			10		1	11	144	119			179			Ram Stroke	135 IN		
-4					40		-110 75			11	-		-18	0 145				180			Rated Energy			
1-7	6	1			41		76			11	1.00		1	146				181			Cushion	Azum/mi	LARTE	
		CLAMPING	07:28		42		77			11	2 65	T		147	65			182			Сар	STEEL		1
~		S.START			43 RPM 1	935 DP2900	78	46		11	3 NO CO	UNT		148				183						2
的米		A.START			44 /		79	42		11			**			14:03	_	184			ANO NOISE	Final Driv		9.0
	10				45		80	43		T/50 11			TA		41/6	in		185			PRATEMENT	Depth(in) Blo		143
	11				46 /		5/5 81		11:01/11:09	11		-	╟	151		-	-	186			S. START		57ART 9	DIAN DIAN
		RPM 1745	DE MOO		47		82	The same of the sa	MI	11			╢	152	-	-		187					6 -	
\vdash	13				48		83	51	-	11			╢	153 154	 	-	\vdash	189			12:17		8	į,
<u></u>	14	-			49		84	44	-	11		-	╂	155	 	+	\vdash	190					0	Mace
1-51		-	-		50		-12a 85	and the same of th	-	12	-	1	H	156	<u> </u>				SIDE	PLUCO			10	-
	16		-		52		87		 		2 72		\Box	157						TION		5		
	18				53		88	45	1		3 NO 10	MNT	11	158				193						
		RPIN 1940	DP2710		54		89		MNT	12	-	1	11	159				194 BE	FORE	R/5:-27				
		E-PM 1940	V	90	55	9	90	-		-(60 12	5 73			160						151-27				
)	21	1111			56 RPM	1930 PP 3000	91	63		5/5 12	6 28+50	12:20/12:4	1	161						1:0				
	22			-92	57 STOF	08:07	92			12		,		162					.UG	EL: -27				
	23				58 5.57	ART 10:34	93	and the same of th		12				163			_	198						
	24				59 2		94			12				164			l	199			Driving T		otal Time	
+6					60 36			NO CO	UNT_	13		-		165		-	-	200		-			35 Min	
	26	-			61 29		96		-	13	-	-		166		-	l	201			Start Impact	08:07	mpact	1
\ <u> </u>	27	-			62 20		97		-	13	N. P. and C. S.	-	┨├	167 168		_	╟─	202			Fin Impact	W:03	209 mil	3
/	28	-		-	63 16		98	-		13	0.62	-	╢	169			\vdash	204			Start Restrike	Control of the Contro	Restrike	1
\ <u> </u>	29 30	-	-	-	65 30		100		+		5 NO 10	UNT	+	170			\vdash	205			Fin Restrike	12:27	6 mins	5
)	31				66 32			62		110 12		P	╙	171	-			206				1	71110	4
(-	32	-		-	67 35		102			13			11	172				207						
) -	33	1			68 31			No co	UNT	13				173				208			Drive Pressure	1800-300	0	
\ <u> </u>	34				69 33		104	-		13	9 92			174				209			RPM Range	1745 - A	40	
V -7					70 NO	COUNT	-/40 105	100		14	10 87			175				210						
			A 117	111C	71	DE WAT		- 2	1 M	100 1011									11	1	_			
	Notes	:	SOUNI	/1N 07	- 2	31 - 66	=	1		NDLINE					# AD) WSTED	FOR	PLUI	7 1	1	m/ 1,-1	,		
	9	OFT STA	RT VI	BE F	DR 15	SEC . WAT	$T_{j}M$		EEPEAT	Z MI		MES			: (H	ANGED P	TEKE	NE POI	VI. P	KINE 0.5	# KE/			
	19	YO HAI	MMER 1	HAD	CRACK	= ON LU	IMP. DE	LAYED	OPERAT	IDN	BY 1/2	HR			5/5 5	TOPPED	STA	RIEV	197	LDILE	. (100)			
			0.000		m hine of O											PISINI			709	PAC	-			
	210	1 5/5	GREAL	567 1	SENSOF	E HIGHE	P								A A	COUNTS	FOE	n.cf	10	Cel	-)			
	2	5/5	: MOVE	W	SPINSUL	- 11167116	Australia .				-				1	A WHEN	IRP	F CHAN	GEID	PD 6	3,			
								- I	1 /	\			,					1.11111	U UV	15-18-8	,			
	Inspe	ector:	(print) B	Your	ISAra	h) Chae	(sign	Bol	In (L		(date) 6/	3/1	1	TIDE	FUTIL	DEGS							
	nispe	ctor.	(print)	700.1	(.,	10.0		J						04:5	5 +3	0.5	11	:18	+7	13:55 .	-		
															07:01				:25	+6	14:00	0		
																	22 1				17.00			
															07:3	2 +3	28.5			+5				
															08:00	7 121	4.5	1	1:53	+4				
															10:2				2:12	t2.5				
													,							+2		i.	-	
nted: 5/3/2	016 6:07	PM													10:4				2:17				TJ	
															11 -	fi) e	8	- 1	3:4h	-/-				

FINISH DRIVE W/ DIGO 05/12/16 > 05/13/18 **Pile Driving Record**

1 4 FT 205		Pile#		D.					Impa	ict Ham	mer					Lett	A STATE OF THE STA	Tide Read	ing 51	EE BELOU	7	Noise A	batement
		Pile #	on_	LI					Impa	ct Ham	mer							1				Noice A	hatement
		Pile #	_	LI		_										Vibratory Ho	ammer	Mudline			1		
	P			. 7		Make		APE	2	Mode	1	15-4	/	Make		APE	6-19-	Sounding	-	26	1	Resonato	r ×
	A COLUMN TO THE PARTY OF THE PA	ile Data	NE SE			Ram V	_	30,00			troke	48 IN	,	Model		400		Reference	TOP	OF TEMPO	ATE	Confined Bubbles	
	MIA MARCO		W	1 1011	VALL		Energy	1	1200								AD BEAMS	Description		FT OVERU		None	
		Weigh		10310				Alim	MICARTA			STEEL		Acces		w/ 40		Pile Tip El		175	And Desert	None	·
-	F/	_		10510	00			1-00011	MICHIELE			71656		ــــا لـــــا		<u>w/ 4 c</u>	Gentus 2	<u> </u>		172			
		Depth				Depth				Depth	· /			Depth				Depth (
BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD		BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	-		3PF Stroke/F		-	Hammer Info
						,				Ŀ				,	_								
			-				_			٠		NO COUNT			-								
			38					25			108		STOP		-							Wt. 396	90 165
	03	. 4	39			+100	74	<i>u</i>			109			+170	144				179				
170	374		40			,	75				110	63		1	145				180		Rated En	ergy 446,	5)3 ft
7	L	11	41				76	26			111	54	3	*	146	34	8.6		181		Cus	nion ALUM/	MICARTA
(m)	1)		42				77	28	15:10		112	NO COUT	16:10		147	31	9.3		182			Cap STE	EL
1	E		43				78 /	10 COUNT	570P	-139	113	60	STOP	-4	148	26	9.6		183			-	
10	m	70	44		12:16		79	38		+140	114	S. START	67:40	-175	149	30	9.3		184		No NOT	Fina	al Drive
L	_		45	DP3000	RPM 1940		80	31		156	115	55	6.3	2	150				185		ARATEM	Depth(in)	Blows/in
-1	0		46	STOP	17:16		81	33			116	59	6.3	1	151	FIN	157		186				S. START
met?	-	7,	47	-	12:18		82	31			117	59	6.2		152	08:	50		187		S. START	3 2	25
7	-	,-	48		Rem 1935		83				-	57			153				188		11:00	1 3	14
			-	<i>y</i> 1 <i>y</i>	131 111 123	-110				1.	-	48		1100	154				189		111.00	5 4	12
		. ,				170					1		7	/	-		 					-	110
			-						15:22											Sine Piul	_		110
							-		-	-	-	1		1	-							-	+
CTART	11164		_		<u> </u>				7101	-	-	41							362	EVAIION		-	+
		20	-			-	_			40				100	-		 			GOOG BK' L	21		+
JIAR	11.27	100	-		17:21	H	_		1	120				1100	-				ME DE	-00 ak 1	7.1		+
-		\vdash	-	08224/3					21	-	_			-	-		-		130 //	TER 191. E	6-1		+
-		-		Nr 2600	151771150					-				-						40/06 !	-		+
-		-							100,00	-	-			-	-			-				L	
6/		i -	-			10.0	_			-	-			-			 	_			·		
TOO	15.1015	·				+10			>100	-	-			-	_								Total Time
		<u> </u>				<u>`</u>		4		-	-			-	-								Vibe
		`				<u> </u>	_			<u> </u>	-			<u> </u>		ļ							
		<u> </u>	_			<u> </u>	-			<u> </u>	_				_		-						Impact
							_			1 2.60								-					
P 1700	BPM 17910	490					-			160	-												Restrike
)		-			1 1 100						-										Fin Res	rike 11:12	IMIN
		72					101				136				171				206		> FIN	115H DILIV	E W/ DIS
		-193	67		14:56		102				137	23			172				207		07	40-08:	30 50 M
		1	68	47	,		103		STOP		138	23			173				208		Drive Pres	sure 700-	-3500
	12:12		69	29	/	+130	104	52			139	26	9.7		174				209		RPM R	inge 1790'	-1950
P 2500	RPM/950		70	25		1	105	69			140	26	9.8		175				210				
00000	START START TOP START P 1700	START 11:94 START 11:94 START 11:57 START 12:05 START 12:09 PIZO RPM 12:09 PIZO RPM 12:09 PIZO RPM 13:00 SOUNDIN	START 11:44 START 11:44 START 11:57 80 START 12:05 START 12:09 PIZO RPM 170 90 PIZO RPM 170 90 PIZO RPM 1750 PIZO RPM 1750 PIZO RPM 1750 PIZO RPM 1750	40 41 42 42 43 43 44 45 46 47 48 48 49 50 51 52 53 51 52 53 55 56 57 58 59 77 60 77 70 70 70 70 70 70 70 70 70 70 70 70	37 38 39 40 41 42 42 43 43 44 45 17 46 57 47 57 48 68 47 75 76 77 77 78 78 78 78 78 78 78 78 78 78 78	37 38 38 39 40 41 41 42 43 43 44 45 46 570 77.16 47 77.16 48 48 48 49 50 51 51 52 51 52 51 52 51 52 55 77 58 58 59 60 60 60 61 61 62 63 67 67 68 68 67 70 70 70 70 70 70 70 70 70 70 70 70 70	37 38 39	37	37	37	37	37	37	37	37 38 38 72 73 25 100 8 33 5 TEP 109 60 109	37 37 37 37 37 37 37 37 37 37 37 37 37 3	37 72 27 107 1	37	1	137	37	17	17

OFTSTRET 15-4 HAMMER @ 14:56 LOWER ENEZGY (40%) HIT THREE TIMES WAIT ININ REPEAT 7. STOP @ 16:10 DUE TO HAMMER PROBLEMS . PLAN TO FINISH WITH 0180 MORNING OF 5/13. STOP DRIVE 08:12 -> STOP 08:18 CHANGE SENSORS, START 08:24 -> STOP 08:30 ONCE WAIT INVIN REPEAT 2 TIMES MORE START DRIVE @ 07:47

START & SETTING 3 FUR 5 FEET THEN SETTING 4 FOR REMAINDER

TIP OF PILE 0-175

(print) TYLER VANSSEN Inspector:

5/12 +25 @ 11:60 +26 @ 11:44 +26 @ 12:23 +16 @ 14:56 +15 @ 15:10

Printed: 5/3/2016 6:07 PM

Job Name

APMP - Test Pile Program

Pile Driving Record

05/18/16 # 9

Elevation Data

Noise Abatement Resonator Confined Bubbles None

06/09/16 Restrike Hammer Info Make APE Model 0180-42 Ram Wt. 39690 165 Ram Stroke 135 IN Rated Energy 446, 513 FT ALUM/MICARTA Cushion STEEL Cap

· START NO NOISE ABATE -MENT

Final	Drive	
Depth(in)	Blows/in	
1	28	
2	18	1
3	17	1
4	15	1
5	14	1
	6 * par-	ia
-7		13
		1
		1
7		1
		ĺ

Driving Times Total Time Start Vibe 08:40 Vibe 38 mins Fin Vibe 09:18 Start Impact 11:21 Impact 69 mINS Fin Impact /2:30 Start Restrike 16 - 05 Restrike Fin Restrike 16:11

Drive Pressure 2000 - 2500 RPM Range 1626 - 1785

Final TOE @-173

12:30

HAMMER ON SETING 3 FOR FIRST 20 FT THEN BUMPED TO SETTING 4 FOR REMAINDER OF DRIVE TIDE READINGS

> +26 07:01

07:21 +25

08:40 118 09:05 +10

09:12 +15-5

11:22

-	- 120
-	
_	-41
~~	
1BE)	
NES	
~	
-	- 5
	7
-	
1	
1	

Cont	ractor		Kiewit Infrastr	ructure V	Nest Co	0.														Tide Re	ading	SEE BE	ELOW	
			Pill	e Locatio	on				4.9 2.1			act Ham				,		Vibratory H	NAME OF TAXABLE PARTY.	Mudlin		-2		
Loca	tion#			Pile #		5		Make		APE		Mode		DI80 -	42	Make		APE	<u></u>	Soundi	ng .		1	.
		1	The state of the s	ile Data			and the second	Ram W		3969	0105	Ram S		135	/N	Mode		400	Derlista	Referen	ice			
Туре		4FT DI		×		VCH W			Energy		446,	513	F:			Acces		ANAD	CLAMPS	Descrip		HIN GED	1000 EK	-
Lengt		200 F	7	Weigh		103,0	000		n Type	A-LUM/	MICARTI			STEE	<u> </u>	ال		W/4	CHINING	Pile Tip			->	
Depth				Depth				Depth				Depth				Depth				Depth	_			
AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM		epth (1	BPF	Stroke/RPM	1
30	1	SELF		- 65			10:10		71	21	6.2	135	106	11	8.7	-170	141	18	9.9	_	176			1
		WEIGHT		\vdash		STOP	09:02	-	72	22	6.1	·	107	10	8.6	4/5/	>142	24	3.9	-	177			1
	3	 		-	38	START	09:05	-	73	20	6.3		108		8.4	199	143	26	9.5	_	178			1
	4	-		-	39	12000	-		74	17	6.7		109	10	8.6	- 173		23	9.9	_	179			
	5	-		-10		VIBE)	-	1000	75		6.5	. (3)	110	10	8,6	-	145	370P	12:36	-	180			Ra
	6			70		-	2500 DP	+105	76	17	6.7	-140	111	1	8.7	-	146		-	-	181			1
	7 8			-	42	-	1030 RPM	-R	77 78	14	6.9		112	8	8.67	-	147 148		-	-	182			1
	9				_	1	+	7	_	19	6.9	· -	_		8.3	-			-	-	183			5.
	10	-		-	44	V	-	-	79 80	13		<u> </u>	114	11		-	149		-	-	184			FN
	11	-		75		STOP	46.00	-	81	15	7.4	IHS	115	- 1	8.7	-	150 151			-	185			N
	12		-	+17	45	START	09:09	-111	81			775	116	13	07	-			-	\vdash	186			A
	13			\vdash	48	STHE	07:12	14	83	9	100	1	117	13	9.5	-	152 153			-	187 188			1
	14			1754	48	STOP	19:13	24	84		9,4	·	_	10	8.7	-				-			P21 4 1 6	н
	15			7770		START	- Committee	<u> </u>	_	12	8.4	i -	119	12	8.5	-	154 155		+	-	198	INSIDE		1
-45				-80	50	SIMP	09:14	-115	85 86	7		-50	_	10	9.5	-	156			\vdash		ELEVA	TON	1
75		S. START	-	00	52			1112	87	8	8.4	PU	121	18	8.7	-	157			-) N	0.5.00	200 232	1
					53		2500 TP	<u> </u>	88	077	100		123	12	8.4	-	157			\vdash	//-			#
-	19	START	08:45	-	54		1785 RPM	-		13		-	_	14	8.9	-	158			\vdash	-	AFTER	R/5:-28.5	4
	20		2000 DP	1	55				90	16	8.2	1	124	10	8.8	-	160		_	\vdash		CHANGE		1
-	_	STOP	08:55	- 85	_	STOP	09:18	120	91	1/	8.5	-155	125	10		-	161			-	19:	LUG E	L: -28.5)
50	22	START	28:56	00	57	3. START		-1120	92	a	8.5	1133	127	10	9.6	-	161		-	-	196 197			1
	23	SIMA	1250000	· ·	58	5-ART	11:27	1	93		8:5		128	10	8.9	-	163			-	198			╢┖
	24	-	112 16 89	n .	59	40	5.6		94	11	87	-	129	10	9.1	-	164		_	-	199			1
	25	2-07	16261		60	32	5.4	-	95	9	8.8	-	130	10	a	-	165		_	-	200			ł
55	_	STOP	12.59		61	35	5.5	-125	96	10	8.6	-166	131	10	9	-	166			\vdash	201			1
57	27	START		1.	62	27	5.9	100	97	9	8.7	100	132	12	8.9	-	167		_	\vdash	202			l s
	28	2 111161	00.00		63	26	5.1		98	11	0.5		133	11	8.9	\vdash	168		1	\vdash	202			1 1
-	29				64	27	11		99	13	8.6		134	17	8.8		169			-	204			St
	30			1	65	25	6.2		100	11	9.5		135	12	9,1		170	-		\vdash	205			1
60	_		2000 DP	95		23	6.2	120	101	10	8.6	-155	136	12	9.5		171				206		_	_
	32		1470 RPM	13	67	22	6.2	7	102	11	8.5	00	137	13	9.7		172		1		207			1
,	33	,	19.7 6-4 (1)		68	20	2.5	1	103	10	8.4	-	138	18	9.6		173		_		208			Dri
- 6	34	-		1	69	27	6.2		104	12	9.4	1	139	19	9.8		174		_		209			1 "
-	35				70	25	2.1		105	10	8.5	1	140	18	9,9		175		+		210			1

VIEW

SOFT START WI IMPACT: 3 STRIKES & 40% ENERGY WAIT IMIN REPEAT 2 MORE TIMES

SOFT START IN VIBE: VIBE 15 SEC WAIT IMIN REPEAT O MINE TIMES

PHSSEN

& STOP @ 11:40 START -> STOP AGAIN 11:43 TO INSTALL PDA SENGURS.

Printed: 5/3/2016 6:07 PM

Inspector:

Pile Driving Record 6/1/16 10 **Elevation Data** KIWC # APMP - Test Pile Program Job Name Tide Reading SEE BELOW Contractor Kiewit Infrastructure West Co. Noise Abatement Impact Hammer Vibratory Hammer Pile Location Mudline Resonator D180-42 Make APE Make Sounding Location# Pile # Confined Bubbles 135 IN Model 400 5 9490 lbs Ram Stroke Pile Data Ram Wt. Reference HINGED TOWER 4FT DIAMETER X QUAD BEAN 446513 ft -165 Accessories Description Rated Energy Type W/4 CLAMPS -156 Cushion Type AUM / MICATA Pile Tip EL 200 ft 103,000 Cap Type STEEL Length Weight 6/21/16 Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) BPF Stroke/RPM Restrike Hammer Info AD PD AD PD BPF Stroke/RPM Depth (AD PD Stroke/RPM Stroke/RPM AD PD BPF Stroke/RPM BPF AD PD Stroke/RPM Make / APE 141 176 20 5-2 106 9.0 1 CELF 05:45 (TIBE-71 Model D180-42 177 18 5.1 107 40 8.9 142 2 WEIGHT 72 37 Ram Wt. 59690 165 5:3 108 47 8.8 143 178 -30 3 38 -100 N-73 22 Ram Stroke 135 N 179 53 47 144 23 109 8.9 4 39 4 74 Rated Energy 446513 At -los 5.4 8.7 145 180 PPM 1870 DP 2800 5 40 75 23 110 47 Cushion ALUM / MICARTA 146 181 76 22 111 NO (0 6 41 182 Cap STEEL 21 6.0 112 58 147 42 77 7 9,2 148 183 5.9 113 55 70 43 78 8 Final Drive 149 184 5-9 114 66 9-0 79 24 9 44 AND NOISE Depth(in) Blows/in 115 55 185 9.1 150 45 80 1.22 10 A-BATEMEN. 5.8 186 81 116 01.1 151 11 46 NU COU 117 70 61, 152 187 47 82 12 *NO 83 10 + 14 5.8 118 NO COUNT 153 188 48 13 S.START 4 154 189 6.1 49 STOP START M: 12/07:14 84 119 72 14 6.2 190 INSIDE PLUG 15 CLAMPING 06:37 120 76 155 85 50 191 ELEVATION 9 156 121 06:42 86 25 81 16 S. STACT 51 NIBE 6.3 89 192 × 67/8 157 17 A STACT 87 28 122 62 06:48 52 8-1 193 NO MEASUREMAN 6.3 53 RPM 1930 DP 300 0 88 123 158 18 36 194 BEARING PL RPM 1400 P. 1490 89 6.5 124 8-8 159 54 34 195 K ~ 82 FT 6-4 125 8.9 160 55 8PM 1920 00 3600 90 32 72 20 196 FROM BIM/TIP NO COUNT 161 33 6.6 126 21 RPM 1775 DP 2400 91 197 OF PILE. 162 92 37 127 8.7 22 10-6 70 198 6.5 8-163 23 58 93 44 128 6-9 **Driving Times Total Time** 156 129 84 164 199 59 94 40 8.8 24 Start Vibe 16:42 10:38 200 Vibe 165 24 1.6 STOP (a) 60 95 25 Fin Vibe 07:32 50 min 201 166 26 RPM945 DP 2500 8.8 131 61 96 24 Start Impact 09:08 Impact 8.6 167 202 97 132 27 62 90 min Fin Impact 10:38 133 168 203 98 63 28 Start Restrike 13:47 Restrike 34 8 9 134 169 99 29 64 Fin Restrike 13:49 2 min 8.9 STOP 07:32 20 135 170 30 -65 100 8-9 136 171 31 66 S.STIART 09:08 101 8.8 172 207 19:16 137 32 67 102 Drive Pressure 1490 - 3500 173 208 10 COUNT 76 138 68 103 33 RPM Range 1400 - 1945 209 8.0 139 174 5. 104 34 69 27 210 8.8 140 175 70 105 35 = 29 - 56 TIPE - WATER DEPTH 4:50 POA STOPPED FOR POA SENSOAS SOFTSTART FOR VIBE FOR 1 MIN. REPERT 2 MORE TIMES 15 SEC. WAIT (BUBBLE LURTAIN REPEAT >MORE 40% ENERGY WAIT START FOR DISO : STRIKE (009:22 STOPPED FOR POA 6 extra. 60WS @ The. end-SETTING 112 @ the BEGINNING . READINGS (date) 6/1/14 TIDE Inspector: 07:31 +17 04:50 09:08 +9 +26.5 + 22 10:19 +4 +21 10:40 Printed: 5/3/2016 6:07 PM +18 07:20.

07:28

+17.5

EVIBED

Pile Driving Record 1 Date 5/25/16 Elevation Data APMP - Test Pile Program KIWC # Job Name Tide Reading SEE BELOW Kiewit Infrastructure West Co. Contractor Noise Abatement Impact Hammer Vibratory Hammer Pile Location Mudline -26 Resonator Model D180-42 Make APE Sounding Make Pile # Location# Confined Bubbles 135 IN Model 400 59690 lbs Ram Stroke Pile Data Ram Wt. Reference HINGED TOWER 4FT DIAMETER X 446513 ft-165 QUAD BEAM Accessories Description WALL Rated Energy Type W/4 CLAMPS -165 STEEL Pile Tip EL Length 2007-T Weight 102,000 Cushion Type ALMM/MICARTA Cap Type Depth (ft) Depth (ft) Depth (ft) 6/8/16 Depth (ft) Depth (ft) Depth (ft) Restrike Hammer Info Depth (BPF Stroke/RPM AD PD Stroke/RPM AD PD Stroke/RPM AD PD BPF AD PD Stroke/RPM AD PD BPF Stroke/RPM BPF Stroke/RPM Make APE 176 22 6.3 141 36 (V#BE) 71 20 5.3 106 -27 1 SELF 08:46 6.2 Model D180-42 5.3 142 177 2 WEIGHT 72 9+3 107 23 37 108 11 +? 143 178 Ram Wt. 59690 (bs 6.2 38 73 NO COUNT 3 Ram Stroke 135 IN 179 6.4 144 -100 74 23 6.1 109 22 -30 4 39 Rated Energy 446513 ft-105 180 110 25 145 40 75 32 4.9 6.2 5 Cushion ALUM/WICHETA 181 41 76 31 5.1 111 22 6.3 146 6 Cap STEEL 182 77 25 112 21 6.5 147 I.4 42 7 148 183 113 25 6.3 78 23 5,6 43 8 & S. START 184 Final Drive 6-4 23 5.6 140 114 22 149 70 44 79 9 DINF Depth(in) Blows/in 6.3 185 150 45 80 25 5.5 115 26 10 NOISE 21 5.4 10.4 81 116 23 151 185 28 11 46 ABATE -6.3 2 27 5.5 117 23 152 187 14 47 82 12 MENT 10 6.5 DOE INSIDE PLUG 153 3 5.5 118 23 48 STOP/START 11:17/11:1 83 30 13 le 154 185 ELEVATION 4 119 22 6.6 -110 84 NO COUNT 40 14 49 6 PUNT 290 5 120 IND 155 50 85 26 5.5 15 19 156 DOT BEFORE RIS: -24 6 121 6.9 86 26 16 51 5.6 DOT WATER RIS: -24.75 -47 17 CLAMPING 122 17 7.0 157 9:01 87 5.8 52 20 193 CHANGE: -0.75 5.8 123 20 7.0 158 18 S.START 11:00 53 88 22 5-8 -150 124 17 7.3 159 A.START 11:05 80 54 89 PLUG EL: -24.75 19 6.0 160 55 STOP/STAKET 11:27/11:29 22 125 17 7.6 **A** 90 20 196 8.3 161 18 DP 2000 RPM DI 6-1 126 16 21 56 91 8.7 162 197 127 22 57 DP290 RPM 1941 92 21 6.1 12 163 198 58 DP 2900 RPM 1945 93 291 6.1 128 12 9.0 23 **Driving Times** Total Time 9.2 164 199 120 94 7.4 6.2 129 24 59 9.3 200 Start Vibe | :00 Vibe 28 130 12 165 95 6.1 25 60 Fin Vibe 11-74 34 min 6.3 14 201 131 9-6 26 61 96 Start Impact 13:31 Impact 202 97 21 132 15 9.8 167 27 62 Fin Impact 14:37 66 min 5/5 133 9.6 168 203 23 4.0 63 98 28 17 204 Start Restrike 13:34 Restrike 22 6.0 160 134 9.4 169 29 64 99 Fin Restrike 13:41 5 min 205 STOP 135 30 96 170 6.2 30 65 100 水水 136 95 171 206 31 STOP / START 11:11 / 11: E 66 V 101 12 9.7 207 11: 24 137 20 172 102 32 67 Drive Pressure 2000 - 2900 97 208 68 S.START 13:31 6.2 138 22 173 103 33 RPM Range 1775 - 1946 9.8 209 6.2 174 104 139 34 69 27 5.5 60 7.3 175 210 △ 140 70 5.3 105 6.2 35 KEY -> * ADJUSTED FOR PLUM 1] (-2W 21.5 - 47.5 MUDLINE SOUNDING : Notes: ADJUSTED BUBBLE (WETAIN SIGHTING @ 9:30. NPERATION 570PS-2 MORE TIMES. ACLIDENTALLY HIT A WRONG SOFT START FOR VIBE: VIBE 15 Sec. WAIT I MIN. REPEAT BUTTON. STOPPED LOUNTING BLOWS 2 MORE TIMES. SOFT START FOR IMPACT: STRIKE 3 TIMES 40% ENERGY. WAIT I MIN. REPEAT A BLOWS SLIGHTLY PAST 4 COUNTED 14 BLOWS FOR SOFT START THE FOOT 1ST BLOW COUNT WAS FOR 1.5 FT 5/5 STOP/START for COMMUNICATION, (14:09) HAMMER SETTING STARTED @ 3, CHANGED TO 4 @ TOE - 110. 14:27. FINISHED DRIVING @ KK SENSOR CHANGE @ 14:20 (date) 5/25/16 Bo Youn (Sarah) Chae (print) Inspector: 08-46 +27 SAPOITIONAL NOTES: 09:15 +28 NEW SENSORS STAFFING AT PD 136, TOE TIDE 10:41 +27 READING +26 10:55 11:15 +25 Printed: 5/3/2016 6:07 PM 13:31 +13

14:20

+ 8

Job Name Contractor	APMP - Test Pile Program Kiewit Infrastructure West Co.	Pile Driving Rec	Date 5/03/16		Tide Reading SEE BELOW	
Location #	6 Pile Location Pile # 8	Make APE	Model 15-4	Make APE	Mudline Sounding - 28	Noise Abatement Resonator
	Pile Data	Ram Wt. 30,000 165	Ram Stroke 48 IN	Model 400	Reference TOP OF TEMPLATE	Confined Bubbles
Туре	4 FT DIAMETER X IN WALL	Rated Energy 120,0	00 ++-1bs	Accessories QUAD BEAMS	Description +12 FRIM WATER	None
Length	191.5 FT Weight 103,000 lbs	Cushion Type ALUM/MICART		&4 CLAMPS	Pile Tip EL -/33	
Depth (ft)	Depth (ft) Depth (ft) BPF Stroke/RPM AD PD BPF Stroke/RPM Stroke/RPM Depth (ft) BPF Stroke/RPM Depth (ft) Depth	Depth (ft) AD PD BPF Stroke/RPM	Depth (ft) AD PD BPF Stroke/RPM	Depth (ft) AD PD BPF Stroke/RPM	Depth (ft) Depth (f BPF Stroke/RPM	Restrike Hammer Info
-29 1	36 (V) RPM	71 35	106	141	176	Make APE
2	E F 65 37 1936	72 33	107	142	177	Model D180-42
3	38 13 /	73 40	108	143	178	Ram Wt. 59690 165
4 5	39 E	74 41 75 43	109	144	179	Ram Stroke 135 IN Rated Energy 446513 Ft-15
6	V 5 · 1 41	76 42	111	146	181	Cushion ALUM MICARTA
-35 7	SOFT 5. 16:28 42	105 77 44	112	147	182	Cap STEEL
	START 16:29 43	78 54	113	148	183	S.START Final Drive
9	(RPM) 44 (1942) 45	* 79 NO BLOW COUNT	114	149	184	
11	1 45	81 42	116	151	186	@ 09:52 Depth(in) Blows/in 20
12	B 475 47	82 41	117	152	187	ANO 2 15
13	E 48	83 41	118	153	188	NOISE 3 8
14	49 50	84 37	119	154 155	INSIDE PLUG	ABATEMENT 5 7
16	51	86 40	121	156	191	6 7
-45 17	52	115 87 45	122	157	252 BEFREERS: -20.5	7 8
. 18	53	88 38	123	158	195 AFTER 85: -20.5	8 3
19	54 ±27 V	₹ 90 NG BLOW COUNT	124	159 160	AST CHANGE: O	9 7 XP
21	84 56 77203	91 39	125	161	195 PLUG EL: -20.5	J
22	L +, 57 SOFTS, 19:09	92 33	127 31 BLOWS/3/N	162	197	
23	58 22	93 38	128	163	198	
(24)	STOP 16:32 59 30 START 16:42 60 40	94 53 95 66	129 PARTIAL FOUT	164	199	Driving Times Total Time Start Vibe 16:28 Vibe
	STOP 16:46 61 26	96 53	13t DUE TO REFUSAL	166	201	Fin Vibe 17:03 35 ml
-55 27	START 16:48 62 28	-125 97 50	132	167	202	Start Impact 19:09 Impact
_	STOP 16:53 63 26	98 83	163 REFUSAL= 10	168	203	Fin Impact 20:32 83 MI
30	START 16:55 64 24	99 100	134 BLOWS	169	204	Start Restrike 09:56 Restrike Fin Restrike 09:59 3 MIN
	(V) 66 27	101 NO BLOW COUNT	136 / /NCH	171	205	Fin Restrike V). 74 S MIN
32	95 67 30	102 93	137	172	207	
	13 A 68 NO BLOW COUNT	103 28	138	173	208	Drive Pressure ~ 3000 PSI RPM Range 1910 - 1950
34	E) RPM 69 28 70 33	104 93	139	174	209	RPM Range 1910 - 1950
33						
Notes:	OPS & STARTS VIBING PILE DUE 7				V COAST GUARD TIDE 5-10 FT & DRIVING	,
13.	ACK' DOWN.					
XX	(NO BLOW COUNTS = BLOW COUNT	ER CHECKS TIDE E	VERY 10 FT. SEE	TIDE READINGS.		
-				- Charles Control (A)		
Inspec		(sign) Turk	(date) 85		READINGS	
	AL DEPTH >	4		+26 e	16:25 +1	6 @ 20:32
		F EL TOE CHECK		+275	e 17:03	
PILE	FT MARKS) +16 @ 20:32			+23 @	19:09	
: 5/3/2016 6:07	PM 149 PILE EL ®	WATER LINE @ 20	:32	+ 21 @) 19:35	1
	->-133 PILE TIP	ELEVATION		+ 18 @	1 20:13	

--- 133 PILE TIP ELEVATION

FINISH IMPACT

Job N	lame .		APMP - Test					KIV	VC#_	RPS #	riving Re F. 3	Date		05/0	06/16	->	05	107/16		Washaw.	Elevation		5		
Contr	actor		Kiewit Infras).					Supplemental Sales	da reeds		Sparker of the second	one distance of					Tide Readin	8 SEE B	ELOW			
Locat	ion#	6		Pile #	and the second second	9		Make		APE		Mode	el .	0180		Make		APE 400	mmer	Mudline Sounding	-25		South	Resonator X	_
Type Length			DAMETE		- 11	N WALL	200	Rateo	Energy		446,51 MICARTA	3 F	t-16s	STEEL			ssories _	QUAD W/ 4		Reference Description Pile Tip EL.	TOP OF -140	TEMPLAT		None	
Depth			13 FT 10			103,0		Depti		ALOM	701100121 pa	Depti		7) 66		Dept		W/ 7 5	رمارام	Depth (ft			-	m[]]0/1/	
AD	PD		Stroke/RPM		PD	BPF	Stroke/RPM		PD	BPF	Stroke/RPM		PD	BPF	Stroke/RPM		PD	BPF	Stroke/RPM	Dep		Stroke/RPM		Restrike Hammer in	ifo
-26	1			1		START	08:01	_	71	7	8,4	_	106	30	9.7		141				76		Make		_
-			VEIGHT		37		0 /66 00	 	72	- 8	8.4	I	107	28	9.7	-	142				77			D180-42	
-	4	PENET	RATION	┨├─	38		2600 DP	-	73 74	9	8.3	ll:	108	28	9.7	-	143				78 79	-		39690 16	
\vdash	5			-65			11701011	\vdash	75	8	8.4	-135		32	9,7	-	145				80	-		135 IN 446.513 Ft	-11-6
31				1183		STOP	08:06	-	76	10	8.4		111	32	9.0			~ STOP	11:15		81			ALUM/ MICAR	
6		5. START	07:40	1 -		START			77	7	8.4		- 112	27	9.8	-	147	CONTIN	100	_	82			STEEL	211
	8		67:49		43	7.7.	0.000		78	7	8.6	-138		30	9.4			DRIVIN			83			A	10000
	9	~			44		2900 DP		79	8	8.5		114	32	9.5		149	MURE	DATA	1	84		NOS, STAGT		
-35	10	/V)		1	45		1938 RPM	+105	80	7	8.9	-140		37	9.5		150				85			Depth(in) Blows/ir	1
_	11	1111		╌	46			_	81	9	8.3		116	STOP	11:20	I	151				86		ENO NOISE	1 7	_
_	12	13	-		47	\\	-26 - 111	Ι—	82	- 8	8.8	Ι—	117		-	l	152				87		ABATEMENT	2 5	_
-	13	E	-	╌		STOP	08:14	-	83	10	9	Η—	118			l	153				88			3 6	\dashv
-	14	-	-	75	50	START	08.19	\vdash	84	10	9.1	╢	119			l	154 155				89 INSIDE 90 ELEVE		1	4 5	\dashv
-	16	-		11/3	50	1	21/11/02	-	86	10	9.2	11-	121	-	+		156				91	Illor	-	6 5	\dashv
	17			11		111			87	12	9.4	╢	122			\vdash	157				92 BEFURE	PK:-225	1	7 5	\dashv
	18			11		1311	100 1111		88	14	9.3	11	123			\vdash	158				93 AFTER			8 5	\dashv
	19			11	54				89	17	9.5		124		- 2		159				94 CHANGE		1		\neg
-45	20				55	-		-115	90	17	9		125				160				PLUG E				\neg
	21			-8(STOP			91	16	9.5		126				161			1	9.	LZZ.0	J		
- 1	22			1		S. START			92	15	9.5		127				162			1	97				
	23	i				START		_	93	19	9.4	1	128				163				98				
	24			11:00		(D/86		 	94	15	9.3	!	129				164				99		Driving T		
-	25	-		185			本やひ	l	95	14	9.1	╌	130		+	-	165				00	-		07:40 Vibe	
-	26			-86		10	7 11	l	96	15	9.2	╌	131			 	166				01				MIN
-	27	-	27 . 7.4		62	13	6.4	-	97	15	9.7		132		-	╟	167 168				02	-	Start Impact	10:47 Impac 11:20 37	ct m)N
_	29	-	G 08	11-	64	.14	5-8	l⊢–	99	20	1-9:7	╌	134		+	╟─	169				04	+	Start Restrike		
-55		V	I INIS	11	65	13	6.9	-125	100	19	9.5	╌	135		+	╟─	170			-	05	 	Fin Restrike		n.N
1		STOP	07:54	11	66	11	7	100	101	22	9.6	11	136			\vdash	171				06		Till Nestrike	10.10	27770
	_		07:57	11	67	0	7.6		102	21	9.7	11	137		1		172				07		1		
	33		10770	11	68		7.6		103	26	9-6		138				173				08		Drive Pressure	2600-3100	į.
	34				69	- 10	7.4		104	26	9.3		139				174			2	09		RPM Range	1930-1940)
	35	STOP	07:58	-95	70	7	9.1		105	22	9-2		140				175			2	10		FUEL	ETTING # 4	
	Notes:	E SOFT	SFART SO WOU	ING 3 E	EA IOT	07:07 C 07:	90 WAL	TNG	REN	T) 41	TWO	-2	9 57	SOUN	FT MUD BING =	-25	FF	MUDL	INE				itule str	014 (422	ent
		F	PX DI	80	05/	OF A	m.										L	1180 14	AMMEI	2 ON	SETTIN	9 7			
Po	MACT	SOF	T STAI	RT	2	0:47	10:59	TR	4 1	57A	RT HO	mne	in	-> 50	ICUESSA	UL	-					-	-		
	Inspec	ctor:					EW E EL			,	1	~			(date) 05							5/07 5	+ 20 @ + 19 @ + 18 @	10:55	
								-		7) -	31 6	08	10	1 -	+19 e	11:04	
																		1 +	-30 0	100	:19	(11 - 15	
																				00	*()	-	+ 180	11:15	
5/3/201	6 6:07	PM																1+	17 8	10:	46	_			TJ

												riving R			5/26	1/16						Elevation Dat				
	Job Na	me _		APMP - Test P					KIW	C#_	2	_	Date	-	5/-	// 1 -				Tide Re	ading	SEE BEL	DW			
	Contra	ctor		Kiewit Infrastr).					-						V	ibratory Hammer	6.8	_				Noise Ab	atement
				Pil	e Locatio	on	10				APE	<u>In</u>	npact Han Mode	THE REAL PROPERTY.	15-6	4	Make		APE	Mudlin	ng	-24			Resonator	
	Locati	on#_	6		Pile#	September 1	70	ALBERT CL.	Make Ram W			000.165		Stroke	48	iN .	Model		400	Referen	_	HINGED	TOWER	Conf	ined Bubbles	X
	Tues		4 FT	DIAMET	File Data	X	IIN WA	H.		Energy		7001103		00 PT		-	Access	sories	QUIPD BEAMS	Descrip	tion /	2FT OVER	WHIER		None	
	Type Length	-	192		Weigh		103,00					MICARTA	Cap T		STEE	L		_	w/ 4 CLAMPS	Pile Tip	EL.	-137				
	Depth	- (fe)	112		Depth		77.		Depth		TIDATT		Dept	h (ft)			Depth	(ft)		Depth	(ft)				OFFI	
	AD	PD	BPF	Stroke/RPM	AD	PD	BPF	Stroke/RPM	AD		BPF	Stroke/RPI		PD	BPF	Stroke/RPM	AD		BPF Stroke/RPM		Depth (1	BPF S	troke/RPM			ammer Info
	-25		SELF WEIGH		-60		VIBE)		-95	71	NO C	COUNT	-130	106	46		_	141			176			Mak Mode	-	-42
4		2	CLAMPING	11:14		37	4			72	17			107			_	142			177			Ram Wi		10 155
~~~	-27	3	S.START	11:18		38				73	15	-	1	108	45			143		╢	178	_		Ram Strok	104	IN IN
11863	:		A.STAPT	11:23	1	39			I —	74	17		-11-	109	49 No co	INIT	1	144		11	180			Rated Energ	v 4465	13 Ft-165
1		5		0.000	-	40			100	75	19		+	110	50	NIA I	-170	145		11	181			Cushio	ALUM	MICARITA
1	-30		DP 1400	RPM 1555	-	41		-	-100	77	-17	110000	-12/	1112			1	147		1	182			Ca		
1	-	7 8			-	42			1	78	23			113	TI	15:39		148			183					
	1	9				44				79	27		1	114	STOP		M-	149		1	184			S. START		Drive
		10				45			-104	80	32			115	5.44			150			185			@13:0r	Depth(in)	Blows/in
	0.	11			-70	46				81	31		141	116			11_	151		╢	186			DEOVE	2	2
- 1	-	12			7,7	47			1	82	35		$\dashv \vdash$	117			<b>!</b>	152			187			1/2"	3	3
	2	13			19	48			11-	83	77		$\dashv\vdash$	118			\ <u></u>	153 154	-	+	189			1	4	3
		14			1	49		-	11-	84	43 No	COLLACT	$\dashv\vdash$	119		-	11-	155		11	190			+ NO	5	4
- 1	1/2	15	- Control of the Cont		-	50	1	-	110	85	28	LOVINI	$\dashv\vdash$	121			11	156		11		NSIDE 1	CUG	NOISE	6	3
1	40	16	CTO Knot	11:29/11:30	1	51	STOP.	11:46	1150	87	38	_	$\dashv$	122				157				ELEVAT		PRATEME		3
	4	18	S IN DINN	11.20 11-30	10		S.START	14.04	+	88	27		$\dashv \vdash$	123				158			193				8	4
	-	19	DP 2700	RPM 1950	1	54	21	4:08	11	89	29			124				159		1		REFORE		4	1	4
	1	20	7	National Property of the Parket		55	16	342-5		90				125			1	160			195	AFTER AS	20		-	-
1	7.4	21			-80	56	14	1.55		91	51		-15				11-	161			195,	ZHUKE' PLUG E	1 . 20	1	-	
		22				57	16			92	29		$\dashv$	127				162			197	PLUG E	L20	1		
1	1	23			-	58	15		11—	93	35		$\dashv\vdash$	128	-	-	1	163 164		11-	199			Drivin	Times	Total Time
			DP 2906	RPM 1945	-	59	14	-	╢	94	-	_	$\dashv\vdash$	130	<del>                                     </del>	-	11	165		11	200				ne 11:18	Vibe
		25			1	60	14	-	-120			_	$\dashv\vdash$	131			11	166			201			Fin Vi	e 11:46	28 min
	150	25		-	1	62	15		112			TUND	$\neg$	132				167			202				ct 145 04	Impact
	-	28				63	15		11	98	2. 43			133				168		$\perp$	203				1 15:30	
1		29				64	15	1	1	99	47			134				169			204				ke 13:09	
1		30				65	15			100			4	135		-	1	170		$\dashv$	205			Fin Restri	ke <u>13:10</u>	Z MID
		31			-90	66	16		125			7 15:15/15	10 +11	136	-	-	11	171		┨┣─	206			1		
11:40	< ·			EPM 1940	<u>    -</u>	67	17	-	1	102			$\dashv\vdash$	137		-	11	172		$\dashv\vdash$	208			Drive Pressu	re 2700 ·	- 3000
11:41			DF 2700		<del>    ·</del>	68	15	-	1	103		COUNT	$\dashv\vdash$	138			1	174		1	209				ge 1700 -	
11.42	4		DP 3000	RPM 1940	PDP	69		14-17/404	11	104		CONTAI	$\dashv\vdash$	140		1	11	175		1	210					1.0
	1	35			PU	1 70	10-11-19	17. (1/1767	-	105								-	20					_		
		Notes:		SOUP	WIZIN	G	(a)	9:50	120		2 713	IDE (2	7) -	WA		EPTHLE		= (-	24 MUDLINE			STEPFOR PL		- 5		
		501	FT STAR	T FOR	VIBE	: V	IBE FO		SEC	. 1	NAIT	IMIN	. R	EPERT	1 2 N	DRE TIM	ES				11.10	THE RICH		- /		
			T STAR				IMER :											-1(1)		File	STUNES!	DT -NC-10	NO SHOW	es > KE	Y	
			A SENSO	RS (D)	PD	70	, AD	- 94 , h		W	through	in the	1001	, 2	:17 Sto.	1 23	41 5	start		TPI	DE DE	RT INSTA	IL SENS	ED ( LT	1	
		STI	PP AGI	AIN (a)			START	AGAIN			3-18	0/21/5	1107	12111	. Jatal	- 11=	TED		HE PILE &		114	10	-	- )		
		A	T END	FOOT	KET		DKIVING				D 501	BBLE	ME	MIN	Which	n Lit	150		TIL TILE	-				- /		
		_ =	VENTU	MILT !	DROV	5	ANOTH	De F	700	110	0 >01		1		-									_		
				(mint) R	0 40	1110	Char	34		(sign	P	-40	12	~		(date) 5/	26/1	16		PER	DIAL	la e				
		Inspe	ector:	(print)	U JU	UII	C. 3(C			(aigi	-	V	-						TIDE	REA		43		12		
																			09:50	+2	27		01 +			
																			10:23	+>		2	19+	12		
																						-	24	-11		
																			11:01	+:		7	14			
																			11:17	+2	10	3	24 +	(		
210																	,		11:28	-1-		- 3	24 +	-6		7
Printe	d: 5/3/20	16 6:07	7 PM																	77	25.5	,				
																			11:38	+:	25	x				

# ATTACHMENT 2 Hydroacoustic Monitoring (HAM) Report



# **Hydroacoustic Monitoring Report**

# **Anchorage Port Modernization Project Test Pile Program**

Submitted to:

Tanner Vetsch Kiewit Infrastructure West Co.

Contract: PSA 2572

Authors:

Melanie Austin Samuel Denes Jeff MacDonnell Graham Warner

19 September 2016

P001317 Version 3.0 JASCO Applied Sciences (Alaska) Inc. 310 K Street, Suite 200 Anchorage, AK 99501 USA Tel: +1-907-538-7205 www.jasco.com



#### **Document Version Control**

Version	Date	Name	Change
1.0	2016 Jul 11	M Austin	Draft released to client for review.
1.1	2016 Jul 26	M. Austin	Addressed comments received from client
2.0	2016 Sep 6	M Austin	Addressed comments received from client 2016 Aug 11
3.0	2016 Sep 19	S Denes	Addressed comments received from client 2016 Sep 15

#### Suggested citation:

Austin, M., S. Denes, J. MacDonnell, and G. Warner. 2016. *Hydroacoustic Monitoring Report: Anchorage Port Modernization Project Test Pile Program*. Version 3.0. Technical report by JASCO Applied Sciences for Kiewit Infrastructure West Co.



# Contents

EXECUTIVE SUMMARY	1
1. Introduction	3
1.1. Pile Details	4
1.2. Hammer Types	5
1.2.1. Impact Hammers	
1.2.2. Vibratory Hammer	
1.3. Noise Attenuation Systems	
1.3.1. Passive Resonator	
1.3.2. Confined Bubble Curtain	
2. Methods	q
2.1. Monitoring Locations	
2.2. Monitoring Equipment	
2.3. Monitoring Activities	
2.4. Pile Driving Activities	
2.5. Analysis Methods	
2.5.1. Pile Driving Data Analysis	
2.5.2. Ambient Data Analysis	
3. Results	
3.1. Impact Hammer Pile Driving Sound Levels	
3.1.1. Pile IP1: Un-attenuated, Hydraulic Impact Hammer, Location 5	
3.1.2. Pile IP2: Resonator, Diesel Impact Hammer, Location 4	
3.1.3. Pile IP3: Bubble Curtain, Hydraulic Impact Hammer, Location 1	
3.1.4. Pile IP4: Resonator, Hydraulic Impact Hammer, Location 1	
3.1.5. Pile IP4: Resonator, Diesel Impact Hammer, Location 1	
3.1.6. Pile IP5: Un-attenuated, Diesel Impact Hammer, Location 4	
3.1.7. Pile IP6: Un-attenuated and Bubble Curtain, Diesel Impact Hammer, Location 4	
3.1.8. Pile IP7: Bubble Curtain, Diesel Impact Hammer, Location 5	
3.1.9. Pile IP8: Resonator, Hydraulic Impact Hammer, Location 6	
3.1.10. Pile IP9: Resonator, Diesel Impact Hammer, Location 6	
3.1.11. Pile IP10: Bubble Curtain, Hydraulic Impact Hammer, Location 6	
3.2. Vibratory Pile Driving Sound Levels	
3.2.1. Pile IP1: Un-attenuated, Pile Location 5	
3.2.2. Pile IP2: Resonator, Pile Location 4	
3.2.3. Pile IP3: Bubble Curtain, Location 1	
3.2.4. Pile IP4: Resonator, Location 1	
3.2.6. Pile IP6: Bubble Curtain, Location 4	
3.2.7. Pile IP7: Bubble Curtain, Location 5	
3.2.8. Pile IP8: Resonator, Location 6	
3.2.9. Pile IP9: Resonator, Location 6	
3.2.10. Pile IP10: Bubble Curtain, Location 6	
3.3. Sound Level Statistics	
	. •



3.3.1. Impact Pile Driving	70
3.3.2. Vibratory Pile Driving	
3.4. Threshold Distances	
3.4.1. Impact Pile Driving	
3.4.2. Vibratory Pile Driving	
3.5. Ambient Data	
4. DISCUSSION AND CONCLUSION	
4.1. Pile Driving Sound Level Measurements	
4.2. Underwater Ambient Noise Measurements	
4.3. Near-Source Levels	
4.5. Sound Threshold Distances	
4.6. Comparison of Hammer Types and of Noise Attenuation Systems	
5. ACKNOWLEDGEMENTS	
GLOSSARY	
ACRONYMS	. 129
LITERATURE CITED	. 130
APPENDIX A. ACTIVITY LOGS	A-1
APPENDIX B. DRIFT MEASUREMENT DISTANCES	B-1
APPENDIX C. M-WEIGHTED PILE DRIVING STATISTICS	. C-1
APPENDIX D. THIRD-OCTAVE BAND RECEIVED LEVELS	. D-1
APPENDIX E. ACOUSTIC METRICS	E-1
Figures	
Figure 1. AMAR (Table 4) and pile (Table 1) locations	4
Figure 2. APE D-180-42 diesel impact hammer (left) and APE model 15-4 hydraulic impact hammer	_
(right)	
Figure 3. APE model 400 vibratory driver	б
(right). The open ends of the resonators face downward when deployed	7
Figure 5. Confined bubble curtain system schematic.	
Figure 6. Photo of AMAR-1KM system about to be deployed in Cook Inlet	
Figure 7 Photo of OSM system showing the hydrophone cable, deckbox, and laptop with live display of data from two hydrophones of different sensitivity.	
Figure 8 <i>My Marie</i> , the acoustic monitoring vessel, deploying an AMAR	
Figure 9. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP1-10M (top), IP1-1KM (middle), and IP1-DRIFT (bottom)	15
Figure 10. Spectrogram of strikes by the hydraulic impact hammer on Pile IP1 at a distance of 14 m	10
at IP1-10M (top), 959 m at IP1-1KM (middle), and 2375 m at IP1-DRIFT (bottom)	16



IP1-1KM (middle) and between 1040 m and 2800 m on IP1-DRIFT (bottom).	17
Figure 12. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP2-10m (top), IP2-1km (middle), and IP2-DRIFT (bottom)	18
Figure 13. Spectrogram of strikes by the diesel impact hammer on Pile IP2 at a distance of 11 m at IP2-10M (top), 943 m at IP2-1KM (middle), and 2260 m at IP2-DRIFT (bottom)	19
Figure 14. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP2 by the diesel impact hammer, measured at distances of 11 m at IP2-10M (top) 943 m at IP2-1KM (middle) and between 1700 m and 3500 m on IP2-DRIFT (bottom)	20
Figure 15. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP3-10M (top), IP3-1KM (middle), and IP3-DRIFT (bottom)	21
Figure 16. Spectrogram of strikes by the hydraulic impact hammer on Pile IP3 at a distance of 12 m at IP3-10M (top), 1182 m at IP3-1KM (middle), and 1362 m at IP3-DRIFT (bottom)	22
Figure 17. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP3 by the hydraulic impact hammer, measured at distances of 12 m at IP3-10M (top) 1182 m at IP3-1KM (middle) and between 860 m and 1867 m on IP3-DRIFT (bottom)	23
Figure 18. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP4-10M (top), IP4-1KM (middle), and IP4-DRIFT (bottom)	24
Figure 19. Spectrogram of strikes by the hydraulic impact hammer on Pile IP4 at a distance of 10 m at IP4-10M (top), 1008 m at IP4-1KM (middle), and 1650 m at IP4-DRIFT (bottom)	25
Figure 20. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP4 by the hydraulic impact hammer, measured at distances of 10 m at IP4-10M (top) 1008 m at IP4-1KM (middle) and between 1630 m and 3020 m on IP4-DRIFT (bottom)	26
Figure 21. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP4-10M (top), IP4-1KM (middle), and IP4-DRIFT (bottom)	27
Figure 22. Spectrogram of strikes by the diesel impact hammer on Pile IP4 at a distance of 10 m at IP4-10M (top), 1008 m at IP4-1KM (middle), and 2133 m at IP4-DRIFT (bottom)	28
Figure 23. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP4 by the diesel impact hammer, measured at distances of 10 m at IP4-10M (top) 1008 m at IP4-1KM (middle) and between 1470 m and 2670 m on IP4-DRIFT (bottom)	29
Figure 24. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP5-10M (top), IP5-1KM (middle), and IP5-DRIFT (bottom)	30
Figure 25. Spectrogram of strikes by the diesel impact hammer on Pile IP5 at a distance of 11 m at IP5-10M (top), 968 m at IP5-1KM (middle), and 2300 m at IP5-DRIFT (bottom)	31
Figure 26. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP5 by the diesel impact hammer, measured at distances of 11 m at IP5-10M (top) 968 m at IP5-1KM (middle) and between 1900 m and 3200 m on IP5-DRIFT (bottom)	32
Figure 27. Waveforms (left) and spectra (right) for the same (un-attenuated) strike during impact hammering of 48 in steel pile recorded at IP6-10M (top), IP6-1KM (middle), and IP6-DRIFT (bottom)	33
Figure 28. Waveforms (left) and spectra (right) for the same bubble curtain-attenuated strike during impact hammering of 48 in steel pile recorded at IP6-10M (top), IP6-1KM (middle), and IP6-DRIFT (bottom).	34
Figure 29. Spectrogram of un-attenuated strikes by the diesel impact hammer on Pile IP6 at a distance of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle), and 1011 m at IP6-DRIFT (bottom)	35
Figure 30. Spectrogram of bubble curtain-attenuated strikes by the diesel impact hammer on Pile IP6 at a distance of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle), and 1219 m at IP6-DRIFT (bottom)	36



IP6 by the diesel impact hammer, measured at distances of 12 m at IP6-10M (top) 977 m at IP6-1KM (middle) and between 975 m and 2400 m on IP6-DRIFT (bottom)	37
Figure 32. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP7-10M (top), IP7-1KM (middle), and IP7-DRIFT (bottom)	38
Figure 33. Spectrogram of strikes by the diesel impact hammer on Pile IP7 at a distance of 12 m at IP7-10M (top), 1013 m at IP7-1KM (middle), and 728 m at IP7-DRIFT (bottom)	39
Figure 34. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP7 by the diesel impact hammer, measured at distances of 12 m at IP7-10M (top) 1013 m at IP7-1KM (middle) and between 290 m and 740 m on IP7-DRIFT (bottom)	40
Figure 35. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP8-10M (top), IP8-1KM (middle), and IP8-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red	41
Figure 36. Spectrogram of strikes by the hydraulic impact hammer on Pile IP8 at a distance of 17 m at IP8-10M (top), 960 m at IP8-1KM (middle), and 482 m at IP8-DRIFT (bottom)	42
Figure 37. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP8 by the hydraulic impact hammer, measured at distances of 17 m at IP8-10M (top) 960 m at IP8-1KM (middle) and between 480 m and 2400 m on IP8-DRIFT (bottom).	43
Figure 38. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP9-10M (top), IP9-1KM (middle), and IP9-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red	44
Figure 39. Spectrogram of strikes by the hydraulic impact hammer on Pile IP9 at a distance of 17 m at IP9-10M (top), 1037 m at IP9-1KM (middle), and 315 m at IP9-DRIFT (bottom)	45
Figure 40. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP9 by the hydraulic impact hammer, measured at distances of 17 m at IP9-10M (top) 1037 m at IP9-1KM (middle) and between 206 m and 909 m on IP9-DRIFT (bottom)	46
Figure 41. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP10-10M (top), IP10-1KM (middle), and IP10-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red	47
Figure 42. Spectrogram of strikes by the hydraulic impact hammer on Pile IP10 at a distance of 12 m at IP10-10M (top), 1064 m at IP10-1KM (middle), and 2576 m at IP10-DRIFT (bottom)	48
Figure 43. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP10 by the diesel impact hammer, measured at distances of 12 m at IP10-10M (top) 1064 m at IP10-1KM (middle) and between 1300 m and 3600 m on IP10-DRIFT (bottom)	49
Figure 44. Spectrogram of vibratory driving of Pile IP1 at a distances of 14 m on IP1-10M (top), 959 m on IP1-1KM (middle) and between 2100 m and 3100 m on IP1-DRIFT (bottom)	50
Figure 45. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP1 of 14 m at IP1-10M (top), 959 m at IP1-1KM (middle) and between 2100 m to 3100 m on IP1 Drift (bottom)	51
Figure 46. Spectrogram of vibratory driving of Pile IP2 at a distances of 11 m on IP2-10M (top), 943 m on IP2-1KM (middle) and between 4262 m and 4594 m on IP2-DRIFT (bottom)	52
Figure 47. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP2 at distances of 11 m at IP2-10M (top), 943 m at IP2-1KM (middle) and between 3300 m to 5100 m on IP2-DRIFT (bottom)	53
Figure 48. Spectrogram of vibratory driving of Pile IP3 at a distances of 12 m on IP3-10M (top), 1182 m on IP3-1KM (middle) and between 1408 m and 3179 m on IP3-DRIFT (bottom)	54
Figure 49. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP3 at distances of 12 m at IP3-10M (top), 1182 m at IP3-1KM (middle) and between 1350 m to 3278 m on IP3-DRIFT (bottom).	
Figure 50. Spectrogram of vibratory driving of Pile IP4 at a distances of 10 m on IP4-10M (top), 1008 m on IP4-1KM (middle) and between 1623 m and 2875 m on IP4-DRIFT (bottom)	



10 m at IP4-10M (top), 1008 m at IP4-1KM (middle) and between 1620 m to 2510 m on IP4-DRIFT (bottom).	57
Figure 52. Spectrogram of vibratory driving of Pile IP5 at a distances of 11 m on IP5-10M (top), 968 m on IP5-1KM (middle) and between 3769 m and 5324 m on IP5-DRIFT (bottom)	58
Figure 53. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP5 at distances of 11 m at IP5-10M (top), 968 m at IP5-1KM (middle) and between 3000 m to 5000 m on IP5-DRIFT (bottom)	59
Figure 54. Spectrogram of vibratory driving of Pile IP6 at a distances of 12 m on IP6-10M (top), 977 m on IP6-1KM (middle) and between 1457 m and 3083 m on IP6-DRIFT (bottom)	60
Figure 55. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP6 at distances of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle) and between 1324 m to 3184 m on IP6 Drift (bottom)	61
Figure 56. Spectrogram of vibratory driving of Pile IP7 at a distances of 12 m on IP7-10M (top), 1013 m on IP7-1KM (middle) and between 1027 m and 1680 m on IP7-DRIFT (bottom)	62
Figure 57. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP7 at distances of 12 m at IP7-10M (top), 1013 m at IP7-1KM (middle) and between 1000 m to 1700 m on IP7 Drift (bottom)	63
Figure 58. Spectrogram of vibratory driving of Pile IP8 at a distances of 17 m on IP8-10M (top), 960 m on IP8-1KM (middle) and between 2357 m and 3046 m on IP8-DRIFT (bottom)	64
Figure 59. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP8 at distances of 17 m at IP8-10M (top), 960 mat IP8-1KM (middle) and between 1470 m to 2900 m on IP8-DRIFT (bottom)	65
Figure 60. Spectrogram of vibratory driving of Pile IP9 at a distances of 17 m on IP9-10M (top), 1037 m on IP9-1KM (middle) and between 1271 m and 1646 m on IP9-DRIFT (bottom)	66
Figure 61. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP9 at distances of 17 m at IP9-10M (top), 1037 m at IP9-1KM (middle) and between 1620 m to 2510 m on IP9-DRIFT (bottom).	67
Figure 62. Spectrogram of vibratory driving of Pile IP10 at a distances of 12 m on IP10-10M (top), 1064 m on IP10-1KM (middle) and between 789 m and 1872 m on IP10-DRIFT (bottom)	68
Figure 63. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP10 at distances of 12 m at IP10-10M (top), 1064 m at IP10-1KM (middle) and between 800 m to 1930 m on IP10-DRIFT (bottom).	69
Figure 64. Pile IP1: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving	75
Figure 65. Pile IP2: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	76
Figure 66. Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving, for a propagation path to AMAR-Drift to the south of the Port	77
Figure 67 Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving, for a westward propagation path to AMAR-1KM in the dredge disposal area	78
Figure 68. Pile IP4 (diesel): Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	79
Figure 69. Pile IP4 (hydraulic): Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving.	80
Figure 70. Pile IP5: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	81
Figure 71. Pile IP6 (un-attenuated): Plot of peak SPL, rms SPL, and SEL versus range for unattenuated diesel impact driving.	82
Figure 72 Pile IP6 (attenuated): Plot of peak SPL, rms SPL, and SEL versus range for bubble curtain-attenuated diesel impact driving.	83
Figure 73. Pile IP7: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	84
Figure 74. Pile IP8: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving	85



Figure 75. Pile IP9: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	86
Figure 76. Pile IP10: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving	87
Figure 77. Pile IP1: Plot of rms SPL versus range for vibratory driving	89
Figure 78. Pile IP2: Plot of rms SPL versus range for vibratory driving	90
Figure 79. Pile IP3: Plot of rms SPL versus range for vibratory driving	91
Figure 80. Pile IP4: Plot of rms SPL versus range for vibratory driving	92
Figure 81. Pile IP5: Plot of rms SPL versus range for vibratory driving	93
Figure 82 Pile IP6a: Plot of rms SPL versus range for vibratory driving before 07:18 AKDT, when vibratory sound levels were elevated. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.	94
Figure 83. Pile IP6b: Plot of rms SPL versus range for vibratory driving after 07:18 AKDT, when vibratory sound levels were elevated	95
Figure 84. Pile IP7: Plot of rms SPL versus range for vibratory driving	96
Figure 85. Pile IP8: Plot of rms SPL versus range for vibratory driving	97
Figure 86. Pile IP9: Plot of rms SPL versus range for vibratory driving	98
Figure 87. Pile IP10: Plot of rms SPL versus range for vibratory driving	99
Figure 88. Background sound levels recorded May 27—May 30 at a location within the Port of Anchorage (Ambient-Dock)	. 101
gure 89. Background sound levels recorded May 27–May 30 at a location within Cook Inlet (Ambient-Offshore)	. 102
Figure 90. Exceedance levels (5th, 25th, 50th, 75th, and 95th percentiles and $L_{\rm eq}$ ) for ambient sound levels recorded May 27–May 30 at a location within the Port of Anchorage (Ambient-Dock)	. 103
Figure 91. Exceedance levels for ambient sound levels recorded May 27–May 30 at a location within Cook Inlet (Ambient-Offshore)	. 104
Figure 92 IP3: Waveform for a single hydraulic impact hammer impulse received at AMAR-1KM (blue) and AMAR-DRIFT (black)	. 107
Figure 93 Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving	. 107
Figure 94 Pile IP10: Plot of rms SPL versus range for vibratory driving	. 109
Figure 95. Median received level at 10 m range for impact and vibratory pile driving hammers versus noise attenuation method	. 110
Figure 96. Median received levels at 10 m for impact and vibratory pile driving hammers, grouped by noise attenuation method, as a function of pile location	. 111
Figure 97 Median 1/3-octave band received levels from AMAR-10M for un-attenuated pile driving using the hydraulic impact hammer (blue) and the diesel impact hammer (red)	. 113
Figure 99 Median 1/3-octave band received levels from AMAR-10M for pile driving using the diesel impact hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black)	. 113
Figure 98 Median 1/3-octave band received levels from AMAR-10M for pile driving using the hydraulic impact hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black)	. 114
Figure 100 Median 1/3-octave band received levels from AMAR-10M for pile driving using the vibratory hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black)	. 114
Figure 101. Transmission loss coefficient as a function of noise attenuation method for each hammer	
type.	. 116

Version 3.0 vii



hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and unattenuated (diamonds).	116
Figure 103 Transmission Loss coefficient as a function of pile location for the diesel impact hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and un-attenuated (diamonds).	117
Figure 104 Transmission Loss coefficient as a function of pile location for the vibratory hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and un-attenuated (diamonds).	118
Figure 105. Distance to marine mammal threshold of 160 dB re 1 μPa for hydraulic impact hammer pile driving as a function of pile location.	119
Figure 106. Distance to marine mammal threshold of 160 dB re 1 μPa for diesel impact hammer pile driving as a function of pile location	
Figure 107. Distance to marine mammal threshold of 125 dB re 1 μPa for vibratory hammer pile driving as a function of pile location	120
Figure 108. Distance to marine mammal threshold of 160 dB re 1 μPa for hydraulic and diesel impact hammer pile driving as a function of NAS application. Data points derived from measurement extrapolations are excluded	
Figure 109. Distance to marine mammal threshold of 125 dB re 1 μPa for vibratory hammer pile driving as a function of NAS application. Data points derived from measurement extrapolations are excluded.	121
Figure 110. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP8.	B-16
Table 1. Specifications for installed indicator piles.	
Table 1. Specifications for installed indicator piles	5
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.	5 6
Table 1. Specifications for installed indicator piles	5 6 9
Tables  Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.	5 6 9
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.	5 6 9 10
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.	5 9 10 13
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.	5 9 10 13 70
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.	5 9 10 70 71
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of peak SPL for vibratory pile driving.	5913707171
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of rms SPL for vibratory pile driving.	5913707171
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of rms SPL for vibratory pile driving.	51070717273
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of peak SPL for vibratory pile driving.  Table 11. Statistics of rms SPL for vibratory pile driving.  Table 12. TL Coefficients, Source Levels (SL), Received Level (RL) at 10 m and ranges to rms SPL thresholds for impact pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M	5 6 10 70 71 72 73
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of peak SPL for vibratory pile driving.  Table 11. Statistics of rms SPL for vibratory pile driving.  Table 12. TL Coefficients, Source Levels (SL), Received Level (RL) at 10 m and ranges to rms SPL thresholds for impact pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M.	5 10 70 71 72 74 74
Table 1. Specifications for installed indicator piles.  Table 2. Diesel and hydraulic impact hammer specifications.  Table 3. Vibratory hammer specifications.  Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder.  Table 5 Underwater sound recorder details.  Table 6. Summary of pile driving activities.  Table 7. Statistics of peak SPL for impact pile driving.  Table 8. Statistics of rms SPL for impact pile driving.  Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving.  Table 10. Statistics of peak SPL for vibratory pile driving.  Table 11. Statistics of rms SPL for vibratory pile driving.  Table 12. TL Coefficients, Source Levels (SL), Received Level (RL) at 10 m and ranges to rms SPL thresholds for impact pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M.  Table 13. Distance to rms SPL thresholds for vibratory pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M.  Table 14. Exceedance levels of broadband background noise levels measured in Cook Inlet, Alaska	5 10 70 71 72 73 74 88 100

Version 3.0 viii



Table 17. Reduction of the median received levels at 10m for impact and vibratory pile driving	
compared to the un-attenuated values, averaged over n available data samples	123
Table 18. Median range to marine mammal threshold of 160 dB re 1 µPa for impact pile driving and	
125 dB re 1 μPa for vibratory pile driving, averaged over n data samples, excluding data from	
extrapolation of measured levels	123

Version 3.0 ix



## **Executive Summary**

Underwater sound pressure levels were recorded while ten hollow steel piles, 48 inches in diameter, were installed by means of both vibratory and impact hammer pile driving during the Anchorage Port Modernization Project Test Pile Program in Knik Arm, Cook Inlet, Alaska. Autonomous sound recorders were deployed at nominal distances of 10 m and 1 km from each pile and a mobile hydrophone system drifted during measurements to target data collection at ranges corresponding to marine mammal disturbance thresholds. Ambient sound recordings at two locations were also measured when pile driving activities stopped for three days.

Pile driving activities for each pile included vibratory pile driving, followed by impact pile driving with either a diesel or hydraulic impact hammer. One pile had a bearing plate, a 1-inch thick steel plate, welded to the inside of the pile, 25 m (82 ft) from the toe of the pile. Two different noise attenuation systems (NAS) were tested during the program—a passive resonator system was deployed for four of the piles and a confined bubble curtain was deployed for four separate piles (air flow to the bubble curtain was turned on and off intermittently during installation of one of these piles). Two piles were installed without any noise attenuation systems.

The goals of the sound measurements were to quantify the underwater sound pressure levels (SPL) during ambient conditions and during vibratory and impact hammer pile driving events. From these data, the sound transmission loss was characterized and distances to marine mammal disturbance thresholds (160 dB re 1  $\mu$ Pa rms SPL during impact pile driving and 125 dB re 1  $\mu$ Pa rms SPL during vibratory pile driving) were verified. The effectiveness of the two different noise attenuation systems was assessed in terms of the degree to which they reduced the pile driving sound levels near the source and the distances to the marine mammal disturbance thresholds. The relative sound levels for each of the hammer types were also compared.

Overall the highest median SPL was attributed to the hydraulic impact hammer with an average computed level at 10 m range of 202 dB re 1  $\mu$ Pa with no noise attenuation in place, 196 dB re 1  $\mu$ Pa when the passive resonator was applied and 190 dB re 1  $\mu$ Pa when the confined bubble curtain was used to attenuate noise. The diesel impact hammer had the next highest median SPL with values at 10 m range computed to be 199, 192, and 190 dB re 1  $\mu$ Pa for no noise attenuation, attenuation by the passive resonator, and attenuation by the confined bubble curtain, respectively. The vibratory hammer generated the lowest median SPL at 10 m range, with computed values of 168 dB re 1  $\mu$ Pa with no noise attenuation and 161 and 160 dB re 1  $\mu$ Pa when either the passive resonator or the confined bubble curtain were applied, respectively.

Near-source levels for un-attenuated pile driving exceeded those for pile driving events with NAS applied for each hammer type. On average, the bubble curtain reduced near-source levels more than did the passive resonator NAS. This trend was most strongly observed for the hydraulic impact hammer; the sound attenuation achieved by the passive resonator NAS and the bubble curtain NAS was more similar for the diesel impact hammer and was very similar for the vibratory hammer. The passive resonator NAS was variably effective for the diesel impact and vibratory hammers but more consistently effective for the hydraulic impact hammer and the bubble curtain NAS was more effective at reducing near-source levels of the hydraulic impact hammer than of the diesel impact hammer. When the bubble curtain was applied, median near-source levels of the hydraulic impact hammer decreased by 12 dB on average, compared to an average 6 dB reduction of the hydraulic hammer near-source level when the passive resonator was applied. The bubble curtain decreased the diesel impact hammer near-source levels by an average of 9 dB, the reduction was 6 dB on average when the passive resonator was applied. The bubble curtain and passive resonator both decreased the near-source level for vibratory pile driving by nearly the same average amount, 9 and 8 dB respectively.

Computed transmission loss (TL) coefficients, derived from fits of the received sound level data versus range, varied between piles with values ranging from 13 to 19.2 for impact pile driving and from 12.6 to 17.9 for vibratory pile driving. This variability was somewhat reduced when the results were grouped by hammer model and NAS but some variability remained due to differences of the pile locations. Results for the un-attenuated hydraulic impact hammer yielded the highest TL coefficient, 19.2, indicating that sounds from the hydraulic impact hammer decayed most rapidly with range compared to the other



hammers. The TL coefficient for the un-attenuated diesel impact hammer averaged 17.5. Sounds from the un-attenuated vibratory hammer had the lowest TL coefficient, with values of 16.1 and 16.9. TL coefficients consistently decreased when a NAS was applied compared to the un-attenuated results, in part because the frequency content of the signals changed by the NAS, but also because both types of NAS only attenuated in-water sound levels and some sound propagated directly from the pile into the seafloor un-attenuated. This un-attenuated sound propagated through the seafloor then refracted into the water column at longer ranges. Thus each NAS attenuated the near-source sound levels, dominated by water-borne propagation paths, more strongly than the long-range sound levels, resulting in an apparent decrease of the rate of sound level decay between recorders. The TL coefficients for each type of NAS were relatively consistent across locations for the diesel impact hammer, they were more variable across location for the hydraulic impact hammer (for which the data were collected at locations more widely separated compared to the diesel impact hammer locations) and varied considerably across location for the vibratory hammer. Long-range received levels were not independent of the near-source levels. The transmission loss estimates accounted for the difference in source levels and range from the pile at the recorders. The transmission loss combined with the near-source levels were used to determine the range to marine mammal thresholds. The range to threshold reduces the variability from source level, NAS, and transmission loss to one value.

Distances to marine mammal disturbance thresholds were derived from regressions of rms SPL versus range. The maximum computed range to the threshold of 160 dB re 1  $\mu$ Pa was 4340 m from the diesel impact hammer and 2570 m from the hydraulic impact hammer. These distances are extrapolations from measured values. The maximum measured distance to this threshold was 1611 m for the diesel hammer and 2280 m for the hydraulic hammer. The maximum computed (and measured) distance to the rms SPL threshold of 125 dB re 1  $\mu$ Pa during vibratory pile driving was 4340 m.

Excluding data points derived from measurement extrapolations, grouping by hammer type and NAS, and averaging over location, applying the noise attenuation systems reduced the distance to the marine mammal thresholds for both vibratory and impact pile driving. Sounds levels generated by the piles driven using the hydraulic impact hammer decayed to the threshold of 160 dB re 1  $\mu$ Pa at an average distance of 1500 m when no noise attenuation was in place, of 1050 m when the passive resonator attenuation was applied, and of 1100 m when the confined bubble curtain was in place. The corresponding distances were 1290 m, 1300 m, and 700 m from piles installed with the diesel impact hammer and 3880 m, 2420 m, and 1980 m from piles driven with the vibratory hammer.



## 1. Introduction

From May 3 to June 7, 2016, JASCO Applied Sciences conducted hydroacoustic monitoring during the Port of Anchorage Port Modernization Test Pile Program at Knik Arm in Cook Inlet, Alaska. Hydroacoustic monitoring consisted of one mobile, real-time system, and two fixed, autonomous systems recording underwater sounds. The Test Pile Program involved the installation of ten indicator piles by means of both vibratory and impact pile driving to determine design load information, pile drivability, and additional pile installation parameters in the area in anticipation of future development for the Anchorage Port Modernization Project.

Elevated underwater sound levels, generated by activities such as pile driving, can harass marine mammals by injuring or disturbing them. There is concern that noise from pile driving during the Port of Anchorage Port Modernization Project has the potential to negatively impact nearby marine mammals. The Test Pile Program used hydroacoustic monitoring to collect empirical data and characterize sound propagation for pile driving at the Port of Anchorage, to better understand the distances at which these sounds can affect marine mammals and to help Port planners reduce future potential effects of noise on marine mammals. The Test Pile Program provided an opportunity to assess the viability and effectiveness of two noise attenuation systems—an encapsulated bubble curtain and a resonance panel system—and to compare the underwater sounds generated by two different impact hammer designs, one diesel and the other hydraulic, and a vibratory hammer.

Fixed, autonomous acoustic recording systems measured underwater sound pressure levels (SPLs) at nominal distances of 10 m and 1 km from each pile location. Simultaneous measurements were made with a mobile hydrophone system deployed from a monitoring vessel that drifted freely in the current and displayed, in real-time, the incoming SPLs while concurrently logging the recorded sound levels for later analysis. The drifting measurements were targeted to collect data at ranges that corresponded to specific marine mammal disturbance thresholds (160 dB re 1  $\mu$ Pa during impact pile driving and 125 dB re 1  $\mu$ Pa during vibratory pile driving) that the National Marine Fisheries Service (NMFS) authorized for the Test Pile Program Marine Mammal Monitoring program.

Hydroacoustic monitoring objectives were to:

- Collect underwater ambient (background) noise measurements in the absence of project construction activities.
- Measure SPLs for each of the ten piles and for each hammer type (impact and vibratory) to estimate source sound levels.
- Determine the transmission loss for each of the ten piles and for each hammer type (impact and vibratory).
- Empirically verify the location of the 125 dB re 1 μPa harassment isopleth for vibratory pile installation for each of the ten piles.
- Empirically verify the location of the 160, 180, and 190 dB re 1 μPa harassment isopleths for impact pile installation for each of the ten piles.
- Determine the relative effectiveness of the encapsulated bubble curtain and resonance panel systems by assessing reductions in underwater noise.
- Determine the relative underwater noise levels produced by diesel and hydraulic impact hammers by measuring the underwater noise.

To fulfill these objectives, this report describes the methods used to collect and analyze the data, details pile driving and hydroacoustic monitoring activities, presents SPLs measured during pile driving and during ambient conditions and summarizes these data through statistical measures, examines SPLs to determine whether the noise mitigation systems were effective, and compares the sound output among different hammer types.



#### 1.1. Pile Details

Ten indicator piles were installed between May 3 and June 7, 2016 (Table 1) at four locations at the Port of Anchorage (Figure 1). Each pile was a cylindrical steel pile, 48 in in diameter with a 1 in thick wall. Pile IP6 had a 1" thick, steel bearing plate (with a 3" diameter hole in the center) installed inside the pile, 82' from the pile toe. The bearing plate was intended to prevent the soil plug from entering the pile.

Table 1. Specifications for installed indicator piles.

Pile	Latitude	Longitude	Location	Date Installed	Tip Elevation (ft)
IP1	61°14.216'N	149°53.456'W	5	June 7, 2016	-150
IP2	61°14.235'N	149°53.441'W	4	May 19, 2016	-170
IP3	61°14.650'N	149°53.126'W	1	June 03, 2016	-184
IP4	61°14.658'N	149°53.119'W	1	May 12-13, 2016	-175
IP5	61°14.245'N	149°53.434'W	4	May 18, 2016	-173
IP6*	61°14.232'N	149°53.445'W	4	June 01, 2016	-156
IP7	61°14.203'N	149°53.484'W	5	May 25, 2016	-165
IP8	61°14.077'N	149°53.716'W	6	May 03, 2016	-133
IP9	61°14.074'N	149°53.722'W	6	May 6-7, 2016	-140
IP10	61°14.061'N	149°53.776'W	6	May 26, 2016	-137

^{*}Pile IP6 had a bearing plate installed.

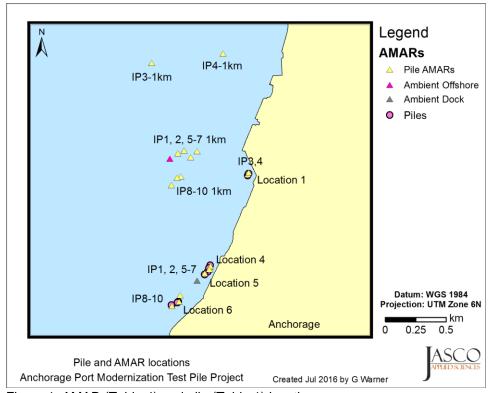



Figure 1. AMAR (Table 4) and pile (Table 1) locations.



## 1.2. Hammer Types

Piles were driven with three hammer types: a vibratory hammer initiated installation for all piles, then a diesel impact hammer was used for completion of some piles, and a hydraulic impact hammer for others (Section 2.4).

## 1.2.1. Impact Hammers

Diesel impact driving was performed using the APE D180-42 diesel impact hammer (Table 2, Figure 2), which struck 34–53 blows per minute with rated energies ranging between 272,373 and 446,513 ft-lbs. Hydraulic impact pile driving was performed using the APE model 15-4 hydraulic impact hammer (Table 2,Figure 2), which struck 30–65 blows per minute with a rated energy of 120,000 ft-lbs.

Table 2.	Diesel	and	hydraulic	impact	hammer	specifications.

	Diesel Hammer		Hydraulic Hammer	
Specifications	Imperial	Metric	Imperial	Metric
Stroke at maximum rated energy	135 in	343 cm	48 in	121.92 cm
Maximum rated energy	446,513 ft-lbs	602.79 kNm	120,000 ft-lbs	162.7 kNm
Minimum rated energy	272,373 ft-lbs	367.70 kNm		
Maximum obtainable stroke	150 in	381 cm		
Maximum obtainable energy	666,395 ft-lbs	196 kNm		
Ram	39,690 lbs	18,000 kg	30,000 lbs	13,607.77 kg
Anvil	10,223 lbs	4,642 kg		
Hammer weight	92,000 lbs	11,286 kg	42,000 lbs	19,050.88 kg
Speed (blows per min)	34–53	34–53	30–65	30–65





Figure 2. APE D-180-42 diesel impact hammer (left) and APE model 15-4 hydraulic impact hammer (right).



## 1.2.2. Vibratory Hammer

Vibratory pile driving was performed using an APE model 400 vibratory driver (Table 3, Figure 3) with associated APE Model 1050 Power Unit. The hammer has an eccentric moment of 11,500 in-lbs and weighs 31,570 lbs.

Table 3. Vibratory hammer specifications.

Specifications	Imperial	Metric	
Eccentric Moment	11,500 in-lbs	132.49 kg	
Drive force	298 tons	2,648 kN	
Max line pull	234 tons	2,082 kN	
Bare hammer weight (w/o clamp)	31,570 lbs	14,320 kg	
Frequency Maximum (VPM)	0-1,350 vpm	0-1,350 vpm	



Figure 3. APE model 400 vibratory driver.

# 1.3. Noise Attenuation Systems

Two different noise attenuation systems (NASs) were employed during the Test Pile Program (Table 6). The NASs reduce water-borne sound levels caused by pile driving.



#### 1.3.1. Passive Resonator

A passive Helmholtz resonator NAS (AdBm Techologies) was used on four test piles (IP2, IP4, IP8, and IP9; Table 6). This system uses thousands of Helmholtz resonators that are placed in a metal framework surrounding the pile from the sea floor to the water surface. The framework consists of four sides, each comprised of slat layers, which house the resonators, and a bottom ballast structure that anchors the system (Figure 4). The slats operate in an accordion-like fashion when the system is being extended or retracted. The resonator system designed for this project was suitable for water depths ranging 10–75 ft.

The Helmholtz resonators are inverted cylinders, each with an open bottom, that remain partially air-filled when submerged. A mass-spring type of oscillation of the air-water system inside the cylinders is excited by the passing sound pressure waves that emanate from the driven piles, attenuating the pile driving sound pressure signal at the resonant frequency. The resonators' size determines the attenuated frequency. For this project the resonators were designed to attenuate sound near a frequency of 100 Hz.



Figure 4. Schematic of deployed AdBm Passive Resonator system (left) and Helmholtz resonators (right). The open ends of the resonators face downward when deployed.



#### 1.3.2. Confined Bubble Curtain

A confined bubble curtain NAS was used on four test piles (IP3, IP6, IP7, and IP10; Table 6). This telescoping, steel pipe system creates an isolation surrounding the pile. The confined bubble curtain consists of four, vertically-distributed, bubble rings, welded to the inside of a 5-foot casing pipe. Each bubble ring is a 3-inch inner-diameter, half-ring steel pipe, with four rows of 1/16-inch holes on 0.78-inch spacing. A 1600 CFM compressor provides a continuous supply of compressed air to the four aeration pipes (Figure 5), with flow nominally distributed among the stages from top to bottom as follows: Stage 1 = 160 cfm, Stage 2 = 320 cfm, Stage 3 = 560 cfm, Stage 4 = 560 cfm. Air is then released from the small holes in the pipeline to create a curtain of air bubbles surrounding the pipe, while maintaining contact with the sea floor. The curtain of air bubbles inhibits the transmission of pile driving sounds to the surrounding water. This confined bubble curtain is ideal for water depths of 26-60 ft.

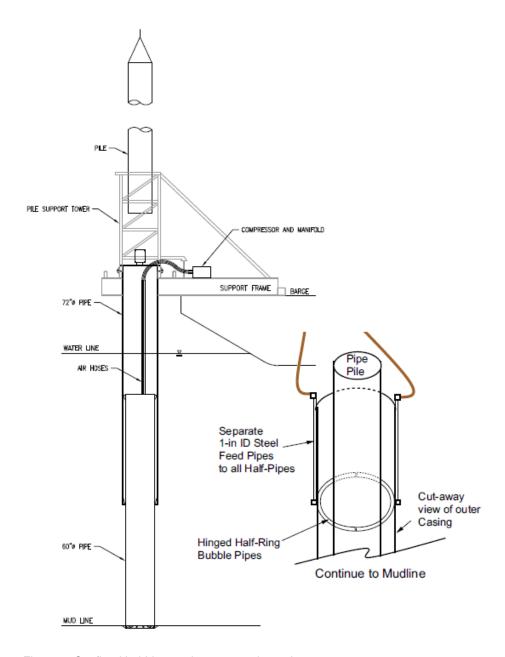



Figure 5. Confined bubble curtain system schematic.



# 2. Methods

# 2.1. Monitoring Locations

Table 4. AMAR deployment locations. Water depths measured using vessel echo sounder. Times in UTC, Datum WGS84. IP = Indicator Pile. N/A = Not available.

Location	Deployment date and time	Retrieval date and time	Latitude	Longitude	Deployment Water Depth (m)
IP1-10M	2016-Jun-07 00:45	2016-Jun-07 21:54	61°14.209' N	149°53.466' W	N/A
IP1-1KM	2016-Jun-07 00:35	2016-Jun-07 21:23	61°14.719' N	149°53.659' W	18
IP2-10M	2016-May-19 14:12	2016-May-19 20:35	61°14.227' N	149°53.433' W	N/A
IP2-1KM	2016-May-18 14:44	2016-May-19 20:23	61°14.748' N	149°53.722' W	27
IP3-10M	2016-Jun-03 00:21	2016-Jun-03 22:50	61°14.654' N	149°53.127' W	19
IP3-1KM	2016-Jun-03 00:51	2016-Jun-03 22:16	61°15.128' N	149°54.055' W	30
IP4-10M	2016-May-11 23:01	2016-May-13 17:09	61°14.662' N	149°53.119' W	10
IP4-1KM	2016-May-11 22:26	2016-May-14 22:50	61°15.185' N	149°53.404' W	18
IP5-10M	2016-May-18 15:16	2016-May-18 20:51	61°14.241' N	149°53.433' W	15
IP5-1KM	2016-May-18 14:44	2016-May-19 20:23	61°14.748' N	149°53.722' W	27
IP6-10M	2016-Jun-01 00:51	2016-Jun-01 19:15	61°14.227' N	149°53.443' W	N/A
IP6-1KM	2016-Jun-01 01:36	2016-Jun-01 18:51	61°14.734' N	149°53.777' W	25
IP7-10M	2016-May-25 15:56	2016-May-26 23:08	61°14.207' N	149°53.482' W	8
IP7-1KM	2016-May-25 01:14	2016-May-26 23:31	61°14.747' N	149°53.602' W	18
IP8-10M	2016-May-02 17:56	2016-May-04	61°14.106' N	149°53.699' W	14
IP8-1KM	2016-May-02 01:16	2016-May-04 20:37	61°14.591' N	149°53.823' W	27
IP9-10M	2016-May-05 03:18	2016-May-07 20:23	61°14.077' N	149°53.705' W	17
IP9-1KM	2016-May-05 02:46	2016-May-07 20:35	61°14.632' N	149°53.740' W	28
IP10-10M	2016-May-26 16:34	2016-May-27 00:50	61°14.056' N	149°53.769' W	8
IP10-1KM	2016-May-26 14:37	2016-May-27 01:00	61°14.626' N	149°53.776' W	23
Ambient- Offshore	2016-May-27 21:03	2016-May-30 23:42	61°14.708' N	149°53.849' W	17
Ambient- Dock	2016-May-27 20:50	2016-May-30 23:16	61°14.174' N	149°53.548' W	N/A



## 2.2. Monitoring Equipment

Underwater sounds were recorded at fixed locations with Autonomous Multichannel Acoustic Recorders (AMARs, JASCO, Figure 6). Each AMAR was fitted with two hydrophones with different sensitivities so both high and low intensity sounds could be measured (Table 5). One fixed recorder (referenced by the name "AMAR-10M" in this report) was targeted for measurement at a nominal distance of 10 m from each pile. The low sensitivity channel of this recorder was suitable for measuring high amplitude sounds from close-range impact pile driving, with a nominal sensitivity of - 220 dB re 1 V/µPa. The other fixed recorder (referenced by the name "AMAR-1KM" in this report) was targeted for measurements at a nominal distance of 1 km from each pile using a hydrophone with nominal sensitivity of -200 dB re 1 V/µPa.

The AMAR hydrophones were protected by a hydrophone cage, which was covered with a shroud to minimize noise artifacts due to water flow and mounted 0.6 m above the mooring base plate. The AMARs recorded continuously at 128,000 samples per second for a recording bandwidth of 1 Hz to 64 kHz. The recording channel had 24-bit resolution with a spectral noise floor of 20 dB re 1 µPa2/Hz. Acoustic data were stored on internal solid-state flash memory.

Mobile sound measurements were collected from a vessel that was shut down and drifting freely. Two hydrophones, connected to a 50 m cable, were lowered to a depth of 10 m from over the side of the vessel. A leaded line was secured to the cable to cause the cable to hang vertically in the water during measurements. The surface end of the cable connected through an Ocean Sound Meter (OSM, JASCO, Figure 7) deck box to a Toughbook computer that provided a real-time display of the incoming data as well as digital recordings. This recording system will be referred to by the name "AMAR-DRIFT" in this report.

A 42AC pistonphone calibrator (G.R.A.S. Sound & Vibration A/S) verified the sensitivity of the whole recording apparatus of both the AMAR and the OSM systems. The pressure response of the recording system was verified by placing the pistonphone and its adapter over each hydrophone independently while the pistonphone produced a known pressure signal on the hydrophone element (a 250 Hz sinusoid at 152.2 dB re 1  $\mu$ Pa). Calibrations were performed in JASCO's warehouse before the recorders were shipped and again immediately before and after each deployment to confirm consistency of the system sensitivity throughout the project. Readings were verified between each deployment and before data analysis was performed.

Table 5 Underwater sound recorder details.

Recorder Name	Recorder Serial Number	Hydrophones	Nominal Sensitivity (±3 dB re 1 V/µPa)	Nominal Distance from Piles (m)
AMAR-10M	AMAR 269	M36-V35-100-B000900, M36-V0-101-A004282	-165, -220	10
AMAR-1KM	AMAR 300	M36-V35-100-B000901, M36-V0-100-A002377	-165, -200	1,000
AMAR-DRIFT	OSM 15	M36-C35-100-A003278, M36-C0-100-A003291	-165, -200	variable

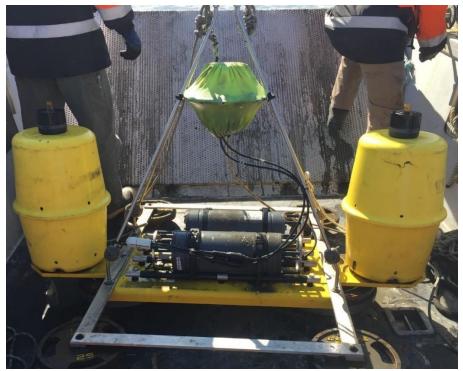



Figure 6. Photo of AMAR-1KM system about to be deployed in Cook Inlet.

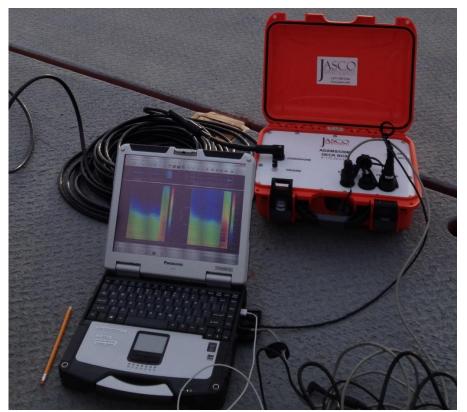



Figure 7 Photo of OSM system showing the hydrophone cable, deckbox, and laptop with live display of data from two hydrophones of different sensitivity.



## 2.3. Monitoring Activities

The fixed AMARs were deployed from the acoustic monitoring vessel *My Marie* (Figure 8) before driving each pile. AMAR-1KM was deployed as close as practicable to the period of slack current preceding pile driving activities. AMAR-10M was deployed when the derrick barge was in final position, generally in the morning prior to the beginning of pile driving. Prior to deployment, a calibrated signal was applied to each channel of the recorders (Section 2.2). Drift measurements were collected on the OSM when pile driving activities were underway. Concurrent with acoustic measurements, a marine GPS collected location tracks with sample intervals of 2 seconds (Appendix B). The goals of the drift measurements were to collect data at additional ranges, with a focus on capturing the marine mammal impact threshold distance for each hammer type. Without power, location of the vessel during drift measurements was based on positioning of the vessel prior to deployment of the OSM and the current. When the drift of the vessel resulted in received levels that were diverging from the thresholds, or the vessel was drifting towards a hazard, the hydrophones were brought on deck, the vessel powered up and repositioned. When practicable, repositioning was timed to breaks in the pile driving, such as when sensors were being adjusted. More detailed logs of the monitoring activities are included in Appendix A.

Ambient sound levels were recorded continuously during a 72-hour period during which no pile driving activities were taking place, between May 27 and May 30, 2016. One AMAR was deployed at a location just south of Pile Location 5 (Ambient Dock, Figure 1) and the other at a nominal position where the AMAR-1KM recordings were made (Ambient Offshore, Figure 1). The AMARs were deployed and left in place for 72 hours before retrieval. Test Pile Program activities did not occur during this time but other noted industrial noise activities included dredging by Manson Construction near Pile Location 1 and the arrival of a cruise ship at the Port of Anchorage.



Figure 8 My Marie, the acoustic monitoring vessel, deploying an AMAR.

## 2.4. Pile Driving Activities

At the start of each pile-driving day, the pile was lofted into position using the crane on the DB General derrick barge. The pile settled under its own weight and then the vibratory hammer was employed for initial installation. After vibropiling, five of the ten indicator piles were driven to total depth using the hydraulic impact hammer and five using the diesel impact hammer. Two of the ten indicator piles were installed with no NAS in place, four were installed with the AdBm Passive Resonator system in place, and four with the use of the confined bubble curtain (Table 6). Pile IP6 contained a bearing plate, a 1-inch thick steel plate welded to the inside of the pile 25 m (82 ft) from the pile toe.

Air flow to the lower two stages of the confined bubble curtain NAS was reduced by 50% during the final 15 minutes of vibratory pile driving of Pile IP6. During the last hour of impact pile driving of Pile IP6, flow to the confined bubble curtain was turned on and off at 10-minute intervals.

Impact hammer installation of Pile IP4 began using the hydraulic impact hammer on May 12, 2016. An issue with the hammer arose and the remainder of the pile was driven the following day using the diesel impact hammer.



Table 6. Summary of pile driving activi
-----------------------------------------

Indicator Pile	Date (2016)	Impact Hammer Type	Noise Attenuation System	Pile Location
IP1	June 07	Hydraulic	Un-attenuated	5
IP2	May 19	Diesel	Resonator	4
IP3	June 03	Hydraulic	Bubble Curtain	1
IP4 (Vibratory, Impact Pt 1)	May 12	Hydraulic	Resonator	1
IP4 (Impact Pt 2)	May 13	Diesel	Resonator	1
IP5	May 18	Diesel	Un-attenuated	4
IP6*	June 01	Diesel	Bubble Curtain	4
IP7	May 25	Diesel	Bubble Curtain	5
IP8	May 03	Hydraulic	Resonator	6
IP9 (Vibratory)	May 06		Resonator	6
IP9 (Impact)	May 07	Diesel	Resonator	6
IP10	May 26	Hydraulic	Bubble Curtain	6

^{*}Pile IP6 had a bearing plate installed.

## 2.5. Analysis Methods

## 2.5.1. Pile Driving Data Analysis

Acoustic data files were downloaded from the recorders and redundant copies were made prior to analysis. JASCO's SpectroPlotter software was used for the first step in analysis. SpectroPlotter applied frequency response calibration values to the signal. The signal was filtered with a bandpass filter with a pass-band from 15 Hz to 20,000 Hz. The 15 Hz low-frequency cutoff was selected to remove flow noise contamination from the recordings and the 20,000 Hz high-frequency cutoff was selected following NMFS Northwest Region 2012 Guidance Document for Sound Propagation Modeling to Characterize Pile Driving Sounds Relevant to Marine Mammals.

SpectroPlotter calculated calibrated metrics over 1 second, 10 seconds, and 60 seconds for vibratory driving. The results in this report are the 10 second calculations. For impact pile driving, individual strike records were detected using SpectroPlotter's Impulse detection algorithm. The detector computed the Teager-Kaiser (TK) Energy of the acoustic file for windows of length 0.7 seconds, and triggered detections when the value of the TK energy exceeded a threshold of 70. TK energy is useful for impulsive sources as it amplifies the effect of big changes between subsequent samples within the acoustic record. The 90% energy window was determined from the 0.7 second detection, and rms SPL metrics were computed over the 90% window. Detections were limited to intervals greater than 0.5 seconds to prevent detection of multiple path arrivals. The threshold value of 70 was selected empirically as a parameter that performed well when reviewing detection results. Computed acoustic metrics (Appendix E) included 90% rms sound pressure level (rms SPL), sound exposure level (SEL), and peak sound level (peak SPL). Single-strike SELs from pile driving impulses received on the fixed AMARs were summed on a linear scale to yield cumulative SELs for each pile. Data from the fixed AMARs and drifting OSM system were processed using this procedure.

SpectroPlotter outputs were synthesized with the ranges of the recorders, fixed and drifting, to the pile. A linear fit was computed between the rms SPL and the logarithm of the ranges to determine the transmission loss (TL) coefficient, *n* according to Equation 1.

$$RL = SL - n \log R$$

Equation 1



The regressions were performed for a sub-set of the recordings when pile driving levels received at AMAR-10M were relatively consistent and when the signal recorded at AMAR-DRIFT and AMAR-1KM sufficiently exceeded background levels, determined through examination of the spectrograms of the recorded data. The TL coefficients thus calculated for each pile were then used in Equation 1 to back-calculate the source level (*SL*) statistics based on the mean, median, and 90th percentile received levels (RL) computed from the full record of data from AMAR-10M at range *R*. The ranges to marine mammal impact threshold levels were computed from the source level statistics and transmission loss coefficients for each pile, using Equation 1, as were statistics for RL at 10 m range for direct comparison to other pile driving sound source characterization studies.

For each indicator pile we present the following results:

- A representative waveform (sound pressure versus time) and spectral density curve (sound
  pressure level as a function of frequency, at a resolution of 1 Hz) received on each recorder for
  impact and vibratory installation of each pile.
- A spectrogram plot (sound intensity as a function of time and frequency, 10 second window) for a few representative pulses received at each recorder during impact installation of each pile.
- A spectrogram plot (sound intensity as a function of time and frequency, 10 second window) for data received at each recorder during vibratory installation of each pile.
- Received sound pressure levels versus time for peak SPL, rms SPL, single strike SEL (SELss), and cumulative SEL (cSEL), received on each recorder for impact and vibratory installation of each pile. These acoustic metrics are defined in Appendix E.
- Received sound pressure levels (rms SPL) versus range for a subset of data recorded on each recorder during impact and vibratory installation of each pile.
- Frequency-weighted statistics are summarized in Appendix C. Frequency-weighting was applied
  following the specific methods and thresholds for injury summarized by National Oceanic and
  Atmospheric Administration (NOAA) criteria for injury (NMFS, 2016), described in Appendix E.
  The frequency-weighting filters were applied to the pile driving data and the rms SPL and SEL
  values were computed as above.
- 1/3-octave band level box plots for vibratory and impact installation of each pile are provided in Appendix D, in which beige bars indicate the first, second, and third quartiles (L₂₅, L₅O, and L₇₅) in each 1/3-octave band. Upper error bars indicate the maximum levels (L_{max}). Lower error bars indicate the 95% exceedance percentiles (L₉₅). The maroon line indicates the arithmetic mean (L_{mean})

## 2.5.2. Ambient Data Analysis

Ambient noise levels at each recording station were measured as:

- Broadband and approximate-decade band sound pressure levels (SPLs) over time for these frequency bands: 10 Hz to 64 kHz, 10–100 Hz, 100 Hz to 1 kHz, and 1–10 kHz, 10–64 kHz.
- Spectrograms: Ambient noise at each station was analyzed by Hamming-windowed fast Fourier transforms (FFTs), with 1 Hz resolution and 50% window overlap.
- Statistical distribution of sound pressure levels (exceedance levels) in each 1/3-octave band and for the power spectral density. The boxes of the 1/3-octave band statistical distributions indicate the first (25%, L₂₅), second (50%, L₅₀), and third (75%, L₇₅) quartiles. The whiskers indicate the maximum and minimum range of the data and short dashes (–) indicate the 5% (L₅) and 95% (L₉₅) exceedance percentiles.



# 3. Results

# 3.1. Impact Hammer Pile Driving Sound Levels

# 3.1.1. Pile IP1: Un-attenuated, Hydraulic Impact Hammer, Location 5

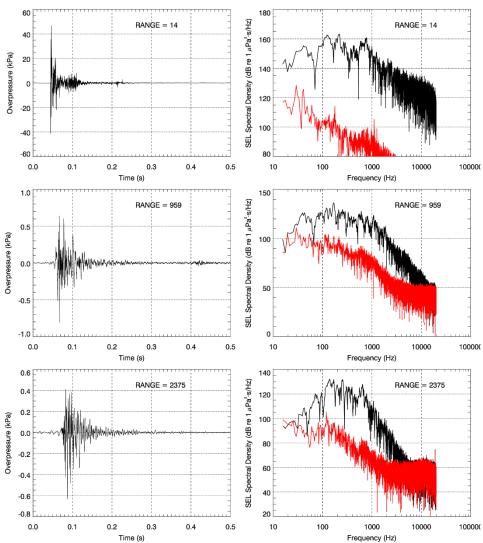



Figure 9. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP1-10M (top), IP1-1KM (middle), and IP1-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

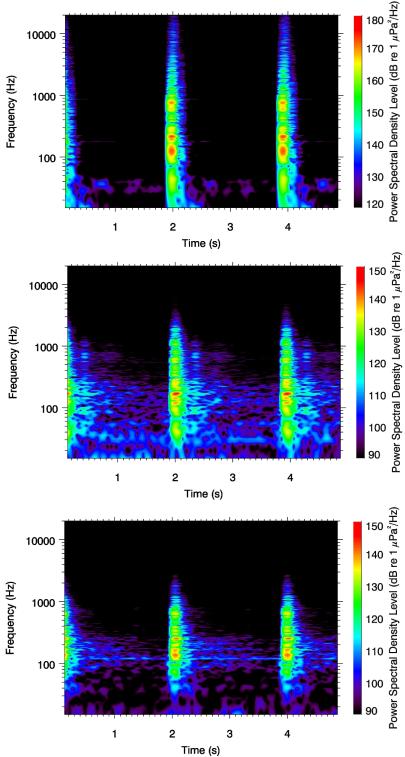



Figure 10. Spectrogram of strikes by the hydraulic impact hammer on Pile IP1 at a distance of 14 m at IP1-10M (top), 959 m at IP1-1KM (middle), and 2375 m at IP1-DRIFT (bottom).

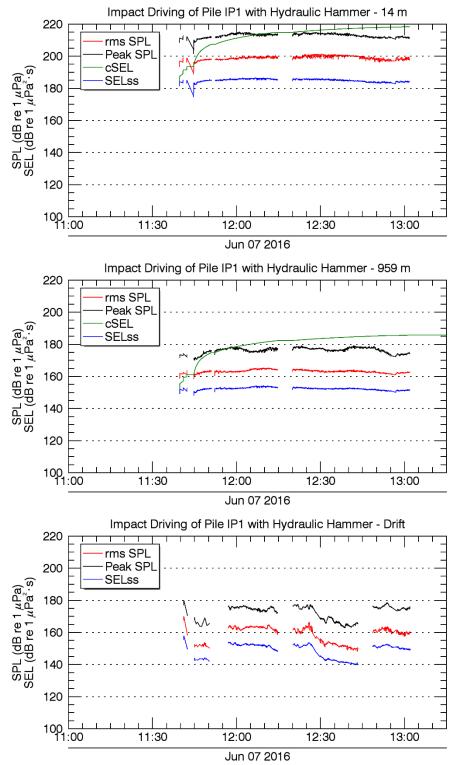



Figure 11. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP1 by the hydraulic impact hammer, measured at distances of 14 m at IP1-10M (top) 959 m at IP1-1KM (middle) and between 1040 m and 2800 m on IP1-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.1.2. Pile IP2: Resonator, Diesel Impact Hammer, Location 4

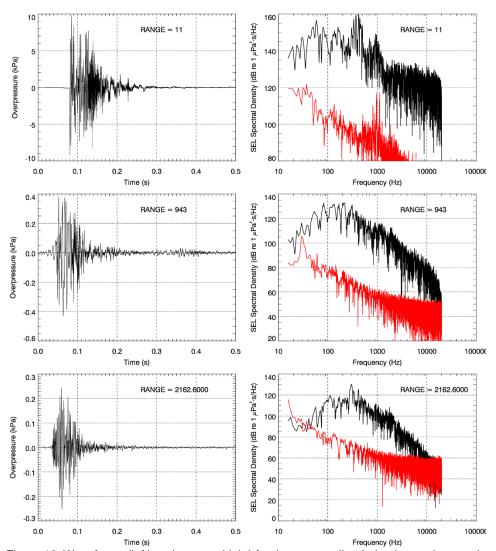



Figure 12. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP2-10m (top), IP2-1km (middle), and IP2-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

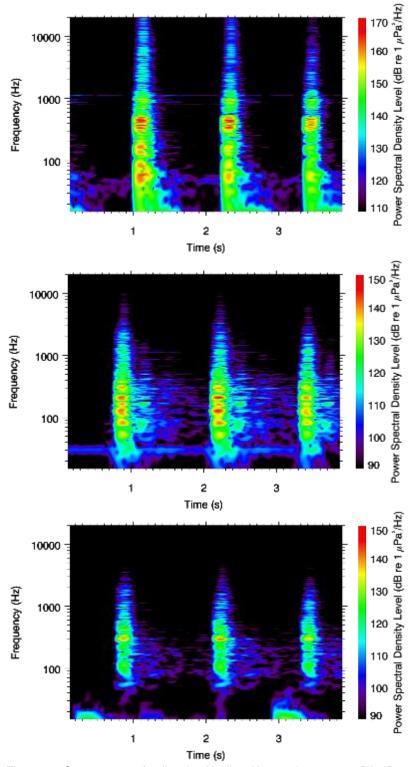



Figure 13. Spectrogram of strikes by the diesel impact hammer on Pile IP2 at a distance of 11 m at IP2-10M (top), 943 m at IP2-1KM (middle), and 2260 m at IP2-DRIFT (bottom).

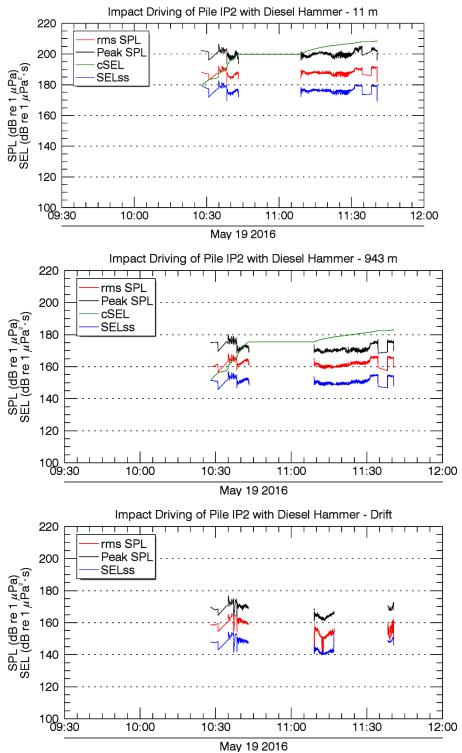



Figure 14. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP2 by the diesel impact hammer, measured at distances of 11 m at IP2-10M (top) 943 m at IP2-1KM (middle) and between 1700 m and 3500 m on IP2-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.1.3. Pile IP3: Bubble Curtain, Hydraulic Impact Hammer, Location 1

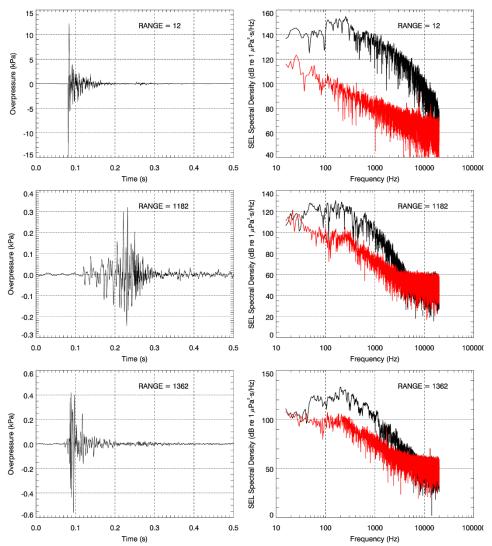



Figure 15. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP3-10M (top), IP3-1KM (middle), and IP3-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

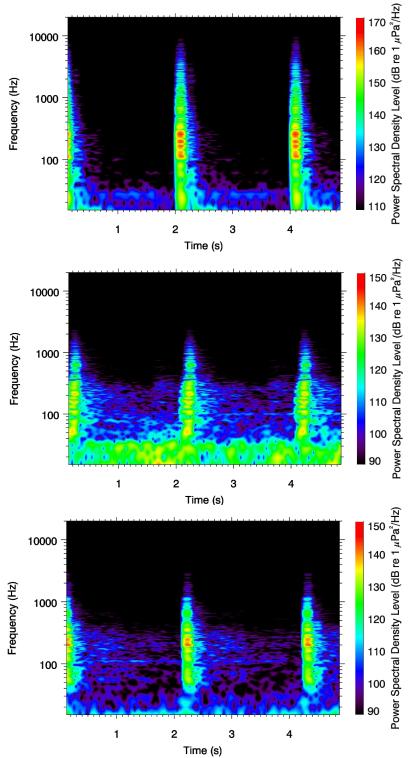



Figure 16. Spectrogram of strikes by the hydraulic impact hammer on Pile IP3 at a distance of 12 m at IP3-10M (top), 1182 m at IP3-1KM (middle), and 1362 m at IP3-DRIFT (bottom).

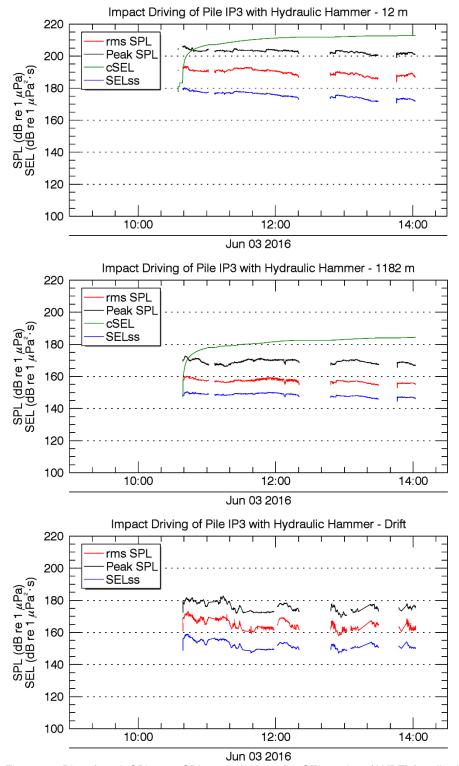



Figure 17. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP3 by the hydraulic impact hammer, measured at distances of 12 m at IP3-10M (top) 1182 m at IP3-1KM (middle) and between 860 m and 1867 m on IP3-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.1.4. Pile IP4: Resonator, Hydraulic Impact Hammer, Location 1

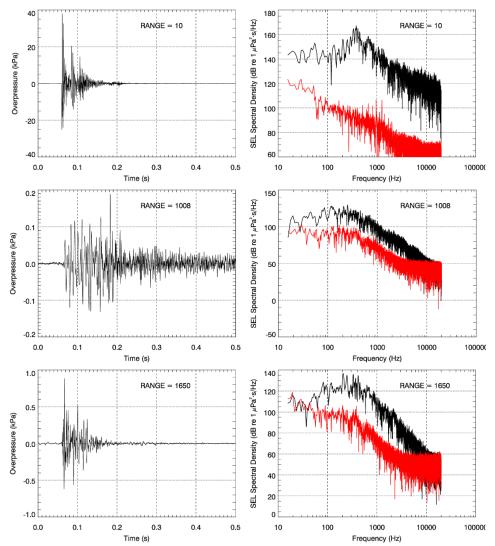



Figure 18. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP4-10M (top), IP4-1KM (middle), and IP4-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

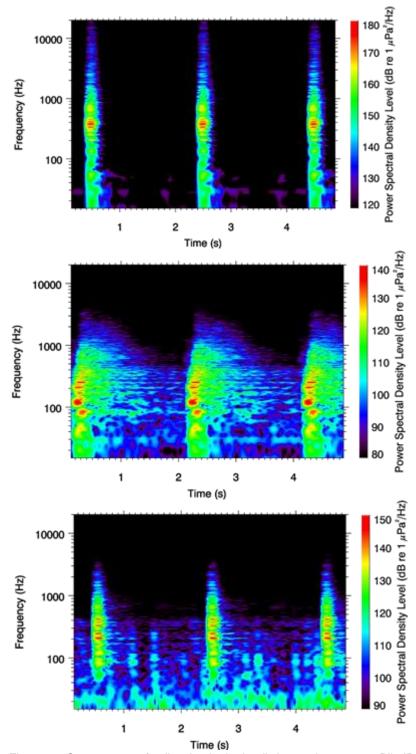



Figure 19. Spectrogram of strikes by the hydraulic impact hammer on Pile IP4 at a distance of 10 m at IP4-10M (top), 1008 m at IP4-1KM (middle), and 1650 m at IP4-DRIFT (bottom).

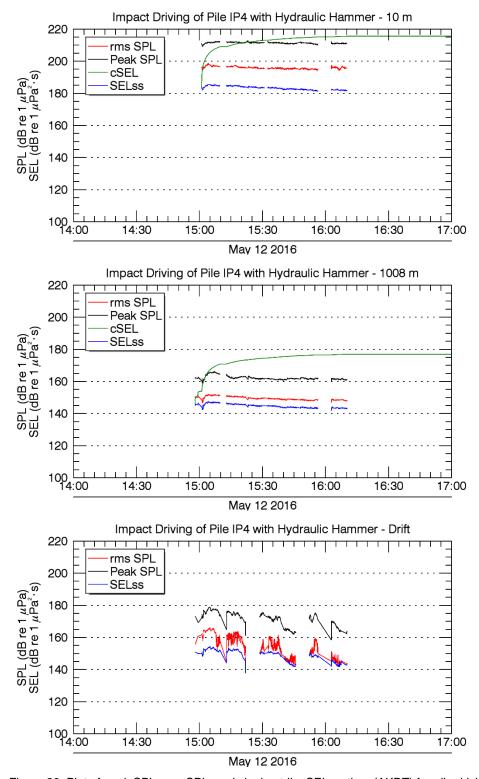



Figure 20. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP4 by the hydraulic impact hammer, measured at distances of 10 m at IP4-10M (top) 1008 m at IP4-1KM (middle) and between 1630 m and 3020 m on IP4-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



### 3.1.5. Pile IP4: Resonator, Diesel Impact Hammer, Location 1

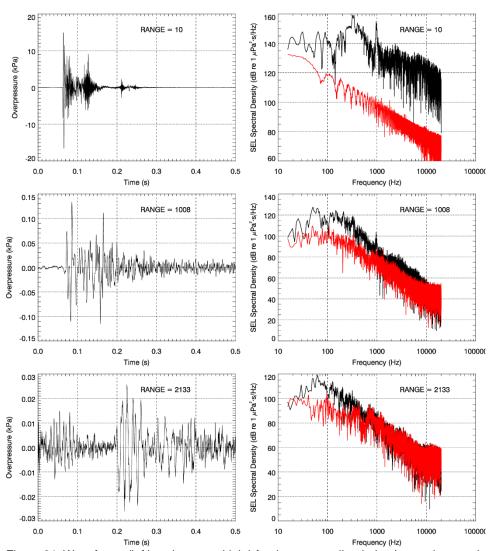



Figure 21. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP4-10M (top), IP4-1KM (middle), and IP4-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

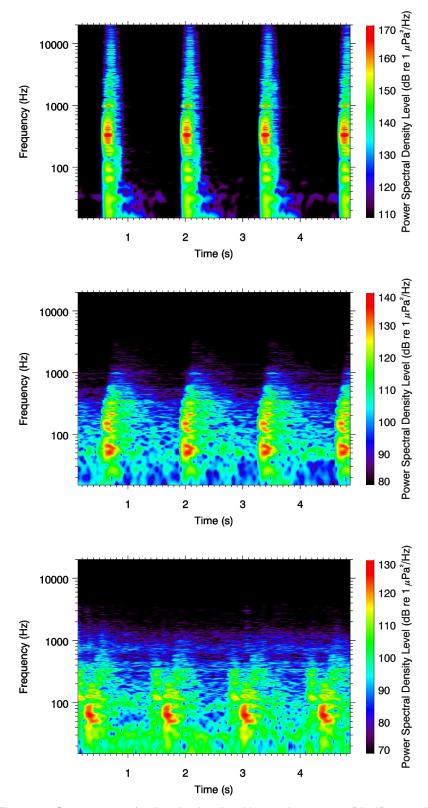



Figure 22. Spectrogram of strikes by the diesel impact hammer on Pile IP4 at a distance of 10 m at IP4-10M (top), 1008 m at IP4-1KM (middle), and 2133 m at IP4-DRIFT (bottom).

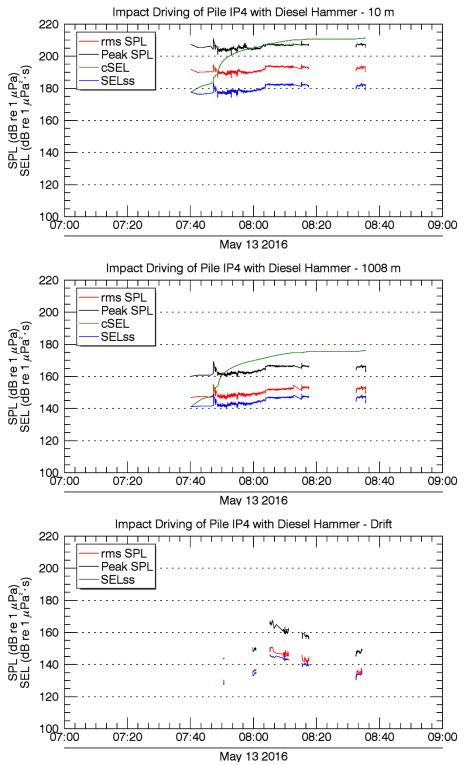



Figure 23. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP4 by the diesel impact hammer, measured at distances of 10 m at IP4-10M (top) 1008 m at IP4-1KM (middle) and between 1470 m and 2670 m on IP4-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.1.6. Pile IP5: Un-attenuated, Diesel Impact Hammer, Location 4

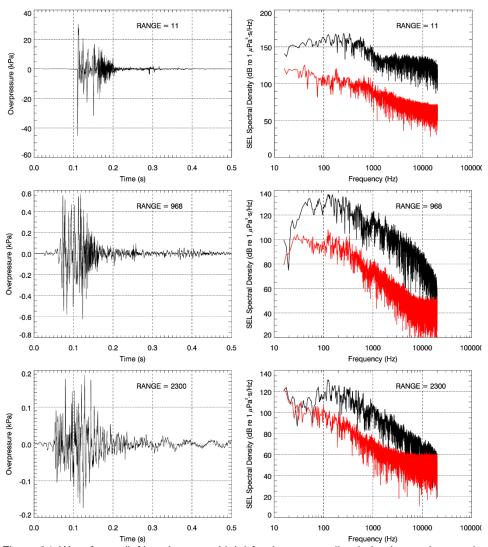



Figure 24. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP5-10M (top), IP5-1KM (middle), and IP5-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

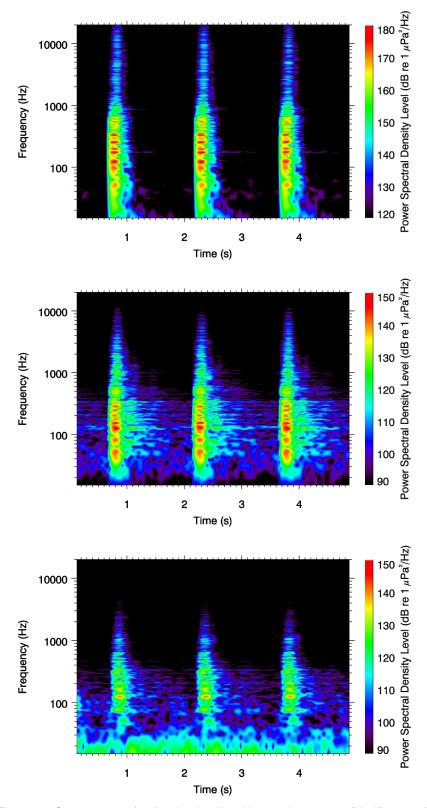



Figure 25. Spectrogram of strikes by the diesel impact hammer on Pile IP5 at a distance of 11 m at IP5-10M (top), 968 m at IP5-1KM (middle), and 2300 m at IP5-DRIFT (bottom).

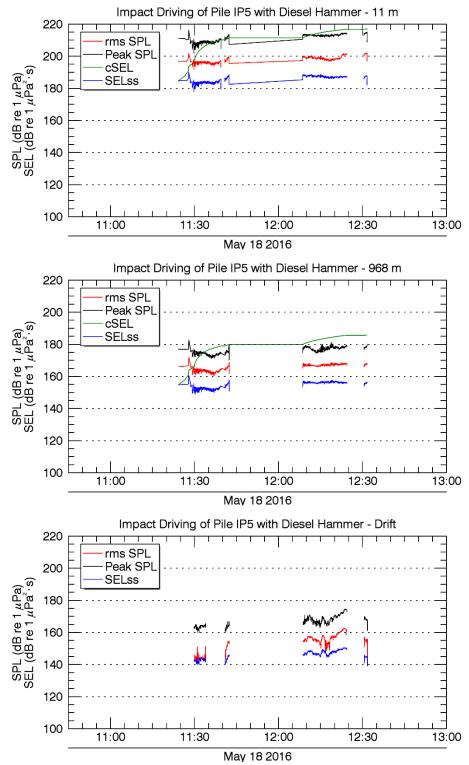



Figure 26. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP5 by the diesel impact hammer, measured at distances of 11 m at IP5-10M (top) 968 m at IP5-1KM (middle) and between 1900 m and 3200 m on IP5-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.

# 3.1.7. Pile IP6: Un-attenuated and Bubble Curtain, Diesel Impact Hammer, Location 4

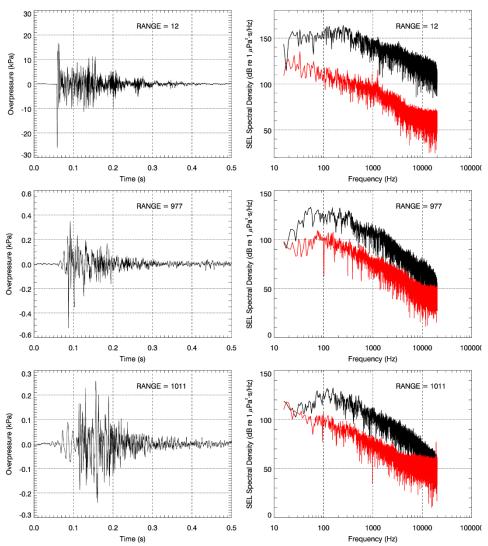



Figure 27. Waveforms (left) and spectra (right) for the same (un-attenuated) strike during impact hammering of 48 in steel pile recorded at IP6-10M (top), IP6-1KM (middle), and IP6-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

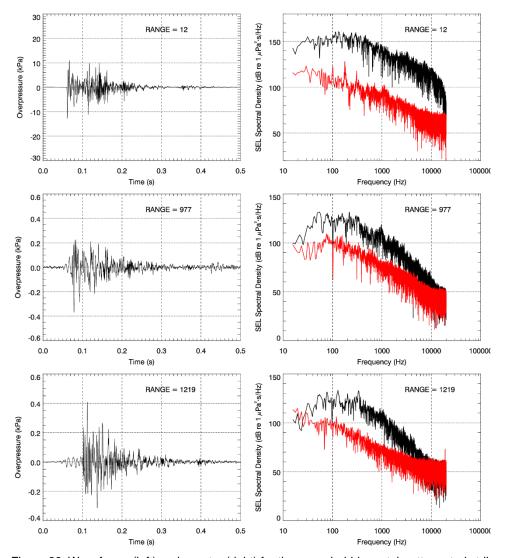



Figure 28. Waveforms (left) and spectra (right) for the same bubble curtain-attenuated strike during impact hammering of 48 in steel pile recorded at IP6-10M (top), IP6-1KM (middle), and IP6-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

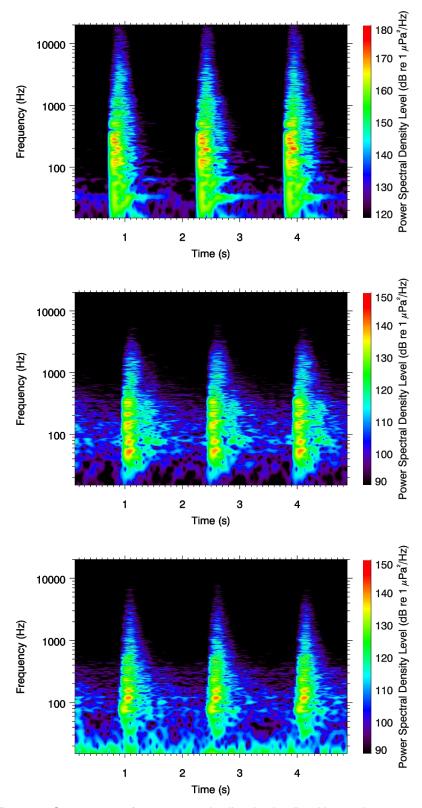



Figure 29. Spectrogram of un-attenuated strikes by the diesel impact hammer on Pile IP6 at a distance of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle), and 1011 m at IP6-DRIFT (bottom).

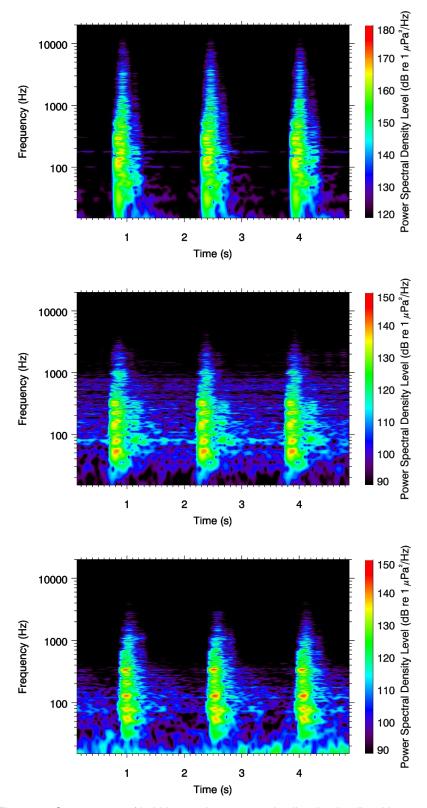



Figure 30. Spectrogram of bubble curtain-attenuated strikes by the diesel impact hammer on Pile IP6 at a distance of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle), and 1219 m at IP6-DRIFT (bottom).

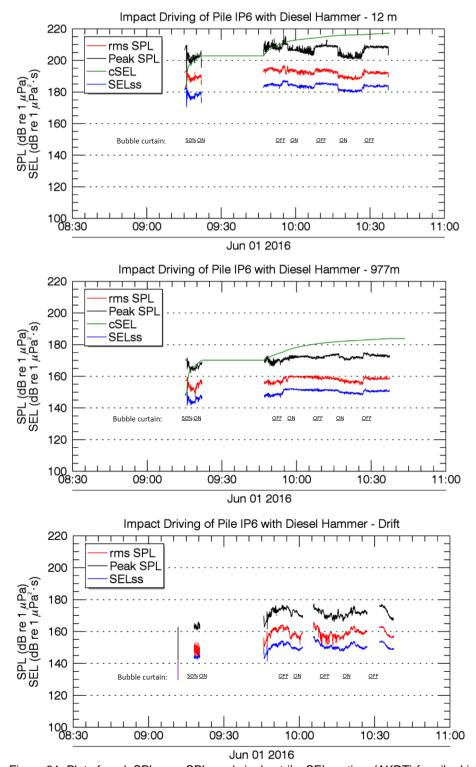



Figure 31. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP6 by the diesel impact hammer, measured at distances of 12 m at IP6-10M (top) 977 m at IP6-1KM (middle) and between 975 m and 2400 m on IP6-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



### 3.1.8. Pile IP7: Bubble Curtain, Diesel Impact Hammer, Location 5

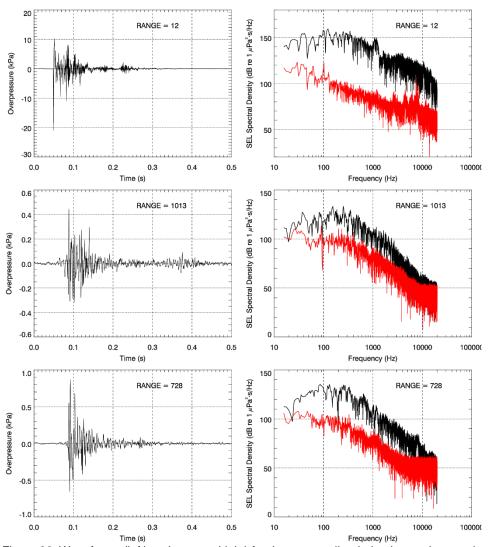



Figure 32. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP7-10M (top), IP7-1KM (middle), and IP7-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red. Signals were band-pass filtered between 15 Hz and 20 kHz.

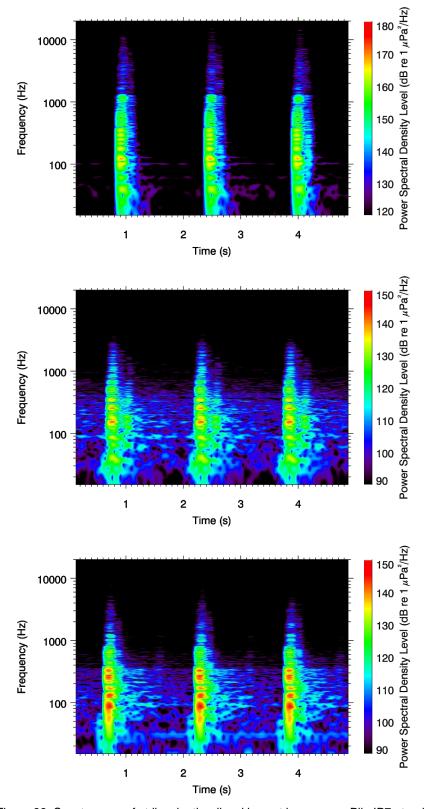



Figure 33. Spectrogram of strikes by the diesel impact hammer on Pile IP7 at a distance of 12 m at IP7-10M (top), 1013 m at IP7-1KM (middle), and 728 m at IP7-DRIFT (bottom).

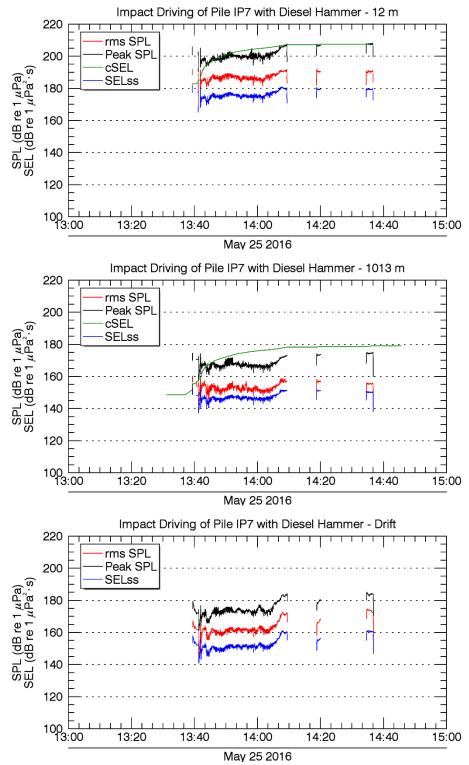



Figure 34. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP7 by the diesel impact hammer, measured at distances of 12 m at IP7-10M (top) 1013 m at IP7-1KM (middle) and between 290 m and 740 m on IP7-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.1.9. Pile IP8: Resonator, Hydraulic Impact Hammer, Location 6

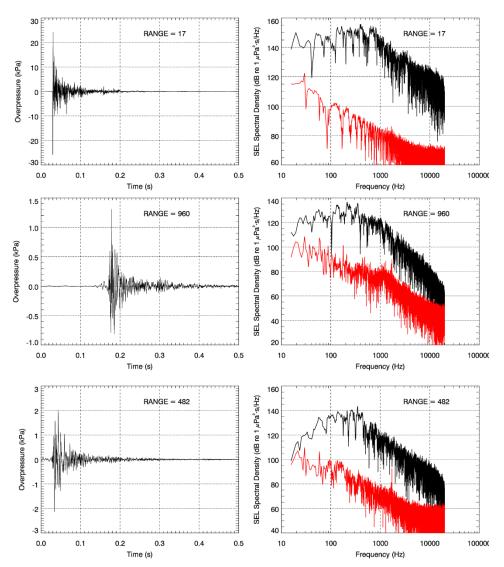



Figure 35. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP8-10M (top), IP8-1KM (middle), and IP8-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red.

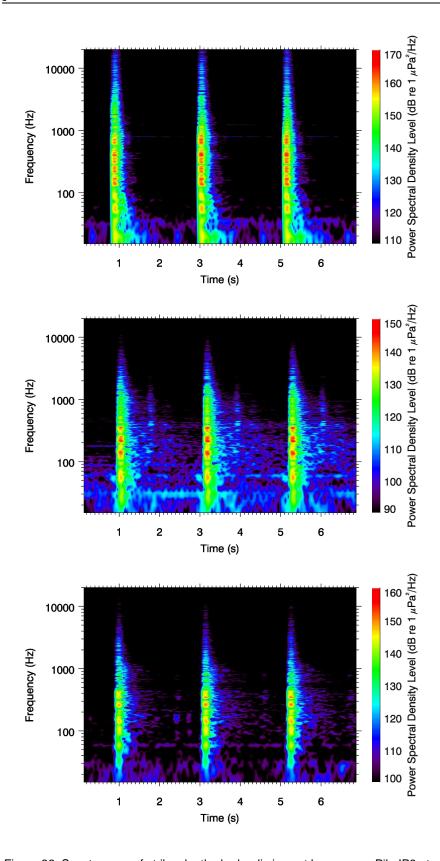



Figure 36. Spectrogram of strikes by the hydraulic impact hammer on Pile IP8 at a distance of 17 m at IP8-10M (top), 960 m at IP8-1KM (middle), and 482 m at IP8-DRIFT (bottom).

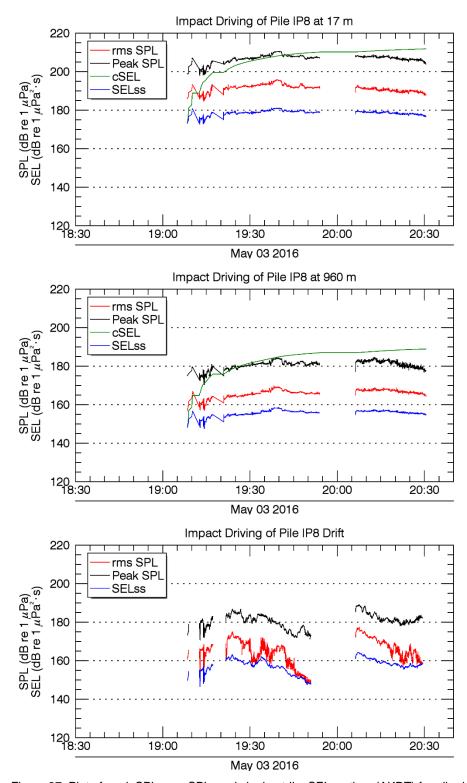



Figure 37. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP8 by the hydraulic impact hammer, measured at distances of 17 m at IP8-10M (top) 960 m at IP8-1KM (middle) and between 480 m and 2400 m on IP8-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.1.10. Pile IP9: Resonator, Diesel Impact Hammer, Location 6

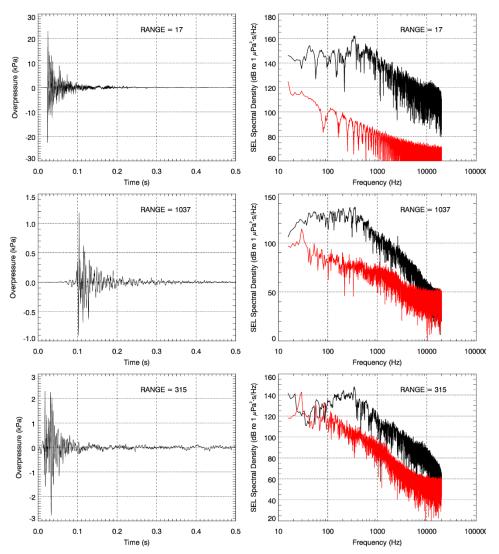



Figure 38. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP9-10M (top), IP9-1KM (middle), and IP9-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red.

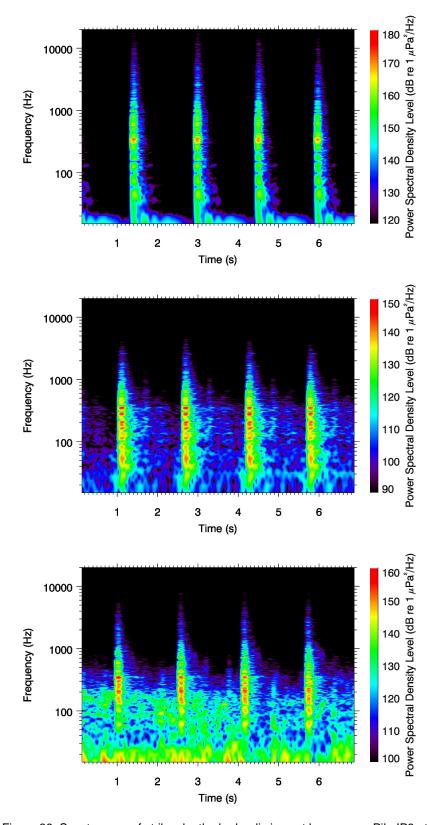



Figure 39. Spectrogram of strikes by the hydraulic impact hammer on Pile IP9 at a distance of 17 m at IP9-10M (top), 1037 m at IP9-1KM (middle), and 315 m at IP9-DRIFT (bottom).

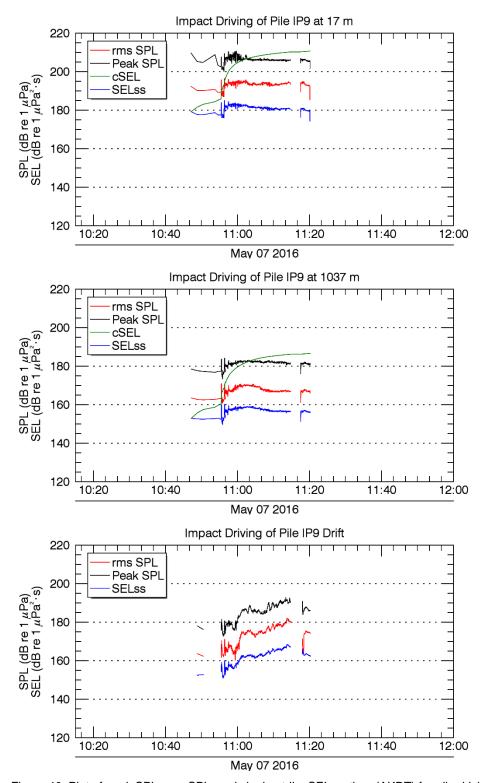



Figure 40. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP9 by the hydraulic impact hammer, measured at distances of 17 m at IP9-10M (top) 1037 m at IP9-1KM (middle) and between 206 m and 909 m on IP9-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.1.11. Pile IP10: Bubble Curtain, Hydraulic Impact Hammer, Location 6

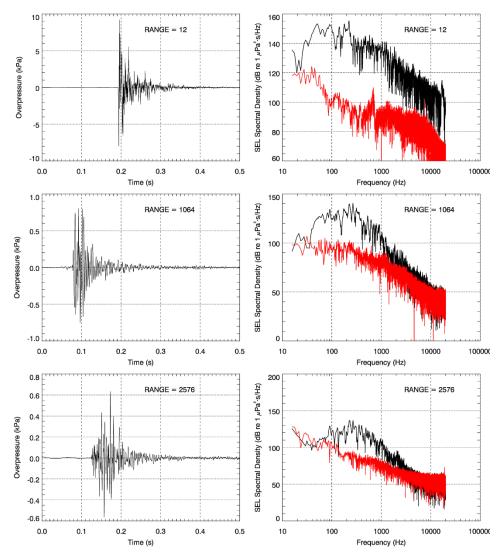



Figure 41. Waveforms (left) and spectra (right) for the same strike during impact hammering of 48 in steel pile recorded at IP10-10M (top), IP10-1KM (middle), and IP10-DRIFT (bottom). Background noise spectrum from the 0.5 s window preceding the pulse is shown in red.

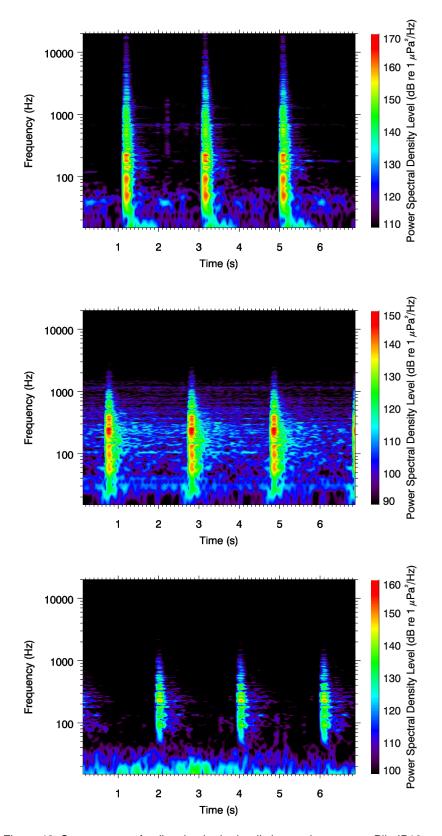



Figure 42. Spectrogram of strikes by the hydraulic impact hammer on Pile IP10 at a distance of 12 m at IP10-10M (top), 1064 m at IP10-1KM (middle), and 2576 m at IP10-DRIFT (bottom).

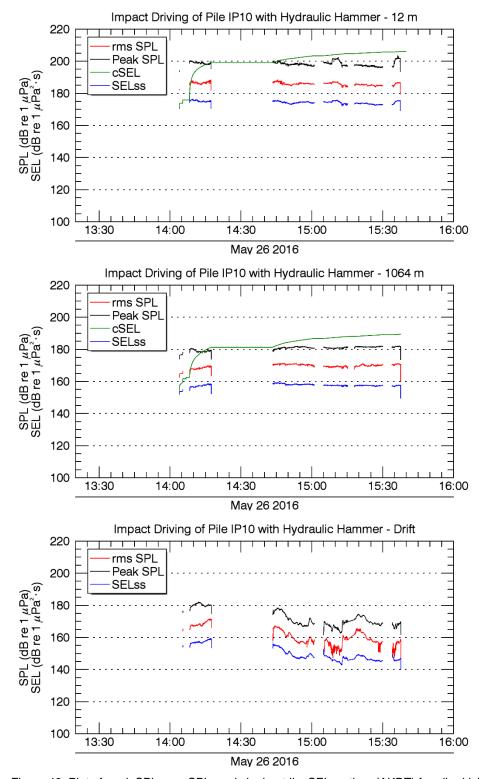



Figure 43. Plot of peak SPL, rms SPL, and single-strike SEL vs time (AKDT) for pile driving of Pile IP10 by the diesel impact hammer, measured at distances of 12 m at IP10-10M (top) 1064 m at IP10-1KM (middle) and between 1300 m and 3600 m on IP10-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.

### 3.2. Vibratory Pile Driving Sound Levels

#### 3.2.1. Pile IP1: Un-attenuated, Pile Location 5

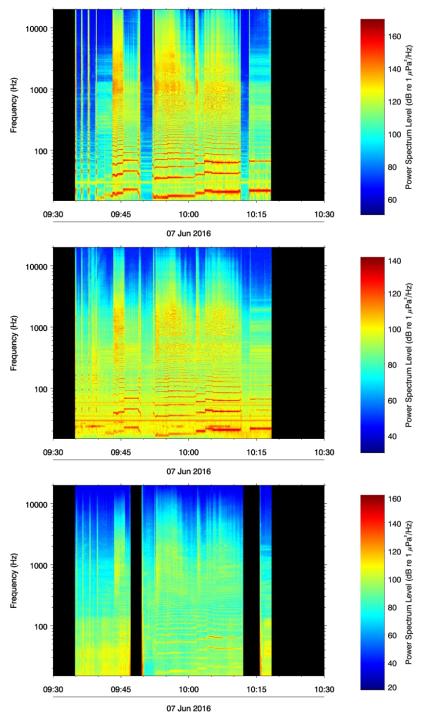



Figure 44. Spectrogram of vibratory driving of Pile IP1 at a distances of 14 m on IP1-10M (top), 959 m on IP1-1KM (middle) and between 2100 m and 3100 m on IP1-DRIFT (bottom).

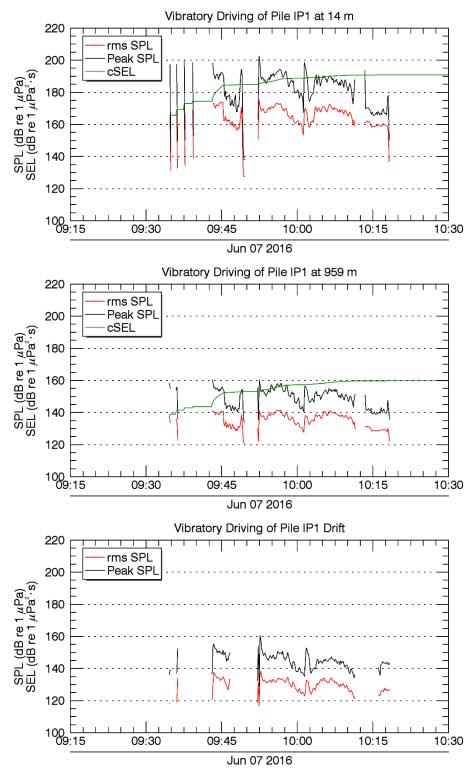



Figure 45. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP1 of 14 m at IP1-10M (top), 959 m at IP1-1KM (middle) and between 2100 m to 3100 m on IP1 Drift (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.2.2. Pile IP2: Resonator, Pile Location 4

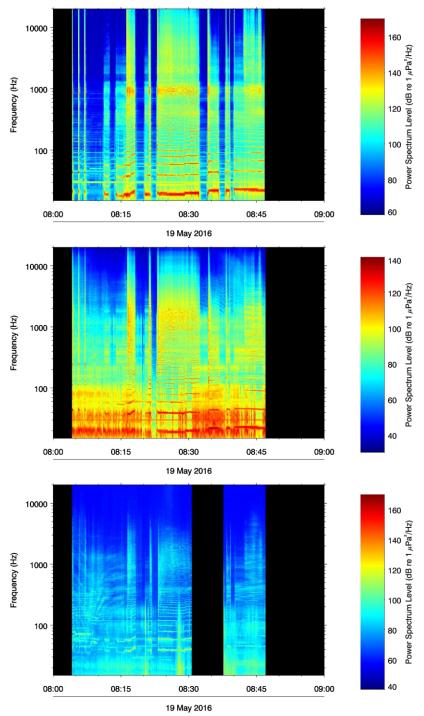



Figure 46. Spectrogram of vibratory driving of Pile IP2 at a distances of 11 m on IP2-10M (top), 943 m on IP2-1KM (middle) and between 4262 m and 4594 m on IP2-DRIFT (bottom).

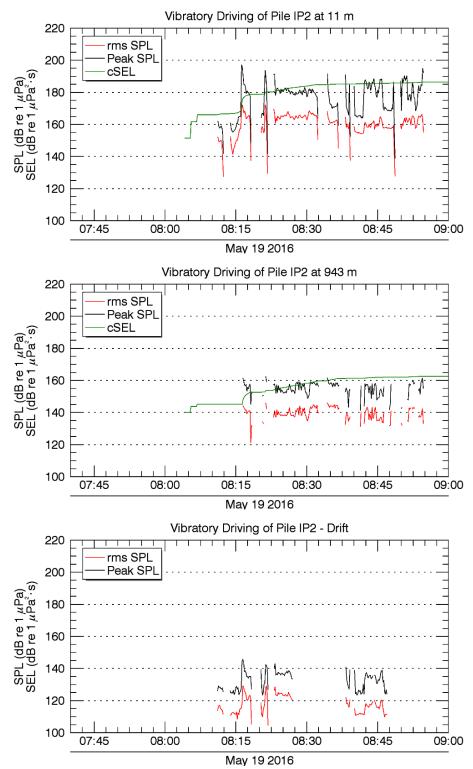



Figure 47. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP2 at distances of 11 m at IP2-10M (top), 943 m at IP2-1KM (middle) and between 3300 m to 5100 m on IP2-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.2.3. Pile IP3: Bubble Curtain, Location 1

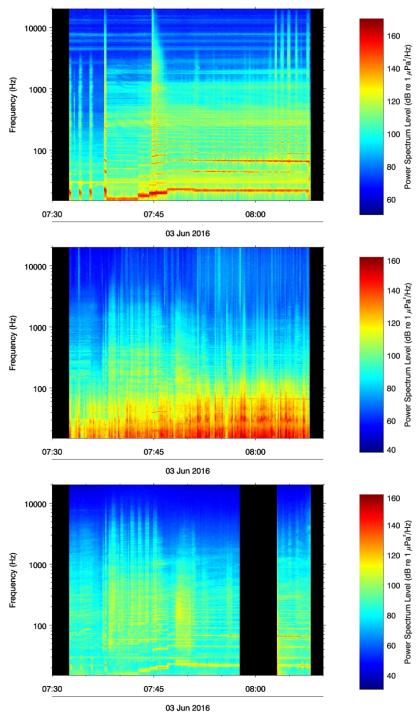



Figure 48. Spectrogram of vibratory driving of Pile IP3 at a distances of 12 m on IP3-10M (top), 1182 m on IP3-1KM (middle) and between 1408 m and 3179 m on IP3-DRIFT (bottom).

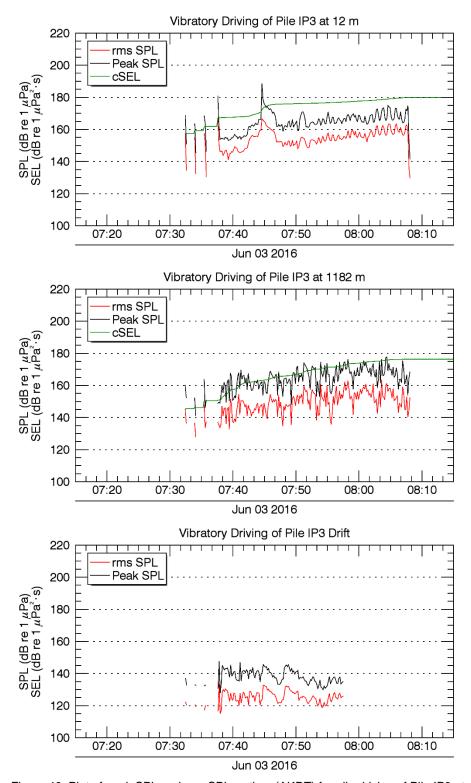



Figure 49. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP3 at distances of 12 m at IP3-10M (top), 1182 m at IP3-1KM (middle) and between 1350 m to 3278 m on IP3-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.2.4. Pile IP4: Resonator, Location 1

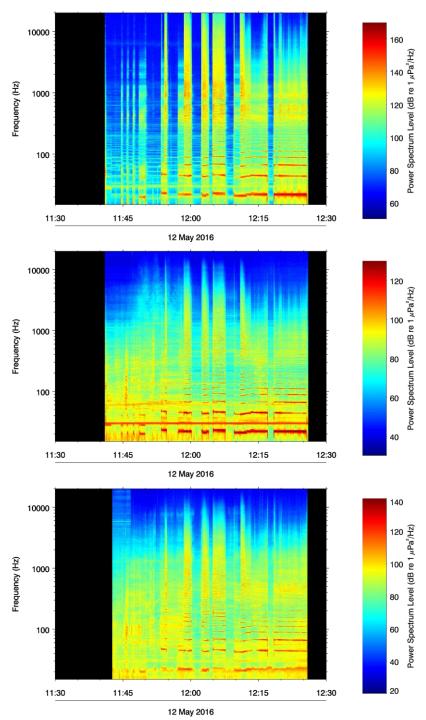



Figure 50. Spectrogram of vibratory driving of Pile IP4 at a distances of 10 m on IP4-10M (top), 1008 m on IP4-1KM (middle) and between 1623 m and 2875 m on IP4-DRIFT (bottom).

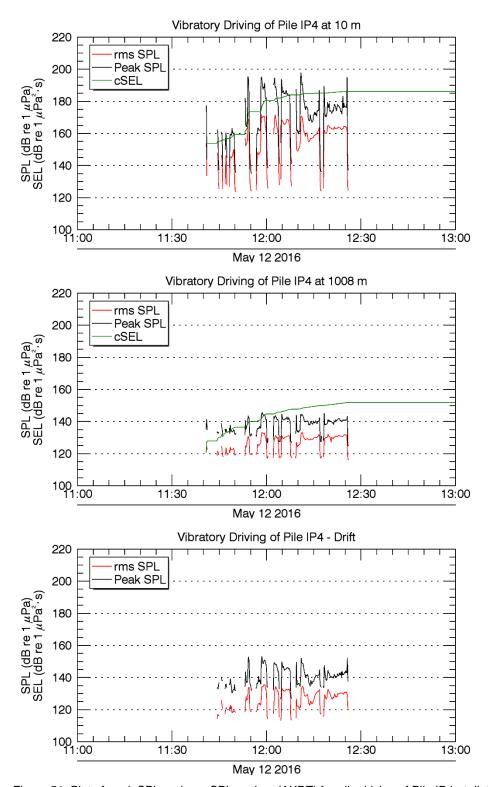



Figure 51. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP4 at distances of 10 m at IP4-10M (top), 1008 m at IP4-1KM (middle) and between 1620 m to 2510 m on IP4-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.2.5. Pile IP5: Un-attenuated, Location 4



Figure 52. Spectrogram of vibratory driving of Pile IP5 at a distances of 11 m on IP5-10M (top), 968 m on IP5-1KM (middle) and between 3769 m and 5324 m on IP5-DRIFT (bottom).

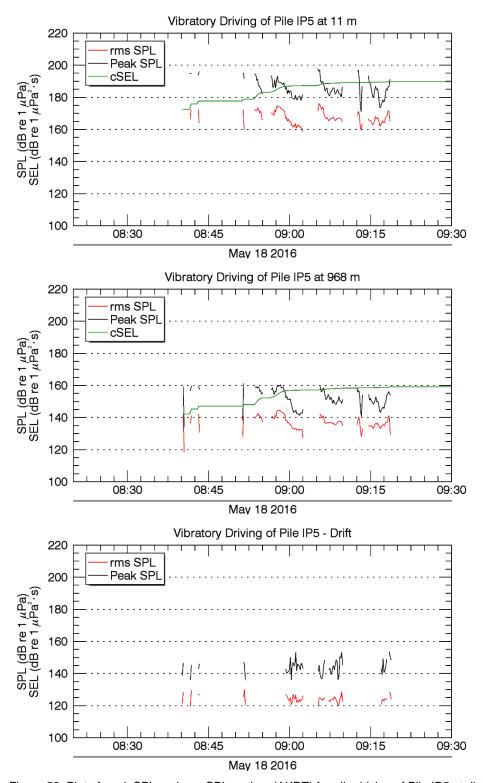



Figure 53. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP5 at distances of 11 m at IP5-10M (top), 968 m at IP5-1KM (middle) and between 3000 m to 5000 m on IP5-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



### 3.2.6. Pile IP6: Bubble Curtain, Location 4

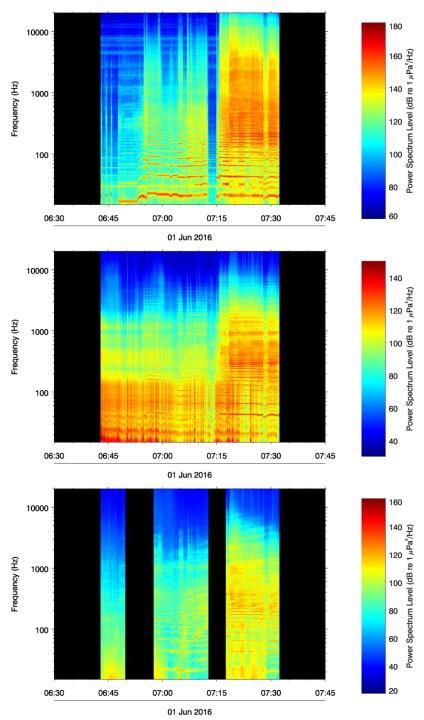



Figure 54. Spectrogram of vibratory driving of Pile IP6 at a distances of 12 m on IP6-10M (top), 977 m on IP6-1KM (middle) and between 1457 m and 3083 m on IP6-DRIFT (bottom).

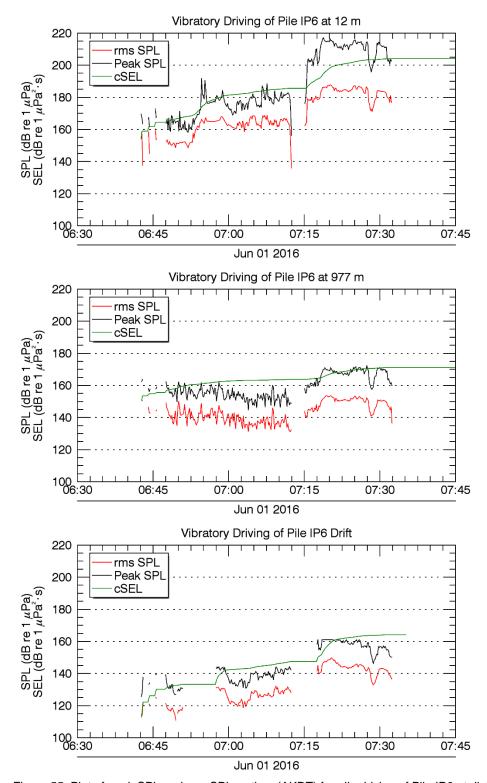



Figure 55. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP6 at distances of 12 m at IP6-10M (top), 977 m at IP6-1KM (middle) and between 1324 m to 3184 m on IP6 Drift (bottom). Drift distances as a function of time are shown in Appendix B.



## 3.2.7. Pile IP7: Bubble Curtain, Location 5

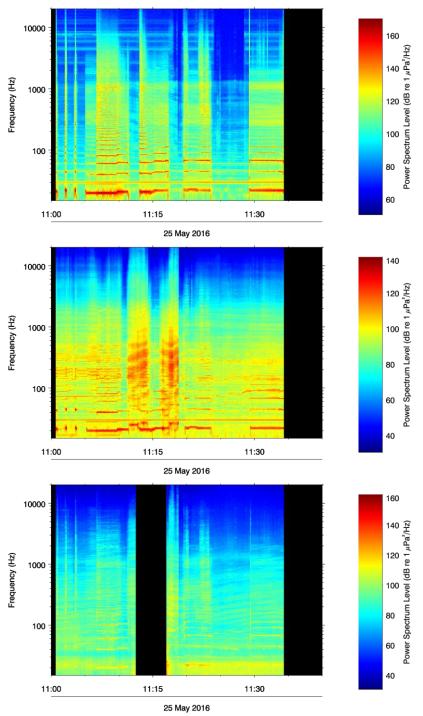



Figure 56. Spectrogram of vibratory driving of Pile IP7 at a distances of 12 m on IP7-10M (top), 1013 m on IP7-1KM (middle) and between 1027 m and 1680 m on IP7-DRIFT (bottom).

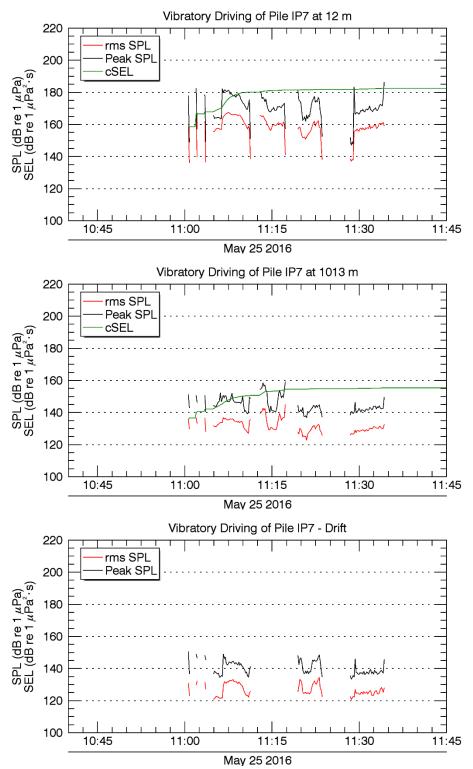



Figure 57. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP7 at distances of 12 m at IP7-10M (top), 1013 m at IP7-1KM (middle) and between 1000 m to 1700 m on IP7 Drift (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.2.8. Pile IP8: Resonator, Location 6



Figure 58. Spectrogram of vibratory driving of Pile IP8 at a distances of 17 m on IP8-10M (top), 960 m on IP8-1KM (middle) and between 2357 m and 3046 m on IP8-DRIFT (bottom).

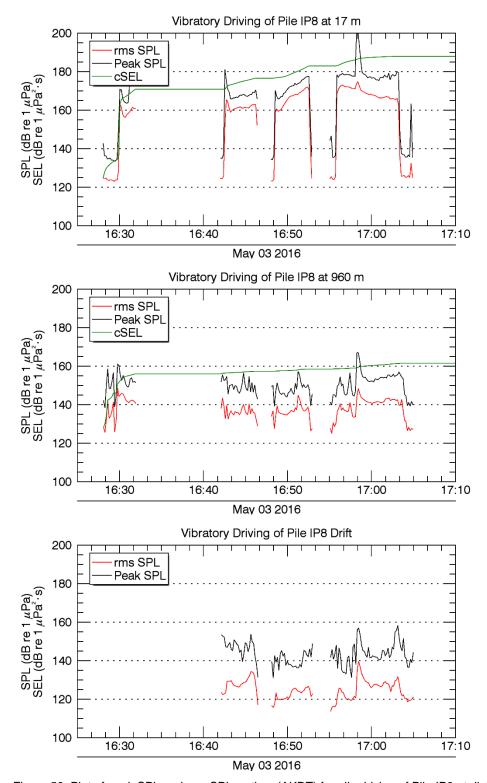



Figure 59. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP8 at distances of 17 m at IP8-10M (top), 960 mat IP8-1KM (middle) and between 1470 m to 2900 m on IP8-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.2.9. Pile IP9: Resonator, Location 6

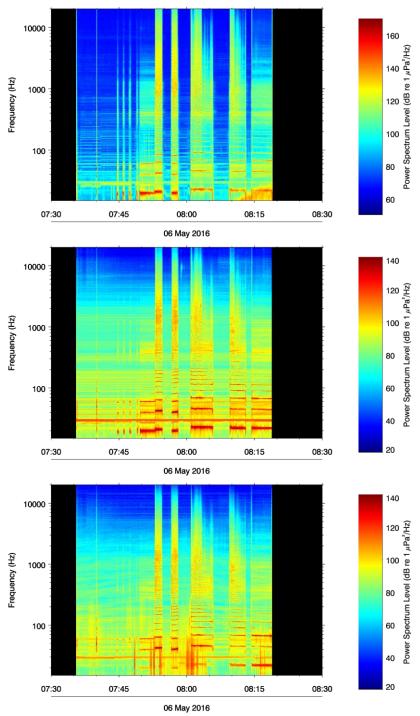



Figure 60. Spectrogram of vibratory driving of Pile IP9 at a distances of 17 m on IP9-10M (top), 1037 m on IP9-1KM (middle) and between 1271 m and 1646 m on IP9-DRIFT (bottom).

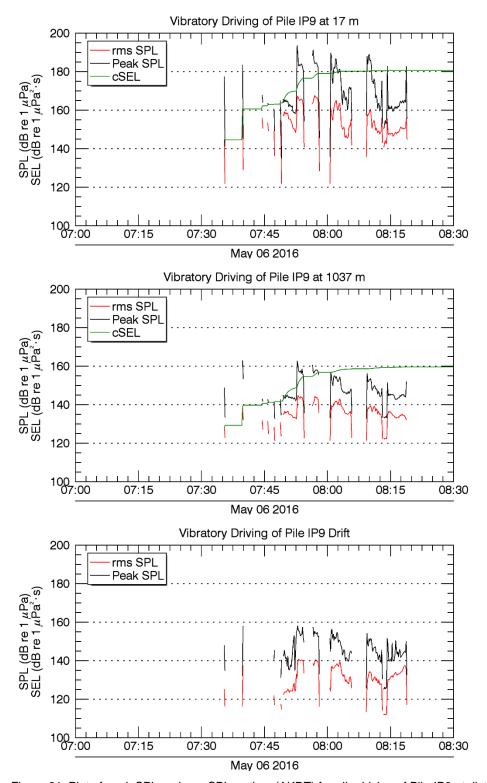



Figure 61. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP9 at distances of 17 m at IP9-10M (top), 1037 m at IP9-1KM (middle) and between 1620 m to 2510 m on IP9-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



# 3.2.10. Pile IP10: Bubble Curtain, Location 6

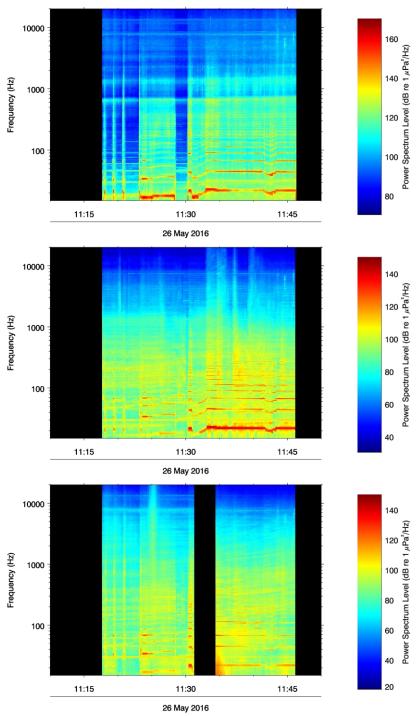



Figure 62. Spectrogram of vibratory driving of Pile IP10 at a distances of 12 m on IP10-10M (top), 1064 m on IP10-1KM (middle) and between 789 m and 1872 m on IP10-DRIFT (bottom).



Figure 63. Plot of peak SPL and rms SPL vs time (AKDT) for pile driving of Pile IP10 at distances of 12 m at IP10-10M (top), 1064 m at IP10-1KM (middle) and between 800 m to 1930 m on IP10-DRIFT (bottom). Drift distances as a function of time are shown in Appendix B.



#### 3.3. Sound Level Statistics

### 3.3.1. Impact Pile Driving

Table 7. Statistics of peak SPL for impact pile driving. Column headers include the pile details: Hammer type: H = hydraulic, D=diesel; NAS method: U = Unattenuated, R=Passive Resonator, B=Bubble curtain; Location is given by number, pile-AMAR range (R) and the number (n) of strikes over which the percentiles are calculated. Levels for IP4 are given for the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and on.

					Sound le	vel (dB re 1	µPa)					
AMAR-10M												
	IP1 H; U; 5 R = 14 m n = 2153	IP2 D; R; 4 R = 11 m n = 1504	IP3 H; B; 1 R = 12 m n = 4801	IP4(H) H; R; 1 R = 10 m n = 1626	IP4(D) D; R; 1 R = 10 m n = 1218	IP5 D; U; 4 R = 11 m n = 1213	IP6(off)* D; U; 4 R = 12 m n = 1246	IP6(on)* D; B; 4 R = 12 m n = 1087	IP7 D; B; 5 R = 12 m n = 1427	IP8 H; R; 6 R = 17 m n = 2000	IP9 D; R; 6 R = 17 m n = 845	IP10 H; B; 6 R = 12 m n = 1459
Mean	213.1	200.4	203.1	211.4	206.1	211.9	208.9	204.4	202.0	207.2	206.5	198.6
Median	213.2	200.0	203.1	211.4	206.3	212.5	208.7	203.4	200.0	207.2	206.1	198.2
Max	215.3	206.7	206.7	212.8	211.1	216.2	216.2	210.0	208.2	210.5	210.7	203.7
90th percentile	214.4	202.7	204.0	211.9	207.4	213.8	210.1	206.6	206.4	208.4	207.9	200.5
AMAR-1KM												
	IP1 H; U; 5 R = 959 m n = 2151	IP2 D; R; 4 R = 943 m n = 1499	IP3 H; B; 1 R = 1182 m n = 3905	IP4(H) H; R; 1 R = 1008 m n = 1634	IP4(D) D; R; 1 R = 1008 m n = 1214	IP5 D; U; 4 R = 968 m n = 1207	IP6(off)* D; U; 4 R = 977 m n = 1248	IP6(on)* D; B; 4 R = 977 m n = 1087	IP7 D; B; 5 R = 1013 m n = 1428	IP8 H; R; 6 R = 960 m n = 1999	IP9 D; R; 6 R = 1037 m n = 840	IP10 H; B; 6 R = 1064m n = 1463
Mean	176.7	171.8	169.5	162.4	164.6	176.5	172.2	171.1	169.0	181.1	181.8	180.9
Median	176.7	170.6	169.4	161.8	163.9	176.0	172.4	171.7	167.3	181.0	182.0	181.0
Max	179.2	180.1	172.9	166.2	169.4	182.8	175.1	175.0	175.3	184.7	184.3	182.0
90th percentile	178.2	174.9	170.7	164.6	166.6	178.6	173.8	172.7	172.7	183.2	182.6	181.7

^{*}Pile IP6 had a bearing plate installed.



Table 8. Statistics of rms SPL for impact pile driving. Column headers include the pile: Hammer type: H = hydraulic, D=diesel; NAS method: U = Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is given by number, pile-AMAR range (R) and the number (n) of strikes over which the percentiles are calculated. Levels for IP4 are given for the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and on.

					Sound le	vel (dB re 1	μPa)					
AMAR-10M												
	IP1 H; U; 5 R = 14 m n = 2153	IP2 D; R; 4 R = 11 m n = 1504	IP3 H; B; 1 R = 12 m n = 4801	IP4(H) H; R; 1 R = 10 m n = 1626	IP4(D) D; R; 1 R = 10 m n = 1218	IP5 D; U; 4 R = 11 m n = 1213	IP6(off)* D; U; 4 R = 12 m n = 1246	IP6(on)* D; B; 4 R = 12 m n = 1087	IP7 D; B; 5 R = 12 m n = 1427	IP8 H; R; 6 R = 17 m n = 2000	IP9 D; R; 6 R = 17 m n = 845	IP10 H; B; 6 R = 12 m n = 1459
Mean	199.1	188.1	190.3	196.0	191.9	198.1	193.4	191.0	187.6	191.8	193.7	186.0
Median	199.0	187.8	190.3	195.8	191.2	197.9	193.2	189.9	187.0	191.7	193.7	185.9
Max	201.6	192.4	194.1	198.7	194.9	202.0	196.9	194.9	191.9	195.9	196.6	188.5
90th percentile	200.6	190.4	192.3	197.0	193.7	200.3	194.8	193.4	190.5	193.6	194.6	187.1
AMAR-1KM	·											
	IP1 H; U; 5 R = 959 m n = 2151	IP2 D; R; 4 R = 943 m n = 1499	IP3 H; B; 1 R = 1182 m n = 3905	IP4(H) H; R; 1 R = 1008 m n = 1634	IP4(D) D; R; 1 R = 1008 m n = 1214	IP5 D; U; 4 R = 968 m n = 1207	IP6(off)* D; U; 4 R = 977 m n = 1248	IP6(on)* D; B; 4 R = 977 m n = 1087	IP7 D; B; 5 R = 1013 m n = 1428	IP8 H; R; 6 R = 960 m n = 1999	IP9 D; R; 6 R = 1037 m n = 840	IP10 H; B; 6 R = 1064m n = 1463
Mean	163.3	162.6	157.4	149.5	150.7	166.0	158.3	157.7	153.6	166.3	168.1	169.9
Median	163.1	161.8	157.1	149.1	149.7	166.5	158.4	156.9	152.7	166.2	167.4	169.8
Max	165.3	168.2	160.3	151.9	155.1	172.1	160.9	160.5	160.1	170.0	171.1	171.3
90th percentile	164.5	165.6	158.9	151.3	152.8	167.9	159.5	160.0	156.1	168.0	170.0	170.9

^{*}Pile IP6 had a bearing plate installed.



Table 9. Statistics of single-strike SEL and cumulative SEL for impact pile driving. Column headers include the pile: Hammer type: H = hydraulic, D=diesel; NAS method: U = Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is given by number, pile-AMAR range (R) and the number (n) of strikes over which the percentiles are calculated. Levels for IP4 are given for the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and on.

					Sound leve	el (dB re 1 µl	Pa²·s)					
AMAR-10M												
	IP1 H; U; 5 R = 14 m n = 2153	IP2 D; R; 4 R = 11 m n = 1504	IP3 H; B; 1 R = 12 m n = 4801	IP4(H) H; R; 1 R = 10 m n = 1626	IP4(D) D; R; 1 R = 10 m n = 1218	IP5 D; U; 4 R = 11 m n = 1213	IP6(off)* D; U; 4 R = 12 m n = 1246	IP6(on)* D; B; 4 R = 12 m n = 1087	IP7 D; B; 5 R = 12 m n = 1427	IP8 H; R; 6 R = 17 m n = 2000	IP9 D; R; 6 R = 17 m n = 845	IP10 H; B; 6 R = 12 m n = 1459
Mean	185.1	176.7	176.1	183.4	180.5	186.2	184.6	181.7	176.5	178.8	181.4	174.4
Median	185.1	176.2	175.9	183.3	179.5	186.7	184.5	181.0	175.6	178.8	181.1	174.4
Max	186.5	182.8	180.2	185.6	184.0	190.2	187.6	185.4	181.3	181.0	185.1	176.4
90th percentile	186.0	179.2	177.9	184.8	182.5	187.9	185.6	184.1	179.5	179.8	182.8	175.4
Cumulative	218.4	208.5	212.9	215.6	211.3	217.0	215.6	212.1	208.1	211.8	210.7	206.0
AMAR-1KM												
	IP1 H; U; 5 R = 959 m n = 2151	IP2 D; R; 4 R = 943 m n = 1499	IP3 H; B; 1 R = 1182 m n = 3905	IP4(H) H; R; 1 R = 1008 m n = 1634	IP4(D) D; R; 1 R = 1008 m n = 1214	IP5 D; U; 4 R = 968 m n = 1207	IP6(off)* D; U; 4 R = 977 m n = 1248	IP6(on)* D; B; 4 R = 977 m n = 1087	IP7 D; B; 5 R = 1013 m n = 1428	IP8 H; R; 6 R = 960 m n = 1999	IP9 D; R; 6 R = 1037 m n = 840	IP10 H; B; 6 R = 1064m n = 1463
Mean	152.4	151.3	148.5	144.8	145.3	155.0	150.5	149.8	147.5	155.9	157.4	157.7
Median	152.4	150.4	148.4	144.6	144.6	155.8	150.7	149.6	146.7	155.9	157.1	157.5
Max	154.2	157.2	150.5	147.4	149.3	160.6	152.5	152.5	152.9	158.4	160.3	159.4
90th percentile	153.4	154.2	149.7	146.7	147.3	156.9	151.6	151.8	150.4	157.0	158.7	158.4
Cumulative	185.7	183.0	184.4	177.0	176.2	185.8	181.4	180.1	179.1	188.9	186.6	189.4

^{*}Pile IP6 had a bearing plate installed.



## 3.3.2. Vibratory Pile Driving

Table 10. Statistics of peak SPL for vibratory pile driving. Column headers include the pile details: NAS method: U=Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is given by number, pile-AMAR range (R) and the number (n) of sound levels from 10-s analysis windows over which the percentiles are calculated.

				So	und level (d	B re 1 μPa)					
AMAR-10M											
	IP1 U; 5 R = 14 m n = 193	IP2 R; 4 R = 11 m n = 209	IP3 B; 1 R = 12 m n = 191	IP4 R; 1 R = 10 m n = 192	IP5 U; 4 R = 11 m n = 111	IP6a* B; 4 R = 12 m n = 157	IP6b* B; 4 R = 12 m n = 104	IP7 B; 5 R = 12 m n = 134	IP8 R; 6 R = 17 m n = 141	IP9 R; 6 R = 17 m n = 145	IP10 B; 6 R = 12 m n = 138
Mean	189.4	183.8	170.1	184.7	189.2	179.0	211.9	175.2	183.1	180.6	172.9
Median	185.9	179.2	164.7	173.8	185.3	1761.	211.8	170.5	170.6	164.9	172.0
Max	202.6	197.2	188.6	198.0	197.7	191.8	217.3	186.2	200.9	193.6	179.5
90th percentile	182.2	187.8	172.4	189.0	194.1	181.9	215.1	179.6	178.6	184.6	176.2
AMAR-1KM											
	IP1 U; 5 R = 959 m n = 193	IP2 R; 4 R = 943 m n = 152	IP3** B; 1 R = 1182 m n = 191	IP4 R; 1 R = 1008 m n = 202	IP5 U; 4 R = 968 m n = 111	IP6a* B; 4 R = 977 m n = 157	IP6b* B; 4 R = 977 m n = 105	IP7 B; 5 R = 1013 m n = 134	IP8 R; 6 R = 960 m n = 159	IP9 R; 6 R = 1037 m n = 142	IP10 B; 6 R = 1064m n = 139
Mean	152.3	156.3	168.4	139.8	154.8	156.0	168.0	148.2	153.4	152.2	148.8
Median	150.7	156.0	165.4	139.7	152.2	154.4	168.1	143.9	149.7	146.0	148.2
Max	160.5	162.3	177.7	145.5	161.1	163.8	172.5	159.0	167.0	162.9	154.6
90th percentile	156.4	158.6	172.6	143.2	159.0	159.0	170.9	152.0	155.5	156.9	152.4

^{*}Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT

^{**}Levels from AMAR-TKM during vibratory pile driving of IP3 are contaminated with noise from dredging and are not representative of pile driving sounds.



Table 11. Statistics of rms SPL for vibratory pile driving. Column headers include the pile: NAS method: U=Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is given by number, pile-AMAR range (R) and the number (n) of sound levels from 10-s analysis windows over which the percentiles are calculated.

				Sou	ınd level (di	B re 1 µPa	)				
AMAR-10M											
	IP1 U; 5 R = 14 m n = 193	IP2 R; 4 R = 11 m n = 209	IP3 B; 1 R = 12 m n = 191	IP4 R; 1 R = 10 m n = 192	IP5 U; 4 R = 11 m n = 111	IP6a* B; 4 R = 12 m n = 157	IP6b* B; 4 R = 12 m n = 104	IP7 B; 5 R = 12 m n = 134	IP8 R; 6 R = 17 m n = 141	IP9 R; 6 R = 17 m n = 145	IP10 B; 6 R = 12 m n = 138
Mean	168.0	163.2	157.1	163.4	169.3	163.7	183.8	161.2	166.5	159.0	158.0
Median	166.3	161.3	154.7	160.1	166.8	162.9	183.9	158.9	162.6	151.3	156.9
Max	175.3	172.2	166.6	171.9	176.0	168.8	187.8	167.4	174.7	167.6	166.7
90th percentile	171.8	166.3	161.3	168.4	172.9	166.9	186.6	165.9	171.2	164.9	161.2
AMAR-1KM											
	IP1 U; 5 R = 959 m n = 193	IP2 R; 4 R = 943 m n = 152	IP3** B; 1 R = 1182 m n = 191	IP4 R; 1 R = 1008 m n = 202	IP5 U; 4 R = 968 m n = 111	IP6a* B; 4 R = 12 m n = 157	IP6b* B; 4 R = 977 m n = 105	IP7 B; 5 R = 1013 m n = 134	IP8 R; 6 R = 960 m n = 159	IP9 R; 6 R = 1037 m n = 142	IP10 B; 6 R = 1064m n = 139
Mean	136.9	140.8	153.6	128.7	138.6	141.7	150.2	134.0	139.5	138.1	139.8
Median	136.2	139.8	149.8	129.1	136.7	139.2	150.4	131.0	136.8	135.6	139.6
Max	141.5	145.9	163.5	133.3	144.5	150.6	153.6	144.9	148.9	144.9	144.5
90th percentile	140.2	158.6	157.6	131.4	142.1	145.0	152.7	136.5	143.2	142.4	143.3

^{*}Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.

**Levels from AMAR-1KM during vibratory pile driving of IP3 are contaminated with noise from dredging and are not representative of pile driving sounds.

#### 3.4. Threshold Distances

### 3.4.1. Impact Pile Driving

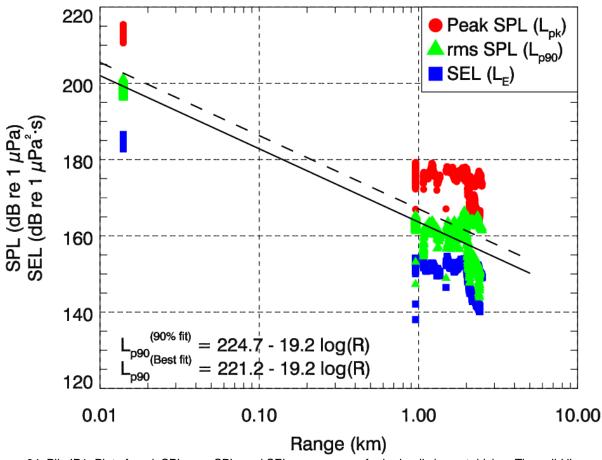



Figure 64. Pile IP1: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

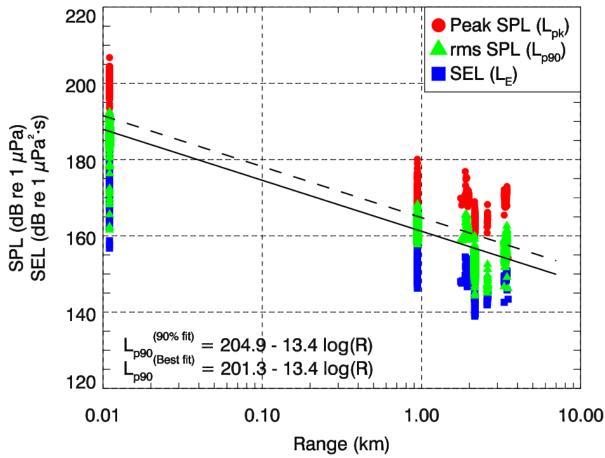



Figure 65. Pile IP2: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

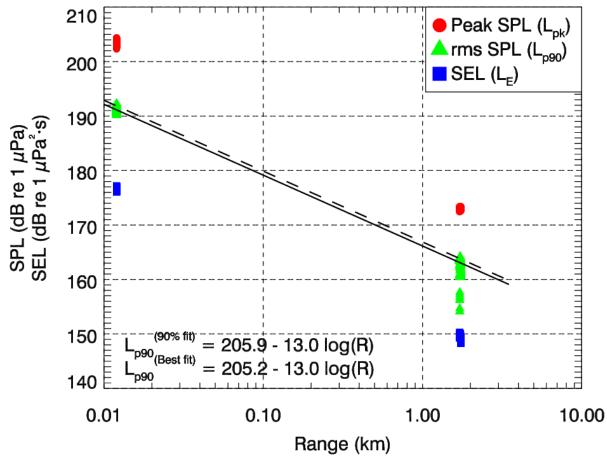



Figure 66. Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving, for a propagation path to AMAR-Drift to the south of the Port. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Data from AMAR-1KM were excluded and treated separately because the levels were suspected to be attenuated by an unresolved propagation effect.

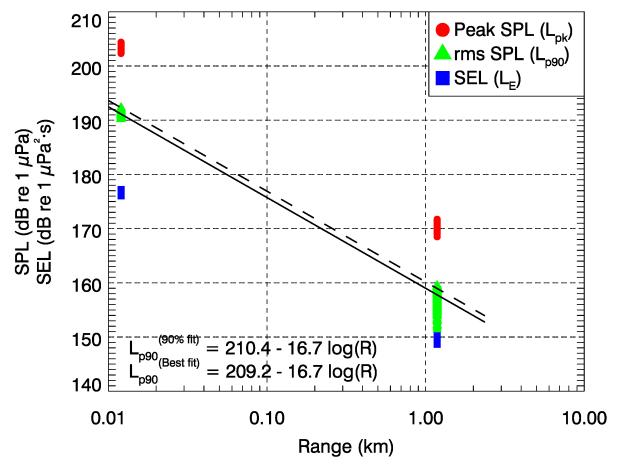



Figure 67 Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving, for a westward propagation path to AMAR-1KM in the dredge disposal area. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Data from AMAR-1KM were excluded and treated separately because the levels were suspected to be attenuated by an unresolved propagation effect.

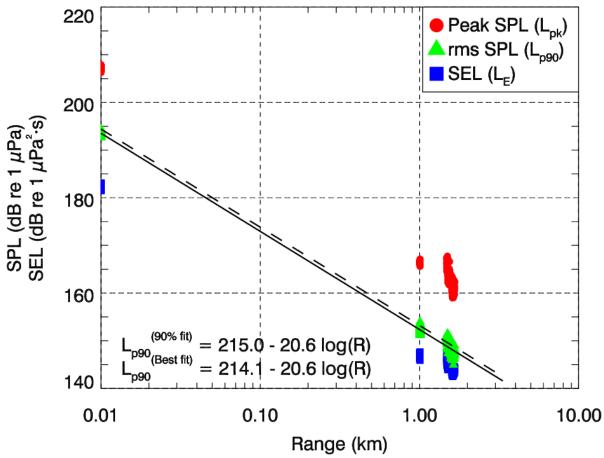



Figure 68. Pile IP4 (diesel): Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system. Note: The data from AMAR-1KM and the drift data are likely artificially attenuated due to shielding by land between the recorders and the pile, these data are presented for completeness but are an anomalous result.

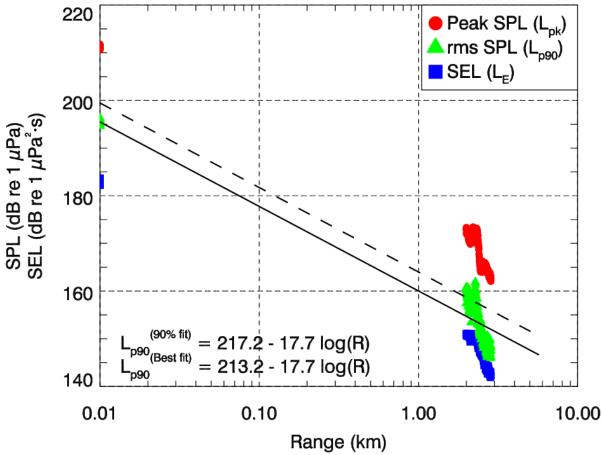



Figure 69. Pile IP4 (hydraulic): Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Data from AMAR-1KM were excluded from this plot because the levels were artificially attenuated by shielding from land between the recorder and the pile. Inclusion of the data from AMAR-1KM prevented suitable fitting of the valid data at AMAR-10M and AMAR-DRIFT.

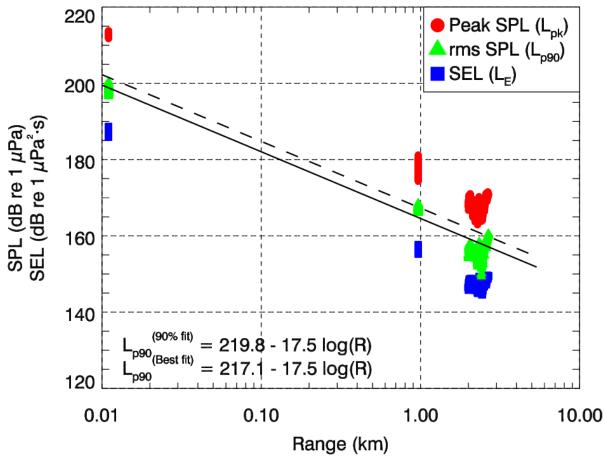



Figure 70. Pile IP5: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

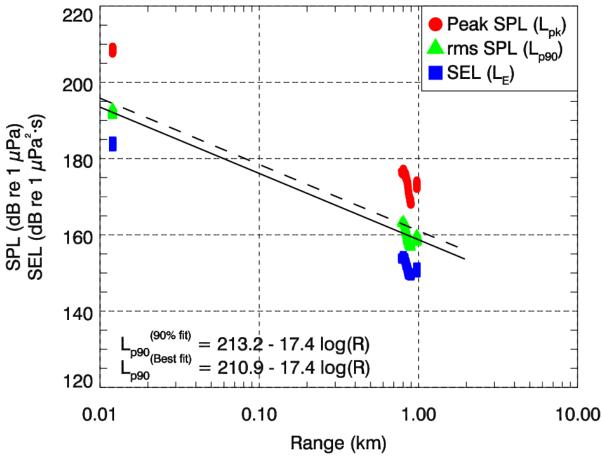



Figure 71. Pile IP6 (un-attenuated): Plot of peak SPL, rms SPL, and SEL versus range for un-attenuated diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

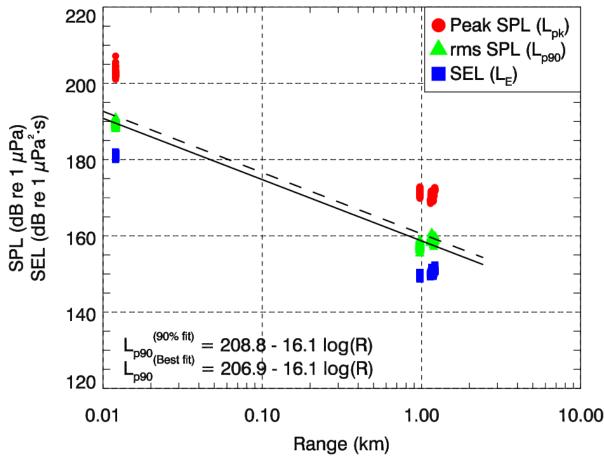



Figure 72 Pile IP6 (attenuated): Plot of peak SPL, rms SPL, and SEL versus range for bubble curtain-attenuated diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

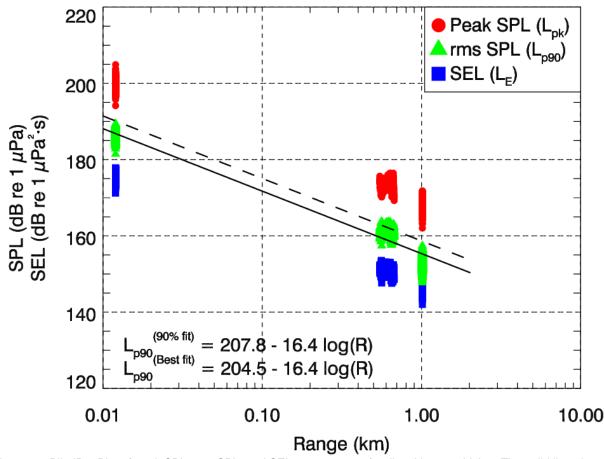



Figure 73. Pile IP7: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

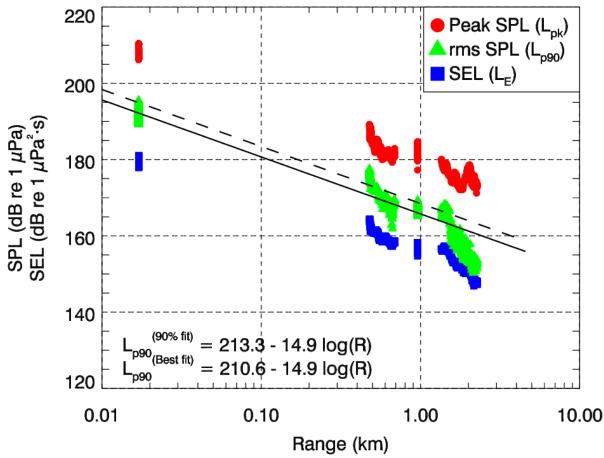



Figure 74. Pile IP8: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

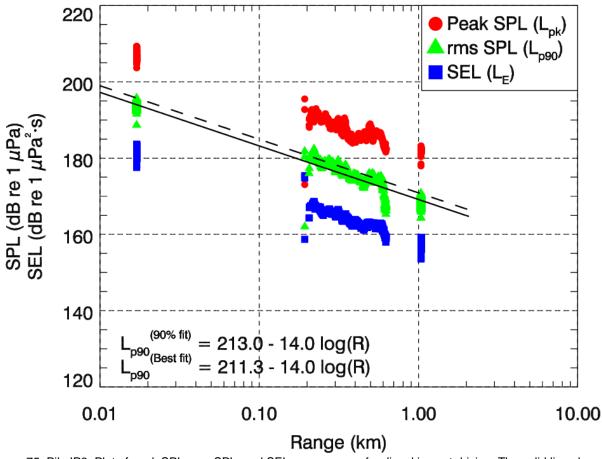



Figure 75. Pile IP9: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

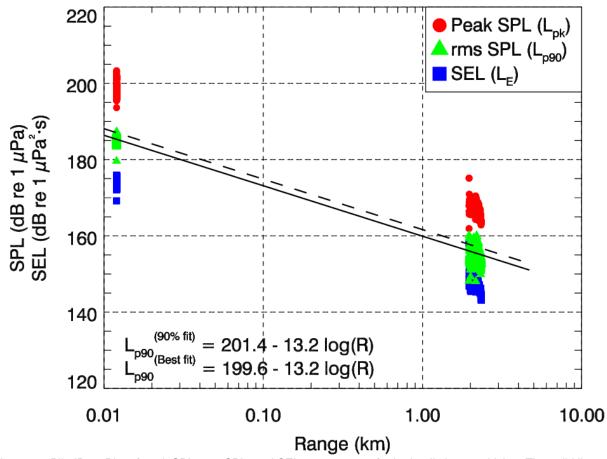



Figure 76. Pile IP10: Plot of peak SPL, rms SPL, and SEL versus range for hydraulic impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Anomalous data at AMAR-1KM were excluded from the plot.



Table 12. TL Coefficients, Source Levels (SL), Received Level (RL) at 10 m and ranges to rms SPL thresholds for impact pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M (mean, median, and 90th percentile). Hammer type: H=hydraulic, D=diesel; NAS method: U=Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is indicated by number.

	IP1 H; U; 5	IP2 D; R; 4	IP3, Path 1 H; B; 1	IP3, Path 2 H; B; 1	IP4(H) H; R; 1	IP4(D)** D; R; 1	IP5 D; U; 4	IP6(off)^ D; U; 4	IP6(on)^ D; B; 4	IP7 D; B; 5	IP8 H; R; 6	IP9 D; R; 6	IP10 H; B; 6
TL Coefficient	19.2	13.4	13	16.6	17.7	20.6	17.5	17.4	16.1	16.4	14.9	14	13.2
Mean SL (dB re 1µPa)	221.1	202.1	204.3	208.2	213.7	212.5	216.3	212.2	208.4	205.3	210.1	210.9	200.2
Median SL (dB re 1µPa)	221.0	201.8	204.3	208.2	213.5	211.8	216.1	212.0	207.3	204.7	210.0	210.9	200.1
90% SL (dB re 1µPa)	222.6	204.4	206.3	210.2	214.7	214.3	218.5	213.6	210.8	208.2	211.9	211.8	201.3
Mean RL @ 10 m (dB re 1µPa)	201.9	188.7	191.3	191.6	196.0	191.9	198.8	194.8	192.3	188.9	195.2	196.9	187.0
Median RL @10 m (dB re 1µPa)	201.8	188.4	191.3	191.6	195.8	191.2	198.6	194.6	191.2	188.3	195.1	196.9	186.9
90% RL @10 m (dB re 1 μPa)	203.4	191.0	193.3	193.6	197.0	193.7	201.0	196.2	194.7	191.8	197.0	197.8	188.1
Mean Range to 190 dB re 1 μPa (m)	42	<10	13	13	22	12	32	21	15	<10	22	31	<10
Median Range to 190 dB re 1 μPa (m)	41	<10	13	13	21	11	31	19	12	<10	22	31	<10
90% Range to 190 dB re 1 μPa (m)	50	12	18	17	25	15	43	25	20	13	30	36	<10
Mean Range to 180 dB re 1 μPa (m)	138	44	74	50	80	38	119	81	61	35	105	162	34
Median Range to 180 dB re 1 μPa (m)	137	42	74	50	78	35	116	72	52	32	104	162	34
90% Range to 180 dB re 1 μPa (m)	166	66	106	66	91	46	159	93	84	52	139	188	41
Mean Range to 160 dB re 1 μPa (m)	1523	1375	2570*	803	1081	354	1654	997*	1011	578	2316	4341*	1119
Median Range to 160 dB re 1 μPa (m)	1504	1306	2570*	803	1053	327	1611	971	864	532	2280	4341*	1100
90% Range to 160 dB re 1 μPa (m)	1823	2042	3663*	1059	1231	432	2209	1200*	1425*	869	3058*	5034*	1356

^{*}Extrapolated beyond maximum measured range.

^{**} Anomalous result due to sound attenuation by land shielding.

[^] Pile IP6 had a bearing plate installed.

### 3.4.2. Vibratory Pile Driving

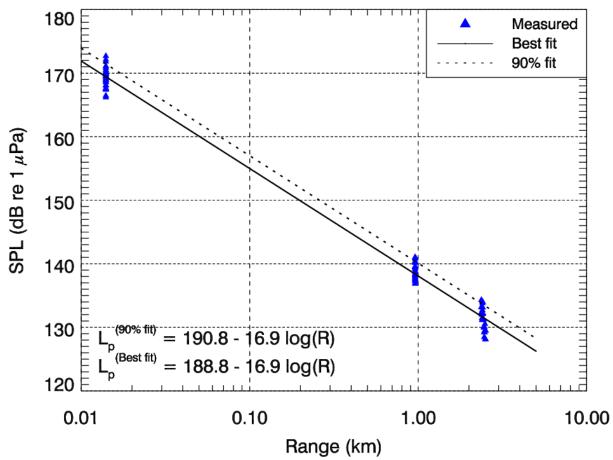



Figure 77. Pile IP1: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

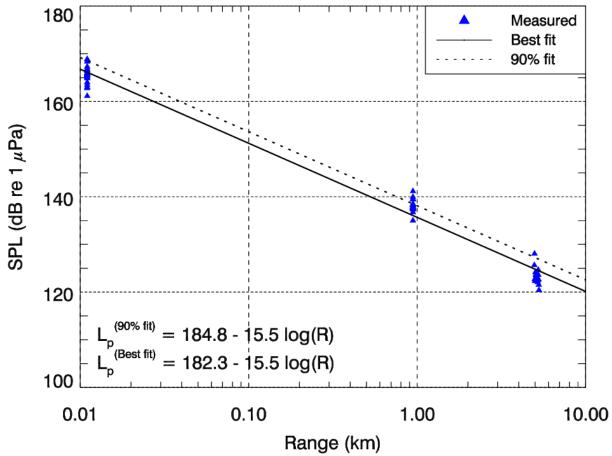



Figure 78. Pile IP2: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

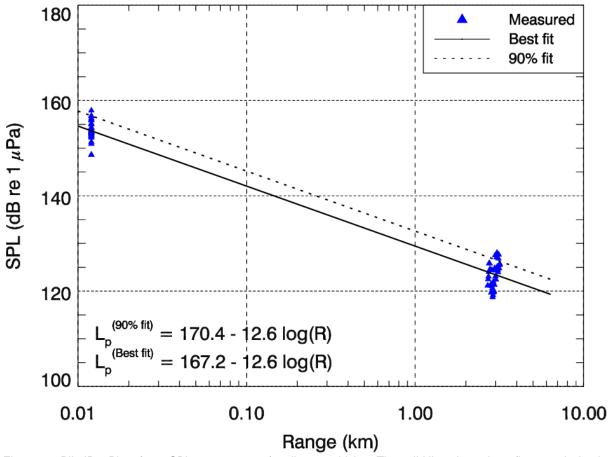



Figure 79. Pile IP3: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Data from AMAR-1KM were excluded from this plot because they were artificially elevated by noise from dredging at the north end of the Port that occurred during pile driving.

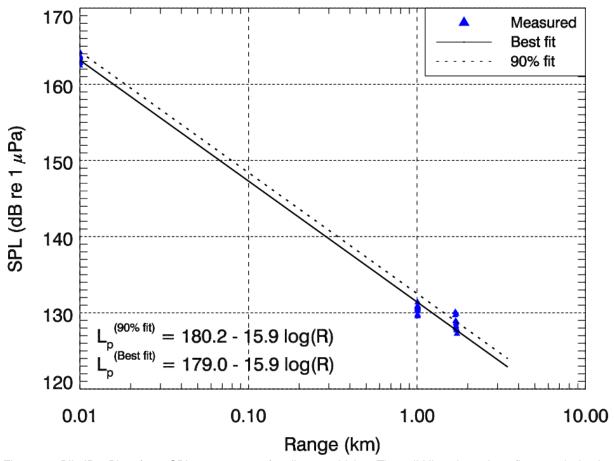



Figure 80. Pile IP4: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

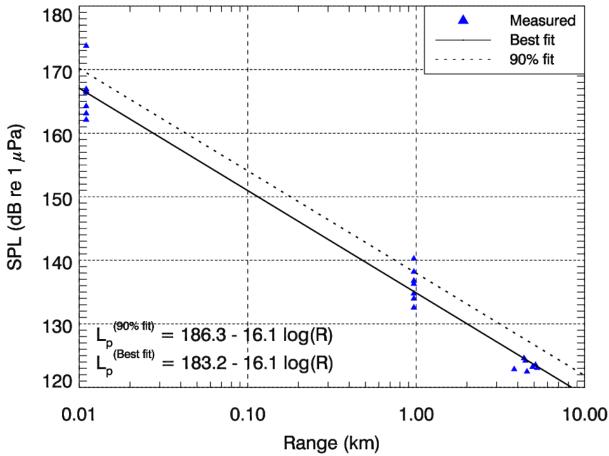



Figure 81. Pile IP5: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

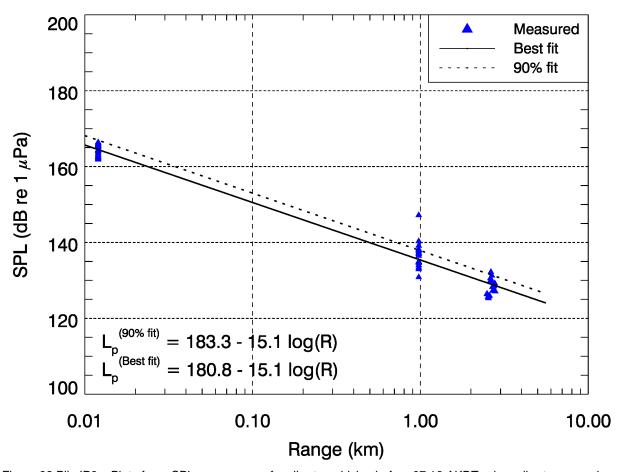



Figure 82 Pile IP6a: Plot of rms SPL versus range for vibratory driving before 07:18 AKDT, when vibratory sound levels were elevated. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

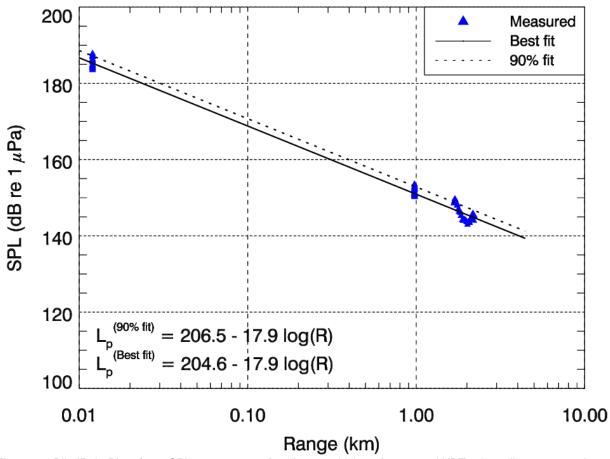



Figure 83. Pile IP6b: Plot of rms SPL versus range for vibratory driving after 07:18 AKDT, when vibratory sound levels were elevated. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

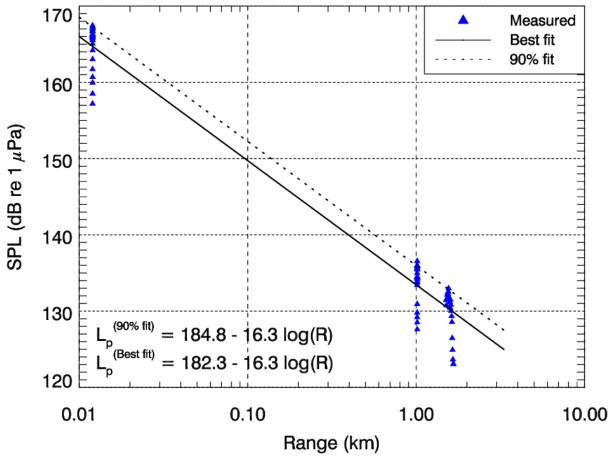



Figure 84. Pile IP7: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

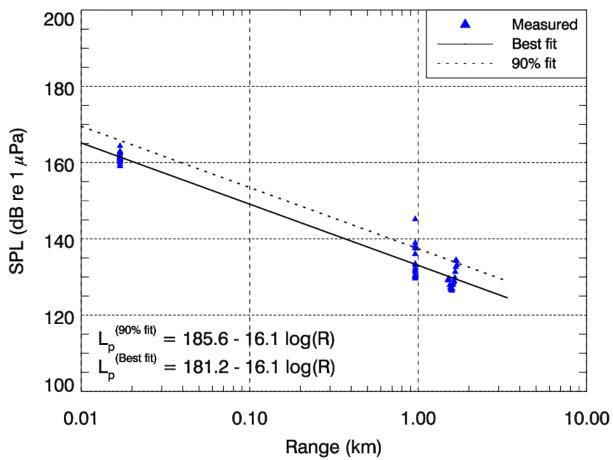



Figure 85. Pile IP8: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

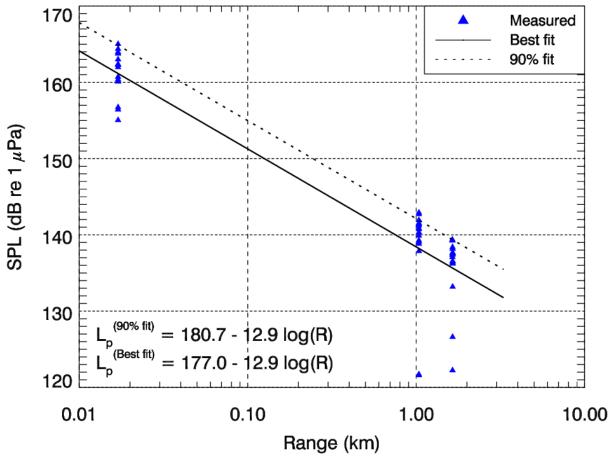



Figure 86. Pile IP9: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.

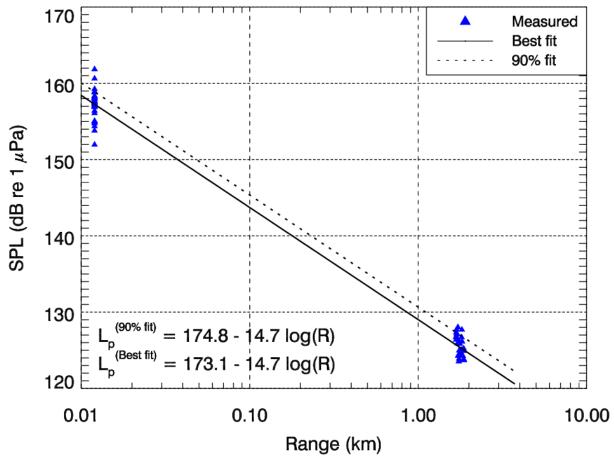



Figure 87. Pile IP10: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in this plot are from strikes that were recorded simultaneously on AMAR-10M and the drifting system. Data from AMAR-1KM were excluded from this plot.



Table 13. Distance to rms SPL thresholds for vibratory pile driving determined from best-fit transmission loss coefficient and SPLs on AMAR-10M (mean, median, and 90th percentile. NAS method: U=Un-attenuated, R=Passive Resonator, B=Bubble curtain; Location is indicated by the final number.

•								-			
	IP1 U; 5	IP2 R; 4	IP3 B; 1	IP4 R; 1	IP5 U; 4	IP6a^ B; 4	IP6b^ B; 4	IP7 B; 5	IP8 R; 6	IP9 R; 6	IP10 B; 6
TL Coefficient	16.9	15.5	12.6	15.9	16.1	15.1	17.9	16.3	16.1	12.9	14.7
Mean SL (dB re 1µPa)	187.4	179.3	170.7	179.3	186.1	180.0	203.1	178.8	186.3	174.9	173.9
Median SL (dB re 1µPa)	185.7	177.4	168.3	176.0	183.6	179.2	203.2	176.5	182.4	167.2	172.8
90% SL (dB re 1µPa)	191.2	182.4	174.9	184.3	189.7	183.2	205.9	183.5	191.0	180.8	177.1
Mean RL @ 10 m (dB re 1µPa)	170.5	163.8	158.1	163.4	170.0	164.9	185.2	162.5	170.2	162.0	159.2
Median RL @10 m (dB re 1µPa)	168.8	161.9	155.7	160.1	167.5	164.1	185.3	160.2	166.3	154.3	158.1
90% RL @10 m (dB re 1 μPa)	174.3	166.9	162.3	168.4	173.6	168.1	188.0	167.2	174.9	167.9	162.4
Mean Range to 125 dB re 1 µPa (m)	4904*	3206	4234*	2601*	6208*	4386*	23126*	1995*	6428*	7347*	2109*
Median Range to 125 dB re 1 μPa (m)	3890*	2417	2731	1613	4342	3883*	23425*	1442	3680*	1859*	1775
90% Range to 125 dB re 1 μPa (m)	8229*	5081	9123*	5365*	10388*	7145*	33153*	3876*	12590*	21061*	3481*
Mean Range to 120 dB re 1 μPa (m)	9691*	6737*	10559*	5365*	12691*	9402*	43997*	4044*	13142*	17935*	4615*
Median Range to 120 dB re 1 μPa (m)	7687*	5081*	6810*	3327*	8876*	8322*	44567*	2922*	7523*	4537*	3885*
90% Range to 120 dB re 1 μPa (m)	16264*	10678*	22749*	11067*	21238*	15316*	63074*	7855*	25738*	51413*	7619*
• Annual - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -											

^{*}Extrapolated beyond maximum measurement range.

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.

# 3.5. Ambient Data

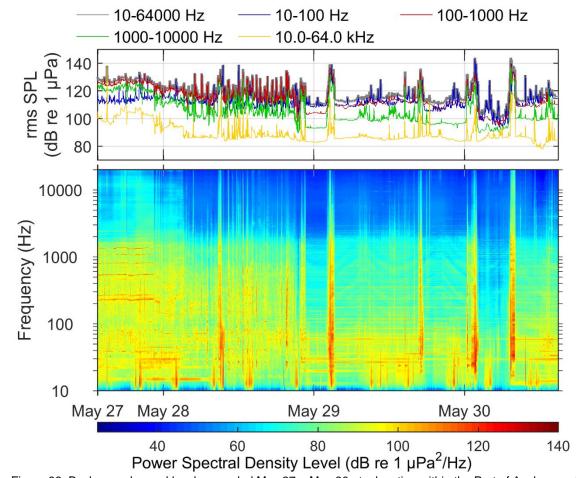



Figure 88. Background sound levels recorded May 27—May 30 at a location within the Port of Anchorage (Ambient-Dock).



Figure 89. Background sound levels recorded May 27-May 30 at a location within Cook Inlet (Ambient-Offshore).

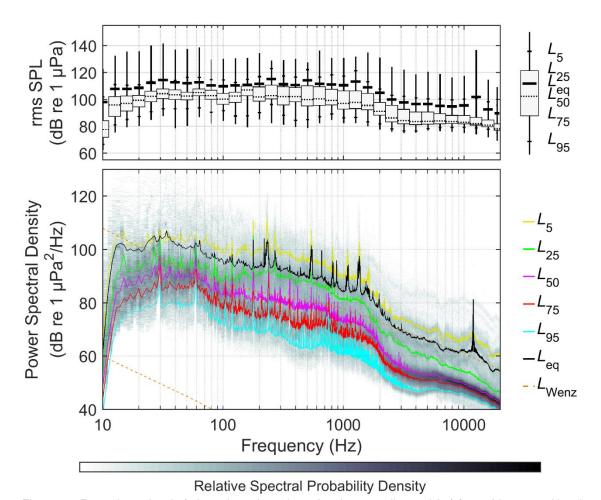



Figure 90. Exceedance levels (5th, 25th, 50th, 75th, and 95th percentiles and  $L_{\rm eq}$ ) for ambient sound levels recorded May 27–May 30 at a location within the Port of Anchorage (Ambient-Dock).

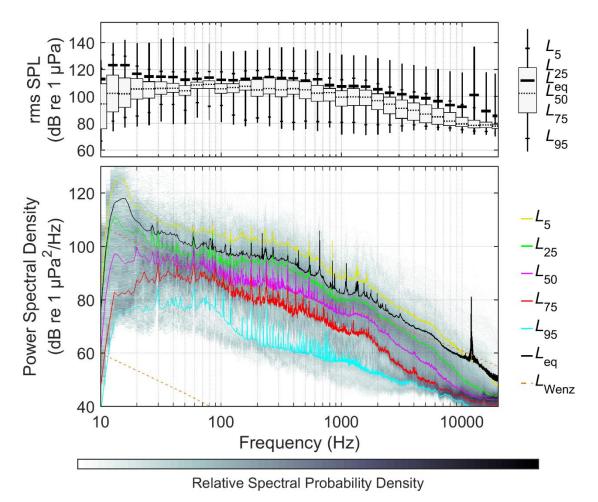



Figure 91. Exceedance levels for ambient sound levels recorded May 27–May 30 at a location within Cook Inlet (Ambient-Offshore).



Table 14. Exceedance levels of broadband background noise levels measured in Cook Inlet, Alaska (60 s average). The *L*n value is the SPL exceeded by n% of the data. For a location within the Port of Anchorage (Ambient-Dock). Exceedance levels are expressed in terms of un-weighted (Unw) and frequency-weighted data, according to the filters in Appendix E for the following species groups: LFC = low-frequency cetacean, MFC = mid-frequency cetacean and PPW=pinnipeds in water.

Exceedance level	SPL (dB re 1 µPa)					
	Unw	LFC	MFC	HFC	PPW	
L _{max}	164.7	166.2	151.0	150.7	151.7	
L ₅	132.5	132.5	129.6	128.9	130.6	
L ₂₅	124.0	124.1	120.5	119.6	122.0	
L ₅₀ (median)	117.0	117.2	111.9	110.9	113.9	
L ₇₅	113.7	113.9	108.5	107.3	110.7	
L ₉₅	106.8	107.3	100.0	98.9	101.9	
Lmean	138.8	139.9	125.2	124.2	128.3	

Table 15. Exceedance levels of broadband background noise levels measured in Cook Inlet, Alaska (60 s average). The *L*n value is the SPL exceeded by n% of the data. For a location in Cook Inlet (Ambient-Offshore). Exceedance levels are expressed in terms of un-weighted (Unw) and frequency-weighted data, according to the filters in Appendix E for the following species groups: LFC = low-frequency cetacean, MFC = mid-frequency cetacean, HFC=high-frequency cetacean and PPW=pinnipeds in water.

Exceedance level	SPL (dB re 1 μPa)					
	Unw	LFC	MFC	HFC	PPW	
L _{max}	159.1	160.0	151.6	151.4	152.5	
<u>L</u> 5	136.1	136.6	129.3	128.1	131.8	
L ₂₅	126.8	127.2	121.2	120.2	123.1	
L ₅₀ (median)	122.2	122.5	115.4	114.6	117.3	
L ₇₅	118.0	118.2	110.6	109.3	113.1	
L ₉₅	110.1	111.1	95.4	94.5	99.3	
L _{mean}	136.0	136.9	125.2	124.1	127.8	



# 4. Discussion and Conclusion

This section summarizes and discusses the key results in light of each objective for the hydroacoustic monitoring program.

# 4.1. Pile Driving Sound Level Measurements

High-quality underwater sound pressure levels were successfully recorded during vibratory and impact pile driving of all ten indicator piles during the Test Pile Program. During vibratory pile driving, underwater sound levels fluctuated due to the dynamic nature of the activity. Sound level fluctuations occurred as the pile moved through different sediment layers with variable resistance, as the pile was extracted and reinserted to ensure vertical installation, and occasionally when the pile rattled against the hammer or pile template. During impact pile driving, peak sound levels were very consistent compared to the vibratory levels, but some fluctuations were also noted when impact pile driving began and the hammer 'warmed up'. The diesel impact hammer in particular experienced occasional misfires at the beginning stages, which was noted in the sound pressure level time history.

Given the experimental nature of the study, there is some inherent variability in the data from factors such as the current flow (affecting the data signal to noise ratio and potentially impacting the effectiveness of the noise attenuation systems) and tidal stage (affecting the water depth), directivity effects due to directional differences of sound propagation characteristics, directivity effects due to the placement of the pile derrick barge relative to the sound receivers, and source variability. These factors could not always be controlled. A few data anomalies were noted, described in the text that follows, and these were excluded from analyses where they lead to misleading or non-precautionary interpretation of the results.

Dredging activities were ongoing at the Port during the Test Pile Program. At most times the dredge was sufficiently separated from the acoustic recorders that its noise did not interfere with the recordings of pile driving sounds. However, dredging noise did dominate the recordings at AMAR-1KM during vibratory hammer installation of Pile IP3 at Location 1 (Figure 48 and Figure 49). The levels from AMAR-1KM were thus excluded from the TL regression for vibratory piling of Pile IP3 (Figure 79) since they were not representative of the pile driving sounds.

Pile driving impulses received at AMAR-1KM during hydraulic hammer impact installation of pile IP3 were reduced in amplitude compared to measurements at AMAR-1KM for the other piles. It is possible that this a directional propagation effect since the position of AMAR-1KM for IP3 was inside the dredge disposal zone where newly deposited sediments in the dredge disposal area could have resulted in increased sound attenuation or shielding by a pile of disposed sediment. The dredge was active in the area at this time and dumped sediments in the dredge disposal area (within a few hundred meters of AMAR-1KM) immediately prior to this measurement. This was the only time that AMAR-1KM was placed in the dredge disposal area. The IP3 impulses received at AMAR-1KM were lower in amplitude and of longer duration compared to the same impulses received at AMAR-DRIFT at a similar, though slightly further, range from IP3 (Figure 92). Following the hypothesis that a sound propagation directivity effect causes this difference in levels, two separate TL regressions were conducted for impact pile driving of IP3; the first using data from AMAR-10M and AMAR-DRIFT and the second using data from AMAR-10M and AMAR-1KM (Figure 66 and Figure 67). The TL coefficient for the propagation toward AMAR-DRIFT, generally to the south of IP3, was 13; it was 16.6 for the propagation path to AMAR-1KM inside the dredge disposal area. A regression of received level versus range including data recorded simultaneously on all three recorders yielded a poor fit to the data, with a TL coefficient of 14.4 (Figure 93).

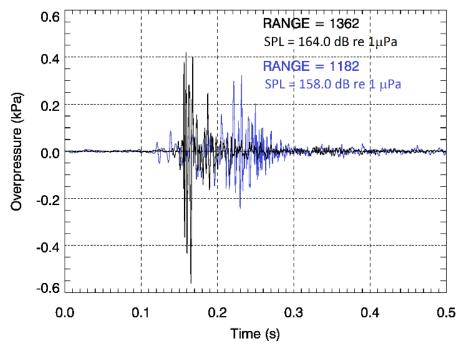



Figure 92 IP3: Waveform for a single hydraulic impact hammer impulse received at AMAR-1KM (blue) and AMAR-DRIFT (black).

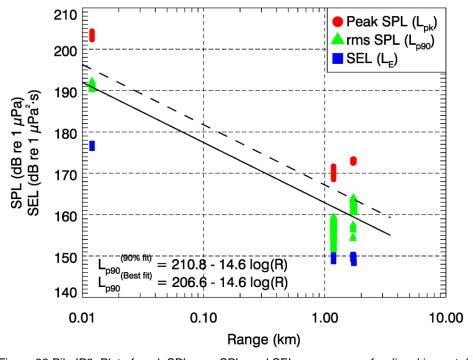



Figure 93 Pile IP3: Plot of peak SPL, rms SPL, and SEL versus range for diesel impact driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th percent measured levels. Levels included in this plot are from data that were recorded simultaneously on both AMARs and the drifting system.



Underwater sound levels recorded 1008 m from Pile IP4 at Location 1 were also strongly attenuated in comparison to levels recorded on AMAR-1KM for the other piles. This was due to the placement of AMAR-1KM for IP4, which was unintentionally shielded from the pile by an outcropping of the shoreline (Figure B-7); sound recorded on AMAR-1KM for Pile IP4 was attenuated by ground propagation. This land-shielding propagation effect also impacted the data collected on AMAR-DRIFT during diesel impact hammer installation of IP4, but drifts during hydraulic impact hammer and vibratory installation were further south and did not experience this attenuation effect. These drift data could therefore not be combined with the AMAR-1KM data for the TL regressions. As a result, the AMAR-1KM data were excluded from the TL regression for hydraulic impact hammer and vibratory hammer installation of IP4 (Figure 68 and Figure 80). Data from both AMAR-1KM and AMAR-DRIFT were used in the TL regression for diesel impact hammer installation of IP4 since both recorders were north of the land-shadow boundary, thus experienced the same propagation effects. The resulting TL coefficient for IP4 diesel impact hammer installation is only valid north of the land-shadow boundary for Location 1 and is not representative for sound that propagates directly through the water. It is not believed that this landshadow effect attenuated the impact hammer pile driving levels discussed above for IP3 (also at Location 1) because AMAR-1KM was not placed within the land-shadow boundary for IP3 (Figure B-5).

Pile IP6 was the only indicator pile which had a bearing plate installed inside the pile. The presence of the bearing plate did not result in underwater sound levels that differed significantly from those generated by any of the other piles, considering the variability among piles. The median near-source level for diesel hammer installation of Pile IP6 with bubble curtain attenuation was approximately 3 dB greater than the median near-source level for diesel hammer installation of Pile IP7 with bubble curtain attenuation but no bearing plate. This is no greater than the variability between the median near-source levels for two piles without bearing plates. Namely, hydraulic impact hammer installation with bubble curtain attenuation of Piles IP3 and IP10, which differed by 4 dB. Furthermore, the pulse waveforms, spectral density curves, and spectrograms for IP6 resembled those of similar piles that did not have a bearing plate.

Pile IP6 was also unique in the type of noise attenuation methodology used. The confined bubble curtain was installed for IP6 but, unlike any other piles, air flow to the bubble curtain was turned on and off throughout piling. During vibratory pile driving the bubble curtain air flow was reduced by 50% for the final 15 minutes of operation and during the last stages of impact pile driving the bubble curtain was turned on and off at 10 min intervals. This is evident in the sound pressure level time history for impact pile driving, particularly for recordings at AMAR-10M (Figure 31). Impact hammer data for IP6 were split between times when the bubble curtain was On and Off and the two data sets were treated separately when computing TL regressions and summary statistics. The median received rms SPL at AMAR-10M when the bubble curtain was on was 3 dB less than that received when the bubble curtain was off. The vibratory pile driving data for IP6 was treated as a single representation of bubble curtain-attenuated pile driving. Although sound levels at the end of the vibratory pile driving record for IP6 did increase, this is believed to be unrelated to the bubble curtain. JASCO scientists on the acoustic monitoring vessel noted increased sound levels both underwater and in the air during this time, believed to be from vibration of the pile against the template or bubble curtain sheath. Air flow to the bubble curtain was reduced at 07:15 but the dramatic increase of sound levels occurred three minutes later. The data received after 07:18 were processed separately from the rest of the vibratory data for pile IP6. The median received level at 10m range was 164.0 dB re 1 μPa prior to 07:18 and it was 185.3 dB re 1 μPa after 07:18, a level that far exceeded any of the other recorded vibratory sounds. The reason for this 20 dB increase of sound levels at the end of vibratory installation of IP6 is unknown.

The final pile with anomalous results requiring discussion is data from AMAR-1KM for Pile IP10. The levels at AMAR-1KM were elevated relative to the AMAR-1KM measurements of the other piles and relative to the trend of the levels between AMAR-10M and AMAR-DRIFT for the same pile. A regression of the vibratory pile driving received sound level versus range, including data from AMAR-10M and AMAR-1KM, yielded a TL coefficient of only 8.7 (Figure 94, left), which is less sound attenuation compared to that for other piles over similar distances. A regression plot including data from all three recorders yielded a TL coefficient of only 11.8 for vibratory pile driving and did not fit the data well (Figure 94, right). The AMAR-10M data were consistent with bubble curtain attenuated levels for other piles (within expected variability) so the shallow slope of the TL curve is not expected to be due to an issue with the levels at AMAR-10M. Background sound levels recorded between impulses on AMAR-1KM were

comparable to those recorded for other piles, indicating that this is also not an issue relating to recorder calibration or sensitivity. The AMAR-1KM data were deemed anomalous in this case and were excluded from the final TL coefficient regressions for this reason (Figure 76 and Figure 87). This resulted in TL coefficient values for pile IP10 that were consistent with those for similar piles (Section 4.4, Figure 101).

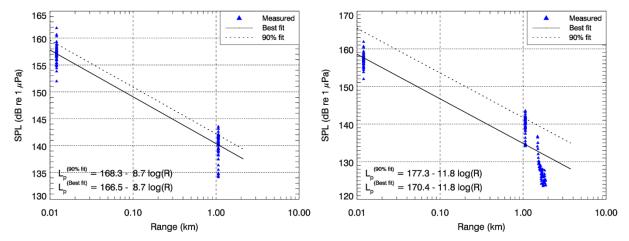



Figure 94 Pile IP10: Plot of rms SPL versus range for vibratory driving. The solid line shows best-fit transmission loss curve to rms SPL data. The dashed line is the best-fit curve shifted up to the 90th measured levels. Levels included in the left plot were recorded on AMAR-10M and AMAR-1KM, those in the plot on the right are from data recorded simultaneously on all three recording systems.

## 4.2. Underwater Ambient Noise Measurements

The unweighted, median ambient sound level was 117 dB re 1  $\mu$ Pa at the Ambient-Dock location and it was 122 dB re 1  $\mu$ Pa at the Ambient-Offshore location. Mean ambient levels were higher (138 and 136 dB re 1  $\mu$ Pa at the Ambient-Dock and Ambient-Offshore locations, respectively) owing to a few shorter-duration and higher-amplitude sound events that might not represent nominal ambient conditions.

During the first day of ambient recordings, high sound levels with tonal structure were attributed to dredging noise at the north end of the Port. There were also periodic bursts of elevated sound levels at frequencies between 10 Hz and 100 Hz at Ambient-Dock likely caused by flow noise or system noise generated during maximum current flow. The few brief peaks of broadband, high amplitude sounds noted concurrently on each AMAR might be attributable to tug activities associated with the arrival of the cruise ship or other normal vessel activities at the Port. The dominant sound sources, dredging and tug activities, occur throughout the recording. There was no diurnal trend in the ambient sound environment.

## 4.3. Near-Source Levels

Computed median received sound levels at 10 m range (broadband, rms SPL) will be referred to here as 'near-source levels'. Near-source levels varied between 187 and 202 dB re 1  $\mu$ Pa for impact pile driving, depending on whether the hammer used was hydraulic or diesel and on the noise attenuating system (NAS) application. Median near-source levels for vibratory pile driving also depended on NAS application and ranged between 155 and 169 dB re 1  $\mu$ Pa (Figure 95).

Un-attenuated piles were driven using the hydraulic (IP1) and diesel (IP5) impact hammers, in addition to which there were times during diesel impact hammer installation of IP6 when the bubble curtain was turned off. These data served as controls against which the NAS effectiveness could be compared. Correspondingly, there were two un-attenuated vibratory pile driving data points as controls (IP1 and IP5). Un-attenuated, diesel impact hammer, near-source levels for IP5 were 4 dB greater than those for IP6 with the bubble curtain off, which may indicate that some bubbles were still escaping from the bubble



curtain when it was deemed to be 'off' during installation of pile IP6 and that may not have been truly representative of un-attenuated levels. The un-attenuated near-source level for the hydraulic impact hammer was 3.2 dB greater than that for the truly un-attenuated diesel impact hammer and 7.2 dB greater than the diesel impact hammer for IP6 when the bubble curtain was deemed to be turned off.

For all hammer types, near-source levels were consistently lower with a NAS applied compared to the unattenuated levels. The single exception to this is the vibratory pile driving event for IP6 that yielded nearsource levels that exceeded all other vibratory results by 20 dB; that data point is excluded from the discussion that follows. For the hydraulic impact hammer, near-source levels decreased by 6.0 to 6.7 dB when the passive resonator was applied and by 10.2 to 14.9 dB using the air bubble curtain. The nearsource levels for the diesel impact hammer decreased by 1.7 to 10.3 dB with the passive resonator and by 7.4 and 10.3 dB with the bubble curtain, comparing against truly un-attenuated levels from IP5. The confined bubble curtain NAS decreased near-source levels by only 3.4 and 6.3 dB compared against levels for IP6 when the bubble curtain was turned off; this is further indication that not all bubbles were completely eliminated when the bubble curtain was turned off intermittently during installation of IP6. Near-source levels for the vibratory hammer decreased by between 1.2 and 14.5 dB with the passive resonator and between 3.4 and 13.1 dB with the bubble curtain. Thus, the bubble curtain NAS consistently provided more attenuation of the near-source levels than the passive resonator NAS did for the hydraulic impact hammer, though the two NAS performed similarly for near-source level attenuation of the diesel impact and vibratory hammers. For the diesel impact hammer and the vibratory hammer, the achieved attenuation was more variable for the passive resonator system compared to the bubble curtain system, though the opposite was true for the hydraulic impact hammer.




Figure 95. Median received level at 10 m range for impact and vibratory pile driving hammers versus noise attenuation method.

To aid an investigation of variability of the near-source levels owing to location differences, Figure 96 is a plot of received level at 10 m as a function of pile location, grouped by hammer type and NAS. Hydraulic impact hammer levels plotted with like symbols (i.e. with the same NAS application) were within 5 dB across location. The same is true for the diesel impact hammer levels with the bubble curtain NAS but the values differed by 7.7 dB when the passive resonator NAS was applied. Received levels for the vibratory

hammer plotted with like symbols were more variable across location. Vibratory hammer near-source levels varied across location by as much as 8.4 dB with the bubble curtain NAS. The variability across locations was 7.7 dB with the passive resonator NAS, and near-source levels for vibratory installation of two piles using the passive resonator NAS at location 6 differed by 12 dB. These results indicate that the passive resonator NAS was variably effective for the diesel impact and vibratory hammers but more consistently effective for the hydraulic impact hammer. Near-source levels of the two examples of unattenuated vibratory hammer installation differed by 1.3 dB.

There are two impact hammer data points for IP4 at Location 1; one with the diesel impact hammer and passive resonator NAS, the other with the hydraulic impact hammer and passive resonator NAS. The median near-source levels for these data points differ by 4.6 dB, with the hydraulic impact hammer yielding the larger value. Near-source levels for installation with the passive resonator NAS and the hydraulic impact hammer exceeded those for the diesel impact hammer by between 3.9 and 7.4 dB across all locations. The one exception was diesel hammer installation of IP9 at Location 6 (with passive resonator NAS) which exceeded the hydraulic hammer examples by 1.1 and 1.8 dB. Given that the unattenuated near-source level for the hydraulic impact hammer was 3.2 dB greater than that for the diesel impact hammer, these results indicate that the passive resonator NAS was generally more effective at reducing near-source levels of the diesel impact hammer than of the hydraulic impact hammer, though not always.

Similar comparisons can be made of the effectiveness of the bubble curtain NAS for the hydraulic versus the diesel impact hammer. Near-source levels for installation with the bubble curtain NAS and the hydraulic impact hammer exceeded those for the diesel impact hammer by between 0.2 and 3.3 dB, and near-source levels for the diesel hammer installation of IP10 at Location 6 exceeded those for the hydraulic hammer examples (all with bubble curtain NAS) by 4.2 and 4.6 dB. Given that the un-attenuated near-source level for the hydraulic impact hammer was 3.2 dB greater than that for the diesel impact hammer, these results indicate that the bubble curtain NAS more effectively reduced near-source levels of the hydraulic impact hammer than of the diesel impact hammer.

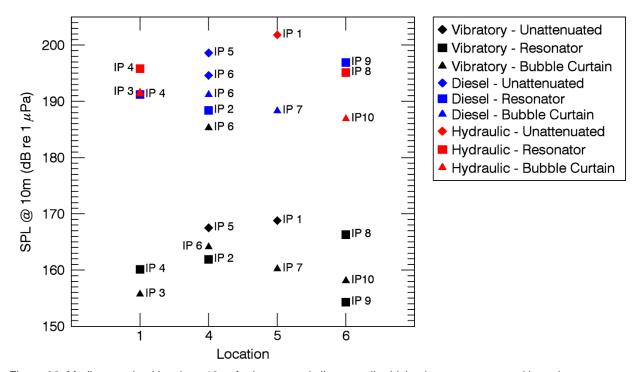



Figure 96. Median received levels at 10 m for impact and vibratory pile driving hammers, grouped by noise attenuation method, as a function of pile location.



Examination of the frequency content of the impulses for the diesel and hydraulic impact hammers aids an understanding of the relative NAS effectiveness for these hammer types. Figure 97 is a plot of the median 1/3-octave band received levels from AMAR-10M for un-attenuated impulses from the hydraulic and diesel impact hammers. Band levels for the hydraulic impact hammer exceeded those for the diesel hammer at frequencies greater than 550 Hz, the opposite was true at frequencies below 550 Hz. The hydraulic impact hammer had dominant sound energy at frequencies between 600 and 1000 Hz, whereas the diesel impact hammer had dominant sound energy between 100 and 500 Hz. This supports the assertions made above regarding the relative effectiveness of the passive resonator NAS for the diesel and hydraulic impact hammers; because the passive resonator NAS is designed to attenuate sound at frequencies near 100 Hz the passive resonator NAS was more effective for attenuating the dominant frequencies of the diesel impact hammer than for those of the hydraulic impact hammer. The air bubble curtain NAS was expected to be effective over a broader range of frequencies and was thus more effective at attenuating the dominant frequencies of the hydraulic impact hammer compared to the passive resonator NAS.

A comparison of the 1/3-octave band received levels for the un-attenuated diesel impact hammer and those using the passive resonator NAS and the air bubble curtain NAS (Figure 98) indicates graphically that the passive resonator attenuated sound most strongly at frequencies between 100 and 300 Hz, whereas the air bubble curtain NAS attenuated sounds more evenly across frequencies. The data included were limited to the subset of piles at Locations 4 and 5. This subset attempts to control for any effects that may be due to the location of the piles. Figure 99 shows the same comparison for the hydraulic impact hammer at Locations 5 & 6. For the hydraulic impact hammer, the air bubble curtain NAS attenuated sound levels the most at frequencies greater than 300 Hz.

Un-attenuated near-source levels for vibratory pile driving contained dominant sound energy at frequencies between 20 and 1000 Hz. As discussed above for the impact hammers, the air bubble curtain NAS attenuated sound energy over a broader range of frequencies compared to the passive resonator NAS, as seen by comparison of plots of the 1/3-octave band received levels for vibratory pile driving of piles IP2, IP5, and IP7 at Locations 4 and 5 (Figure 100). In this example, the passive resonator NAS attenuated sound at frequencies between 100 and 600 Hz by as much as 15 dB but did not appreciably attenuate sound outside of this frequency range that contributed importantly to the broadband levels. The bubble curtain NAS attenuated sounds more evenly across frequencies.

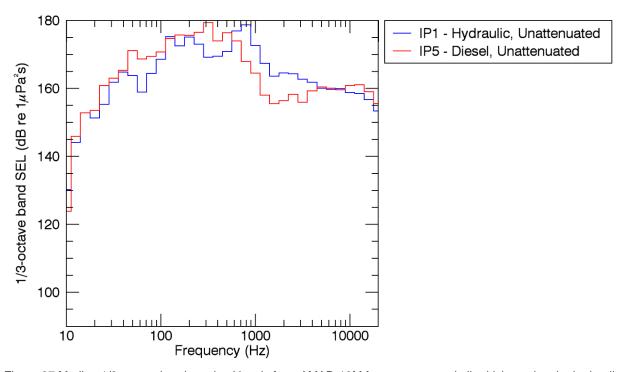



Figure 97 Median 1/3-octave band received levels from AMAR-10M for un-attenuated pile driving using the hydraulic impact hammer (blue) and the diesel impact hammer (red).

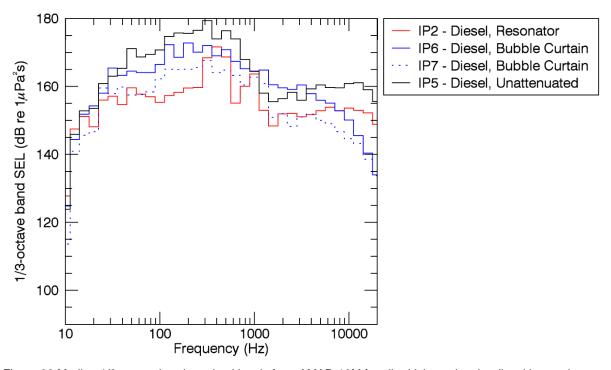



Figure 98 Median 1/3-octave band received levels from AMAR-10M for pile driving using the diesel impact hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black).

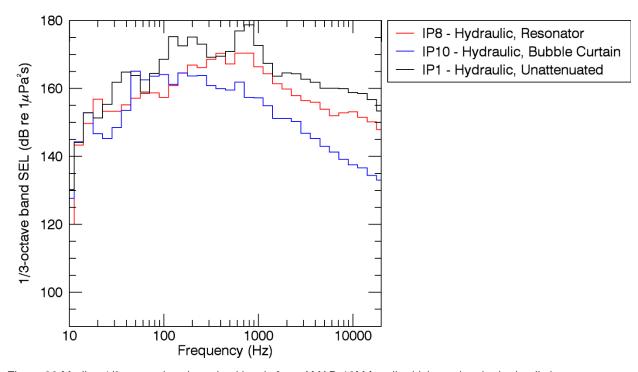



Figure 99 Median 1/3-octave band received levels from AMAR-10M for pile driving using the hydraulic impact hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black).

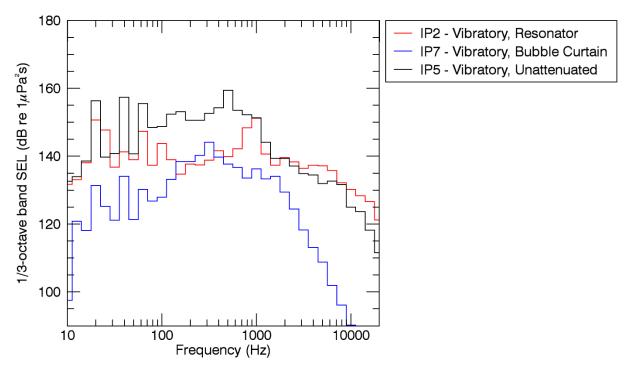



Figure 100 Median 1/3-octave band received levels from AMAR-10M for pile driving using the vibratory hammer with the passive resonator NAS (red), with the air bubble curtain NAS (blue) and un-attenuated (black).



## 4.4. Transmission Loss

Computed TL coefficients varied between piles with values ranging from 13 to 20.6 for impact pile driving and from 12.6 to 17.9 for vibratory pile driving. This variability was somewhat reduced when the results were grouped by hammer model and NAS (Figure 101). The remaining variability is partially due to differences of pile locations (discussed below) and partially due to experimental variability discussed in Section 4.1. Note that the data point for IP4 (diesel impact hammer with passive resonator NAS) corresponds to the ground-attenuated results discussed in Section 4.1 and is considered to be distinct from the other data points and is excluded from the plot.

TL is a frequency-dependent phenomenon, and the frequency content of underwater sounds from pile driving varies with hammer type. Therefore, the TL coefficient is expected to vary with hammer type. Because the application of a NAS also alters the frequency content of the pile driving sounds, the TL coefficient also varies with NAS application. In this section it is demonstrated that the derived TL coefficients were consistent for piles that were installed using the same hammer and the same NAS, at the same location. This provides confidence in the methodology used to derive the TL coefficients, and the subsequent calculations of the distances to the marine mammal thresholds.

Results for the un-attenuated hydraulic impact hammer yielded the highest TL coefficient, 19.2, indicating that sounds from the hydraulic impact hammer decayed most rapidly with range compared to the other hammers. This could be because the hydraulic impact hammer contains more sound energy at higher frequencies, which decay more rapidly with range compared to lower frequencies. Results for the diesel impact hammer were consistent over IP5 and IP6 with values of 17.4 and 17.5 respectively. Sounds from the vibratory hammer had the lowest TL coefficient, with values of 16.1 and 16.9.

TL coefficients consistently decreased when a NAS was applied compared to the un-attenuated results, except for the one event from the final stages of vibratory pile driving of IP6 that has been considered distinct from the other data points, as described previously. This is in part because the frequency content of the signals changed by the NAS, but also because both types of NAS only attenuated in-water sound levels and some sound propagated directly from the pile into the seafloor un-attenuated. This unattenuated sound propagated through the seafloor then refracted into the water column at longer ranges. Thus each NAS attenuated the near-source sound levels, dominated by water-borne propagation paths, more strongly than the long-range sound levels, resulting in an apparent decrease of the rate of sound level decay between AMAR-10M and AMAR-1KM.

For the hydraulic impact hammer and bubble curtain NAS, there were two results for IP3 from separate consideration of the propagation path toward AMAR-1KM from that toward AMAR-DRIFT. The path toward AMAR-1KM yielded a greater value for the TL coefficient due to an effect from the newly deposited dredge disposal near that location. The path toward AMAR-DRIFT yielded a TL coefficient of 13 that was consistent with the value of 13.2 for the other example of hydraulic impact pile driving with bubble curtain attenuation, IP10. The two examples for diesel impact pile driving with bubble curtain attenuation (IP7 and IP6) also yielded consistent TL coefficients (greater than those for the hydraulic impact hammer) of 16.4 and 16.1. TL coefficients for bubble curtain attenuated vibratory pile driving were more variable, although the piles were installed at different locations. Derived TL coefficients for diesel impact hammer installation using the passive resonator NAS were similar, with values of 13.4 (IP2) and 14 (IP9), for different pile locations. The TL coefficients for hydraulic impact hammer installation with passive resonator NAS were very different (14.9 for IP8 and 17.7 for IP4) but these data were collected at opposite ends of the Port, at locations 6 and 1, respectively. Vibratory pile driving with passive resonator NAS yielded TL coefficients of 14.7, 15.5, 15.9, 16.1; again these corresponded to piles at different locations. Derived TL coefficients for un-attenuated pile driving (from data collected at locations close to one another) were consistent when grouped by hammer type.

TL coefficient variability with pile location was examined by plotting the derived TL coefficients for each NAS as a function of pile location (Figure 102 through Figure 104 for the hydraulic impact, diesel impact and vibratory hammers respectively). The TL coefficients for each type of NAS were relatively consistent across locations for the diesel impact hammer, they were more variable across location for the hydraulic impact hammer (for which the data were collected at locations more widely separated compared to the diesel impact hammer locations) and varied considerably across location for the vibratory hammer.

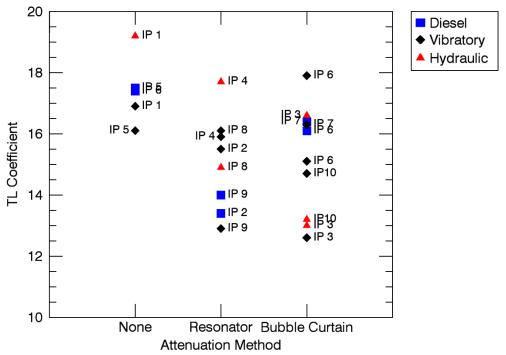



Figure 101. Transmission loss coefficient as a function of noise attenuation method for each hammer type.

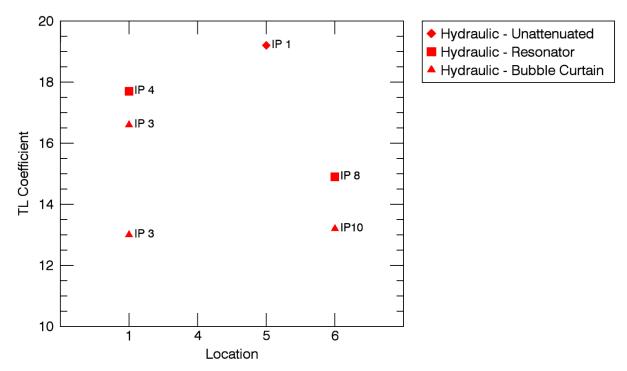



Figure 102 Transmission Loss coefficient as a function of pile location for the hydraulic impact hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and un-attenuated (diamonds).

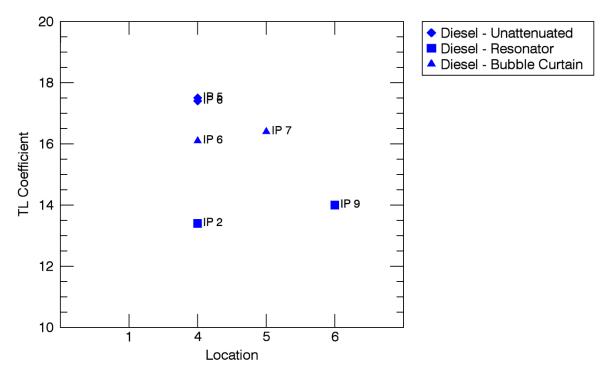



Figure 103 Transmission Loss coefficient as a function of pile location for the diesel impact hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and un-attenuated (diamonds).

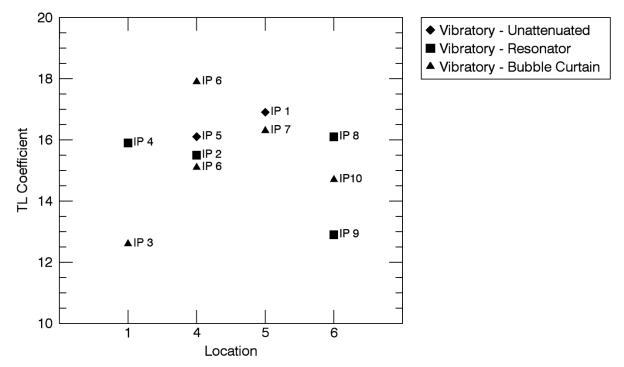



Figure 104 Transmission Loss coefficient as a function of pile location for the vibratory hammer and with the passive resonator NAS (squares), bubble curtain NAS (triangles) and un-attenuated (diamonds).

## 4.5. Sound Threshold Distances

The median distance to the marine mammal threshold of 160 dB re 1  $\mu$ Pa rms SPL for impact pile driving varied over all piles between 800 and 4340 m. The upper end of that range of distances is comprised of estimates extrapolated beyond the maximum ranges of measurement; there is uncertainty associated with the extrapolated distances and they are assumed to overestimate the true distances. The maximum distance to the 160 dB threshold that was actually measured (i.e. excluding values based on data extrapolations) was 2280 m. For vibratory pile driving, the median distance to the marine mammal impact threshold used for this project of 125 dB re 1  $\mu$ Pa rms SPL varied between 1440 m and 4340 m (measured, not extrapolated). The median distance to 120 dB re 1  $\mu$ Pa for vibratory pile driving varied between 2920 and 8880 m based on extrapolated data (we were not able to reliably measure the distance to 120 dB re 1  $\mu$ Pa during this study due to background noise).

There was no clear correlation between sound threshold distance and the applied NAS, plotted as a function of location (Figure 105 through Figure 109), for any of the hammers. This implies that, although both noise attenuation systems reduced the source sound levels appreciably, the long range received sound levels likely contained sufficient contributions of bottom propagating sound energy that is not attenuated by the NAS, i.e. that the attenuation of the waterborne sound levels did not result in an appreciable decrease in the sound threshold distances. In fact, there are some instances where the distances to the marine mammal thresholds are shorter for un-attenuated pile driving with a given hammer type when compared to a pile with NAS application at a different location.

Trends in the marine mammal threshold distances are difficult to quantify because of the inherent uncertainty of the computed threshold distances. Even a small amount of variability of the source sound levels and derived TL coefficients leads to large differences in the marine mammal impact thresholds. For example, the median range to the 160 dB re 1  $\mu$ Pa threshold was 864 m for pile IP6 and 532 m for pile IP7, both examples of diesel impact hammer pile driving with bubble curtain NAS. The derived TL coefficients for these piles were relatively consistent, with values of 16.1 and 16.4, and the near-source levels agreed within 2.9 dB. This results in wide variability of the computed distances over piles.

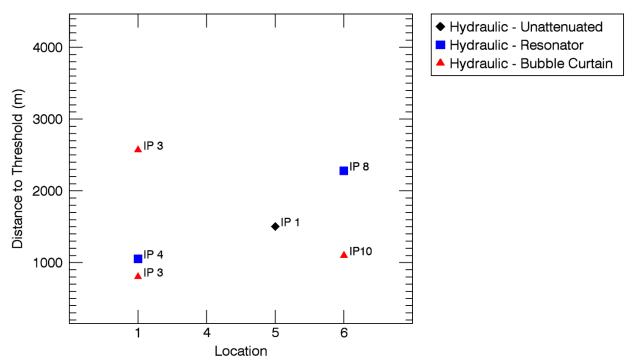



Figure 105. Distance to marine mammal threshold of 160 dB re 1  $\mu$ Pa for hydraulic impact hammer pile driving as a function of pile location.

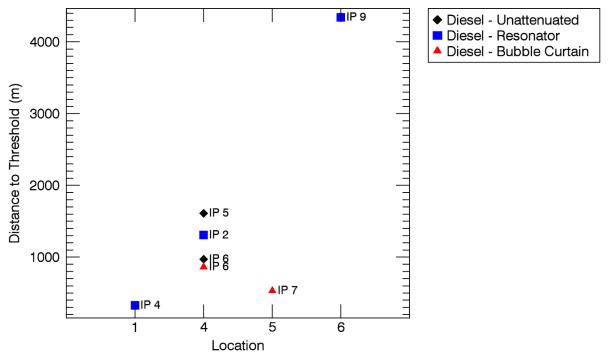



Figure 106. Distance to marine mammal threshold of 160 dB re 1  $\mu$ Pa for diesel impact hammer pile driving as a function of pile location.

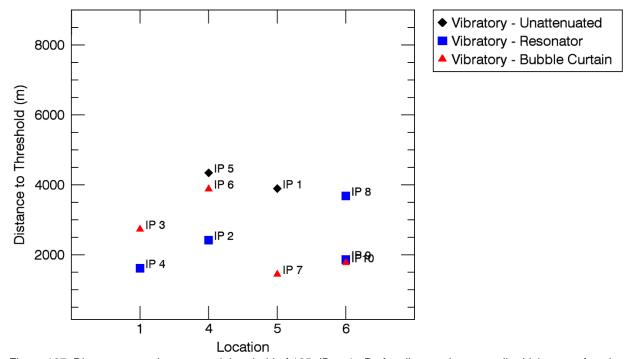



Figure 107. Distance to marine mammal threshold of 125 dB re 1  $\mu$ Pa for vibratory hammer pile driving as a function of pile location.

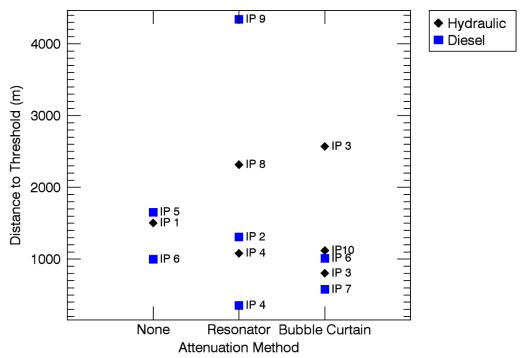



Figure 108. Distance to marine mammal threshold of 160 dB re 1  $\mu$ Pa for hydraulic and diesel impact hammer pile driving as a function of NAS application. Data points derived from measurement extrapolations (IP3 (~2500 m) and IP9) are included for reference.

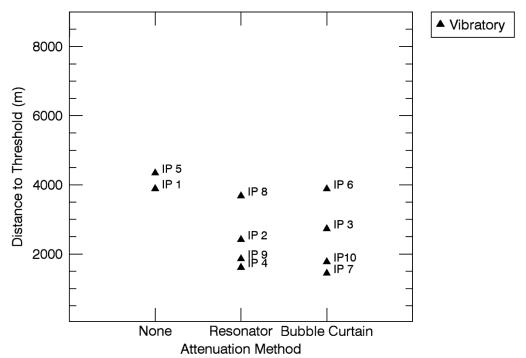



Figure 109. Distance to marine mammal threshold of 125 dB re 1  $\mu$ Pa for vibratory hammer pile driving as a function of NAS application. Data points derived from measurement extrapolations (IP1, IP6, IP8, IP9) are included.



# 4.6. Comparison of Hammer Types and of Noise Attenuation Systems

Median received levels at 10 m range (here called near-source levels) were greatest for the hydraulic impact hammer with an average un-attenuated value of 201.8 dB re 1  $\mu$ Pa, it was 198.6 dB re 1  $\mu$ Pa for the diesel impact hammer and 168.2 dB re 1  $\mu$ Pa for the vibratory hammer. The average near-source level when the passive resonator NAS was applied was 195.5 for the hydraulic impact hammer, 192.2 dB re 1  $\mu$ Pa for the diesel impact hammer and 160.7 dB re 1  $\mu$ Pa for the vibratory hammer. When the bubble curtain NAS was applied the average near-source levels were 190.0, 189.7 and 159.5 for the hydraulic impact, diesel impact, and vibratory hammers, respectively. This information is summarized in Table 16.

Near-source levels for un-attenuated pile driving exceeded those for pile driving events with NAS applied for each hammer type. On average, the bubble curtain reduced near-source levels more than the passive resonator NAS did. This trend was most strongly observed for the hydraulic impact hammer; the sound attenuation achieved by the passive resonator NAS and the bubble curtain NAS was more similar for the diesel impact hammer and was very similar for the vibratory hammer. When the bubble curtain was applied, median near-source levels of the hydraulic impact hammer decreased by 12 dB on average, compared to an average 6 dB reduction of the hydraulic hammer near-source level when the passive resonator was applied. The bubble curtain decreased the diesel impact hammer near-source levels by an average of 9 dB, the reduction was 6 dB on average when the passive resonator was applied. The bubble curtain and passive resonator both decreased the near-source level for vibratory pile driving by nearly the same average amount, 9 and 8 dB respectively. This information is summarized in Table 17.

Excluding data points derived from measurement extrapolations, grouping by hammer type and NAS, and then averaging over location, NAS application generally resulted in a reduction of the distance to the marine mammal thresholds for both vibratory and impact pile driving (Table 18). Long-range received levels were not independent of the near-source levels. The transmission loss estimates accounted for the difference in source levels and range from the pile at the recorders. The transmission loss combined with the near-source levels were used to determine the range to marine mammal thresholds. The range to threshold reduces the variability from source level, NAS, and transmission loss to one value.



Table 16. Median received levels at 10m for impact and vibratory pile driving, averaged over n available data samples.

rms Sound Pressure Level at 10 m Range (dB re 1 μPa)				
	Un-attenuated	Passive Resonator NAS	Bubble Curtain NAS	
Hydraulic Impact Hammer	201.8 (n=1)	195.5 (n=2)	190.0 (n=3)	
Diesel Impact Hammer	198.6 (n=1)	192.2 (n=3)	189.7 (n=2)	
Vibratory Hammer	168.2 (n=2)	160.7 (n=4)	159.5 (n=4)	

Table 17. Reduction of the median received levels at 10m for impact and vibratory pile driving compared to the unattenuated values, averaged over n available data samples.

	Average Reduction (dB)				
	Passive Resonator NAS	Bubble Curtain NAS			
Hydraulic Impact Hammer	6 (n=2)	12 (n=3)			
Diesel Impact Hammer	6 (n=3)	9 (n=2)			
Vibratory Hammer	8 (n=4)	9 (n=4)			

Table 18. Median range to marine mammal threshold of 160 dB re 1  $\mu$ Pa for impact pile driving and 125 dB re 1  $\mu$ Pa for vibratory pile driving, averaged over n data samples, excluding data from extrapolation of measured levels.

Range to marine mammal threshold (m)					
	Un-attenuated	Passive Resonator NAS	Bubble Curtain NAS		
Hydraulic Impact Hammer	1504 (n=1)	1053 (n=1)	1100 (n=1)		
Diesel Impact Hammer	1291 (n=1)	1306 (n=1)	698 (n=2)		
Vibratory Hammer	3883 (n=1)	2417 (n=2)	1983 (n=3)		



# 5. Acknowledgements

We thankfully acknowledge the captain and crew of the M/V *My Marie* (operated by Sundog Charters) for their skillful assistance with the AMAR deployments and retrievals and support during drifting measurements. Robert Mills of JASCO Applied Sciences also helped collect field data.



# **Glossary**

#### 1/3-octave band

Non-overlapping passbands that are one-third of an octave wide (where an octave is a doubling of frequency). Three adjacent 1/3-octave bands make up one octave. One-third-octave-bands become wider with increasing frequency. See also octave.

#### 90%-energy time window

The time interval over which the cumulative energy rises from 5% to 95% of the total pulse energy. This interval contains 90% of the total pulse energy. Symbol:  $T_{90}$ .

## 90% root-mean-square sound pressure level (90% rms SPL)

The root-mean-square sound pressure levels calculated over the 90%-energy time window of a pulse. Used only for pulsed sounds.

#### ambient noise

All-encompassing sound at a given place, usually a composite of sound from many sources near and far (ANSI S1.1-1994 R2004), e.g., shipping vessels, seismic activity, precipitation, sea ice movement, wave action, and biological activity.

#### attenuation

The gradual loss of acoustic energy from absorption and scattering as sound propagates through a medium.

#### background noise

Total of all sources of interference in a system used for the production, detection, measurement, or recording of a signal, independent of the presence of the signal (ANSI S1.1-1994 R2004). Ambient noise detected, measured, or recorded with a signal is part of the background noise.

#### broadband sound level

The total sound pressure level measured over a specified frequency range. If the frequency range is unspecified, it refers to the entire measured frequency range.

### cetacean

Any animal in the order Cetacea. These are aquatic, mostly marine mammals and include whales, dolphins, and porpoises.

#### continuous sound

A sound whose sound pressure level remains above ambient sound during the observation period (ANSI/ASA S1.13-2005 R2010). A sound that gradually varies in intensity with time, for example, sound from a vibratory pile driver.

#### decibel (dB)

One-tenth of a bel. Unit of level when the base of the logarithm is the tenth root of ten, and the quantities concerned are proportional to power (ANSI S1.1-1994 R2004).

## frequency

The rate of oscillation of a periodic function measured in cycles-per-unit-time. The reciprocal of the period. Unit: hertz (Hz). Symbol: f. 1 Hz is equal to 1 cycle per second.



#### functional hearing group

Grouping of marine mammal species with similar hearing ranges. Commonly defined functional hearing groups include low-, mid-, and high-frequency cetaceans, pinnipeds in water, and pinnipeds in air.

#### geoacoustic

Relating to the acoustic properties of the seabed.

#### **Global Positioning System (GPS)**

A satellite based navigation system providing accurate worldwide location and time information.

#### hertz (Hz)

A unit of frequency defined as one cycle per second.

#### high-frequency cetacean (HFC)

The functional hearing group that represents odontocetes specialized for using high frequencies.

#### hydrophone

An underwater sound pressure transducer. A passive electronic device for recording or listening to underwater sound.

#### impulsive sound

Sound that is typically brief and intermittent with rapid (within a few seconds) rise time and decay back to ambient levels (NOAA 2013, ANSI S12.7-1986 R2006). For example, impact pile driving.

#### low-frequency cetacean (LFC)

The functional hearing group that represents mysticetes (baleen whales).

#### median

The 50th percentile of a statistical distribution.

#### mid-frequency cetacean (MFC)

The functional hearing group that represents some odontocetes (dolphins, toothed whales, beaked whales, and bottlenose whales).

#### M-weighting

The process of band-pass filtering loud sounds to reduce the importance of inaudible or less-audible frequencies for broad classes of marine mammals. "Generalized frequency weightings for various functional hearing groups of marine mammals, allowing for their functional bandwidths and appropriate in characterizing auditory effects of strong sounds" (Southall et al. 2007).

#### mysticete

Mysticeti, a suborder of cetaceans, use their baleen plates, rather than teeth, to filter food from water. They are not known to echolocate, but use sound for communication. Members of this group include rorquals (Balaenopteridae), right whales (Balaenidae), and the gray whale (*Eschrichtius robustus*).

#### non-impulsive sound

Sound that is broadband, narrowband or tonal, brief or prolonged, continuous or intermittent, and typically does not have a high peak pressure with rapid rise time (typically only small fluctuations in decibel level) that impulsive signals have (ANSI/ASA S3.20-1995 R2008). For example, vibratory pile driving (NIOSH 1998, NOAA 2015).

#### octave

The interval between a sound and another sound with double or half the frequency. For example, one octave above 200 Hz is 400 Hz, and one octave below 200 Hz is 100 Hz.



#### odontocete

The presence of teeth, rather than baleen, characterizes these whales. Members of the Odontoceti are a suborder of cetaceans, a group comprised of whales, dolphins, and porpoises. The toothed whales' skulls are mostly asymmetric, an adaptation for their echolocation. This group includes sperm whales, killer whales, belugas, narwhals, dolphins, and porpoises.

### peak sound pressure level (peak SPL)

The maximum instantaneous sound pressure level, in a stated frequency band, within a stated period. Also called zero-to-peak sound pressure level. Unit: decibel (dB).

### peak-to-peak sound pressure level (peak-to-peak SPL)

The difference between the maximum and minimum instantaneous sound pressure levels. Unit: decibel (dB).

#### percentile level, exceedance

The sound level exceeded n% of the time during a measurement.

#### permanent threshold shift (PTS)

A permanent loss of hearing sensitivity caused by excessive noise exposure. PTS is considered auditory injury.

#### pinniped

A common term used to describe all three groups that form the superfamily Pinnipedia: phocids (true seals or earless seals), otariids (eared seals or fur seals and sea lions), and walrus.

#### power spectrum density

The acoustic signal power per unit frequency as measured at a single frequency. Unit:  $\mu Pa^2/Hz$ , or  $\mu Pa^2 \cdot s$ .

### power spectral density level

The decibel level ( $10log_{10}$ ) of the power spectrum density, usually presented in 1 Hz bins. Unit: dB re  $1 \mu Pa^2/Hz$ .

#### pressure, acoustic

The deviation from the ambient hydrostatic pressure caused by a sound wave. Also called overpressure. Unit: pascal (Pa). Symbol: *p*.

### pressure, hydrostatic

The pressure at any given depth in a static liquid that is the result of the weight of the liquid acting on a unit area at that depth, plus any pressure acting on the surface of the liquid. Unit: pascal (Pa).

#### received level

The sound level measured at a receiver.

#### rms

root-mean-square.

## rms sound pressure level (rms SPL)

The root-mean-square average of the instantaneous sound pressure as measured over some specified time interval. See also sound pressure level (SPL) and 90% rms SPL.

#### sound

A time-varying pressure disturbance generated by mechanical vibration waves travelling through a fluid medium such as air or water.



#### sound exposure

Time integral of squared, instantaneous frequency-weighted sound pressure over a stated time interval or event. Unit: pascal-squared second (Pa²·s) (ANSI S1.1-1994 R2004).

#### sound exposure level (SEL)

A measure related to the sound energy in one or more pulses. Unit: dB re 1 μPa²·s.

#### sound pressure level (SPL)

The decibel ratio of the time-mean-square sound pressure, in a stated frequency band, to the square of the reference sound pressure (ANSI S1.1-1994 R2004).

For sound in water, the reference sound pressure is one micropascal ( $p_0 = 1 \mu Pa$ ) and the unit for SPL is dB re 1  $\mu Pa$ :

$$SPL = 10\log_{10}(p^2/p_0^2) = 20\log_{10}(p/p_0)$$

Unless otherwise stated, SPL refers to the root-mean-square sound pressure level (rms SPL).

## source level (SL)

The sound pressure level measured 1 meter from a theoretical point source that radiates the same total sound power as the actual source. Unit: dB re 1  $\mu$ Pa @ 1 m.

#### spectrogram

A visual representation of acoustic amplitude compared with time and frequency.

#### spectrum

An acoustic signal represented in terms of its power (or energy) distribution compared with frequency.

## temporary threshold shift (TTS)

Temporary loss of hearing sensitivity caused by excessive noise exposure.

#### transmission loss (TL)

The decibel reduction in sound level between two stated points that results from sound spreading away from an acoustic source subject to the influence of the surrounding environment. Also called propagation loss.



# **Acronyms**

AMAR - Autonomous Multichannel Acoustic Recorder

CFM - cubic feet per minute

FFT - fast Fourier transform

HFC - high frequency cetacean

IP - indicator pile

LFC - low frequency cetacean

MFC - high frequency cetacean

NAS - noise attenuation system

NMFS - National Marine Fisheries Service

PPW - pinnipeds in water

RL - received level

RMS - root-mean-square

SEL - sound exposure level

SL - source level

SPL - sound pressure level

ssSEL - single-strike sound exposure level

TK - Teager-Kaiser

TL - transmission loss



# **Literature Cited**

- [NIOSH] National Institute for Occupational Safety and Health. 1998. *Criteria for a recommended standard: Occupational noise exposure*. Document Number 98-126. U.S. Department of Health and Human Services, NIOSH, Cincinnati, Ohio. 122 pp.
- [NOAA] National Oceanic and Atmospheric Administration. 2013. *Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals: Acoustic Threshold Levels for Onset of Permanent and Temporary Threshold Shifts*, December 2013, 76 pp. Silver Spring, Maryland: NMFS Office of Protected Resources. http://www.nmfs.noaa.gov/pr/acoustics/draft_acoustic_guidance_2013.pdf.
- [NOAA] National Oceanic and Atmospheric Administration. 2015. Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Threshold Levels for Onset of Permanent and Temporary Threshold Shifts, July 2015, 180 pp. Silver Spring, Maryland: NMFS Office of Protected Resources. <a href="http://www.nmfs.noaa.gov/pr/acoustics/draft%20acoustic%20guidance%20July%202015.pdf">http://www.nmfs.noaa.gov/pr/acoustics/draft%20acoustic%20guidance%20July%202015.pdf</a>.
- NMFS] National Marine Fisheries Service. 2016. Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Threshold Levels for Onset Permanent and Temporary Threshold Shifts. U.S. Department of Commerce, NOAA. NOAA Technical Memorandum NMFS-OPR-55. 178 pp. <a href="http://www.nmfs.noaa.gov/pr/acoustics/Acoustic%20Guidance%20Files/opr-55">http://www.nmfs.noaa.gov/pr/acoustics/Acoustic%20Guidance%20Files/opr-55</a> acoustic guidance tech memo.pdf.
- ANSI S12.7-1986. R2006. American National Standard Methods for Measurements of Impulsive Noise. American National Standards Institute, New York.
- ANSI S1.1-1994. R2004. *American National Standard Acoustical Terminology*. American National Standards Institute, New York.
- ANSI/ASA S1.13-2005. R2010. American National Standard Measurement of Sound Pressure Levels in Air. American National Standards Institute and Acoustical Society of America, New York.
- ANSI/ASA S3.20-1995. R2008. *American National Standard Bioacoustical Terminology*. American National Standards Institute and Acoustical Society of America, New York.
- Babushina, Y.S., G.L. Zaslavskii, and L.I. Yurkevich. 1991. Air and underwater hearing characteristics of the northern fur seal: Audiograms, frequency and differential thresholds. *Biophysics* 39: 900-913.
- Finneran, J.J. and C.E. Schlundt. 2010. Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (*Tursiops truncatus*). *Journal of the Acoustical Society of America* 128(2): 567-570.
- Finneran, J.J. and A.K. Jenkins. 2012. *Criteria and thresholds for U.S. Navy acoustic and explosive effects analysis*. SPAWAR Systems Center Pacific, San Diego, California.
- Kastak, D. and R.J. Schusterman. 1998. Low-frequency amphibious hearing in pinnipeds: Methods, measurements, noise, and ecology. *Journal of the Acoustical Society of America* 103: 2216-2228.
- Kastelein, R.A., R. van Schie, W.C. Verboom, and D. de Haan. 2005. Underwater hearing sensitivity of a male and a female Steller sea lion (*Eumetopias jubatus*). *Journal of the Acoustical Society of America* 118(3): 1820-1829. http://link.aip.org/link/?JAS/118/1820/1.



- Lucke, K., U. Siebert, P. Lepper, A., and M.-A. Blanchet. 2009. Temporary shift in masked hearing thresholds in a harbor porpoise (*Phocoena phocoena*) after exposure to seismic airgun stimuli. *Journal of the Acoustical Society of America* 125(6): 4060-4070.
- Moore, P.W.B. and R.J. Schusterman. 1987. Audiometric assessment of northern fur seals, *Callorhinus ursinus*. *Marine Mammal Science* 3: 31-53.
- Mulsow, J. and C. Reichmuth. 2007. Electrophysiological assessment of temporal resolution in pinnipeds. *Aquatic Mammals* 33: 122-131.
- Mulsow, J., J.J. Finneran, and D.S. Houser. 2011a. California sea lion (*Zalophus californianus*) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods. *Journal of the Acoustical Society of America* 129: 2298-2306.
- Mulsow, J., C. Reichmuth, F.M.D. Gulland, D.A.S. Rosen, and J.J. Finneran. 2011b. Aerial audiograms of several California sea lions (*Zalophus californianus*) and Steller sea lions (*Eumetopias jubatus*)
- Nedwell, J.R. and A.W. Turnpenny. 1998. The use of a generic frequency weighting scale in estimating environmental effect. *Workshop on Seismics and Marine Mammals*. 23–25th June 1998, London, U.K.
- Nedwell, J.R., A.W.H. Turnpenny, J. Lovell, S.J. Parvin, R. Workman, and J.A.L. Spinks. 2007. *A validation of the dB_{ht} as a measure of the behavioural and auditory effects of underwater noise*. Report No. 534R1231 prepared by Subacoustech Ltd. for the UK Department of Business, Enterprise and Regulatory Reform under Project No. RDCZ/011/0004. www.subacoustech.com/information/downloads/reports/534R1231.pdf.
- Schusterman, R.J., R.F. Balliet, and J. Nixon. 1972. Underwater audiogram of the California sea lion by the conditioned vocalization technique. *Journal of the Experimental Analysis of Behavior* 17: 339-350.
- Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene, Jr., D. Kastak, D.R. Ketten, J.H. Miller, et al. 2007. Marine mammal noise exposure criteria: Initial scientific recommendations. *Aquatic Mammals* 33(4): 411-521.
- Wood, J., B.L. Southall, and D.J. Tollit. 2012. *PG&E offshore 3 D Seismic Survey Project EIR-Marine Mammal Technical Draft Report*. SMRU Ltd.



# **Appendix A. Activity Logs**

# A.1. IP1 Activity Logs

# A.1.1. Log of JASCO Activities for IP1

Date (UTC)	Time (UTC)	Activity
2016-Jun-06	23:47	Calibrated AMAR 1 km
2016-Jun-07	00:35	Deployed AMAR 1 km
2016-Jun-06	23:41	Calibrated AMAR 10 m
2016-Jun-07	N/A	Deployed AMAR 10 m
2016-Jun-07	17:05	Calibrated drift system
2016-Jun-07	17:28	Drift recording of vibro piling
2016-Jun-07	19:37	Drift recording of impact piling
2016-Jun-07	21:08	Calibrated drift system
2016-Jun-07	21:22	Retrieved AMAR 1 km
2016-Jun-07	21:53	Retrieved AMAR 10 m
2016-Jun-07	22:21	Calibrated AMAR 1
2016-Jun-07	22:26	Calibrated AMAR 2

# A.1.2. Log of Pile Driving Activities for IP1

Date (UTC)	Time (UTC)	Activity
2016-Jun-07	17:34	Soft start of vibratory driving of IP1
2016-Jun-07	17:39	Vibratory driving of IP1
2016-Jun-07	18:11	Finished vibratory driving of IP1
2016-Jun-07	19:39	Soft start of impact driving of IP1
2016-Jun-07	19:44	Impact driving of IP1
2016-Jun-07	N/A	Attaching sensors
2016-Jun-07	20:57	Re-start impact driving of IP1
2016-Jun-07	21:02	Finished impact driving of IP1

Version 3.0 A-1



### A.2. IP2 Activity Logs

### A.2.1. Log of JASCO Activities for IP2

Date (UTC)	Time (UTC)	Activity
2016-May-18	13:49	Calibrated AMAR 1 km
2016-May-18	14:44	Deployed AMAR 1 km
2016-May-19	13:50	Calibrated AMAR 10 m
2016-May-19	14:12	Deployed AMAR 10 m
2016-May-19	15:34	Calibrated drift system
2016-May-19	16:04	Drift recording of vibro piling
2016-May-19	18:28	Drift recording of impact piling
2016-May-19	19:51	Calibrated drift system
2016-May-19	20:11	Retrieved AMAR 1 km
2016-May-19	20:35	Retrieved AMAR 10 m
2016-May-19	21:16	Calibrated AMAR 2
2016-May-19	21:23	Calibrated AMAR 1

### A.2.2. Log of Pile Driving Activities for IP2

Date (UTC)	Time (UTC)	Activity
2016-May-19	16:04	Soft start of vibratory driving of IP2
2016-May-19	16:23	Vibratory driving of IP2
2016-May-19	17:02	Finished vibratory driving of IP2
2016-May-19	18:28	Soft start of impact driving of IP2
2016-May-19	18:38	Impact driving of IP2
2016-May-19	18:43	Attaching sensors
2016-May-19	19:09	Re-start impact driving of IP2
2016-May-19	19:41	Finished impact driving of IP2



### A.3. IP3 Activity Logs

### A.3.1. Log of JASCO Activities for IP3

Date (UTC)	Time (UTC)	Activity
2016-Jun-02	21:08	Calibrated AMAR 1 km
2016-Jun-03	00:51	Deployed AMAR 1 km
2016-Jun-02	21:01	Calibrated AMAR 10 m
2016-Jun-03	00:21	Deployed AMAR 10 m
2016-Jun-03	14:23	Calibrated drift system
2016-Jun-03	15:21	Drift recording of vibro piling
2016-Jun-03	17:40	Drift recording of impact piling
2016-Jun-03	22:02	Calibrated drift system
2016-Jun-03	22:16	Retrieved AMAR 1 km
2016-Jun-03	22:50	Retrieved AMAR 10 m
2016-Jun-03	23:25	Calibrated AMAR 2
2016-Jun-03	23:05	Calibrated AMAR 1

### A.3.2. Log of Pile Driving Activities for IP3

Date (UTC)	Time (UTC)	Activity
2016-Jun-03	15:32	Soft start of vibratory driving of IP3
2016-Jun-03	15:44	Vibratory driving of IP3
2016-Jun-03	16:08	Finished vibratory driving of IP3
2016-Jun-03	18:25	Soft start of impact driving of IP3
2016-Jun-03	18:36	Impact driving of IP3
2016-Jun-03	21:36	Adjusting sensors
2016-Jun-03	21:46	Re-start impact driving of IP3
2016-Jun-03	22:02	Finished impact driving of IP3



### A.4. IP4 Activity Logs

### A.4.1. Log of JASCO Activities for IP4

Date (UTC)	Time (UTC)	Activity
2016-May-11	21:43	Calibrated AMAR 1 km
2016-May-11	22:24	Deployed AMAR 1 km
2016-May-11	21:21	Calibrated AMAR 10 m
2016-May-11	22:59	Deployed AMAR 10 m
2016-May-12	N/A	Calibrated drift system
2016-May-12	19:42	Drift recording of vibro piling
2016-May-12	22:57	Drift recording of impact piling
2016-May-13	01:00	Calibrated drift system
2016-May-13	14:58	Calibrated drift system
2016-May-13	15:37	Drift recording of impact piling
2016-May-13	16:49	Calibrated drift system
2016-May-14	15:57	Retrieved AMAR 1 km
2016-May-13	17:07	Retrieved AMAR 10 m
2016-May-13	18:00	Calibrated AMAR 2
2016-May-14	23:03	Calibrated AMAR 1

### A.4.2. Log of Pile Driving Activities for IP4

Date (UTC)	Time (UTC)	Activity
2016-May-12	19:54	Soft start of vibratory driving of IP4
2016-May-12	20:11	Vibratory driving of IP4
2016-May-12	20:25	Finished vibratory driving of IP4
2016-May-12	22:57	Soft start of impact driving of IP4
2016-May-12	23:01	Impact driving of IP4
2016-May-13	00:02	Re-start impact driving of IP4
2016-May-13	00:10	Finished impact driving of IP4
2016-May-13	15:40	Soft start of impact driving of IP4
2016-May-13	15:48	Impact driving of IP4
2016-May-13	16:34	Finished impact driving of IP4



### A.5. IP5 Activity Logs

### A.5.1. Log of JASCO Activities for IP5

Date (UTC)	Time (UTC)	Activity
2016-May-18	13:49	Calibrated AMAR 1 km
2016-May-18	14:36	Deployed AMAR 1 km
2016-May-18	13:41	Calibrated AMAR 10 m
2016-May-18	15:16	Deployed AMAR 10 m
2016-May-18	15:45	Calibrated drift system
2016-May-18	16:06	Drift recording of vibro piling
2016-May-18	19:18	Drift recording of impact piling
2016-May-18	20:34	Calibrated drift system
2016-May-19	20:11	Retrieved AMAR 1 km
2016-May-18	20:51	Retrieved AMAR 10 m
2016-May-18	21:21	Calibrated AMAR 2
2016-May-19	21:23	Calibrated AMAR 1

### A.5.2. Log of Pile Driving Activities for IP5

Date (UTC)	Time (UTC)	Activity
2016-May-18	16:40	Soft start of vibratory driving of IP5
2016-May-18	17:05	Vibratory driving of IP5
2016-May-18	17:18	Finished vibratory driving of IP5
2016-May-18	19:20	Soft start of impact driving of IP5
2016-May-18	19:29	Impact driving of IP5
2016-May-18	N/A	Attaching sensors
2016-May-18	20:08	Re-start impact driving of IP5
2016-May-18	20:31	Finished impact driving of IP5



### A.6. IP6 Activity Logs

### A.6.1. Log of JASCO Activities for IP6

Date (UTC)	Time (UTC)	Activity
2016-Jun-01	00:13	Calibrated AMAR 1 km
2016-Jun-01	01:34	Deployed AMAR 1 km
2016-Jun-01	00:19	Calibrated AMAR 10 m
2016-Jun-01	00:48	Deployed AMAR 10 m
2016-Jun-01	12:36	Calibrated drift system
2016-Jun-01	14:37	Drift recording of vibro piling
2016-Jun-01	17:05	Drift recording of impact piling
2016-Jun-01	18:38	Calibrated drift system
2016-Jun-01	18:51	Retrieved AMAR 1 km
2016-Jun-01	19:15	Retrieved AMAR 10 m
2016-Jun-01	19:52	Calibrated AMAR 2
2016-Jun-01	19:37	Calibrated AMAR 1

# A.6.2. Log of Pile Driving Activities for IP6

Date (UTC)	Time (UTC)	Activity
2016-Jun-01	14:57	Soft start of vibratory driving of IP6
2016-Jun-01	15:00	Vibratory driving of IP6
2016-Jun-01	15:32	Finished vibratory driving of IP6
2016-Jun-01	17:08	Soft start of impact driving of IP6
2016-Jun-01	17:15	Impact driving of IP6
2016-Jun-01	17:24	Attaching sensors
2016-Jun-01	17:45	Re-start impact driving of IP6
2016-Jun-01	18:38	Finished impact driving of IP6



### A.7. IP7 Activity Logs

### A.7.1. Log of JASCO Activities for IP7

Date (UTC)	Time (UTC)	Activity
2016-May-24	23:53	Calibrated AMAR 1 km
2016-May-25	01:00	Deployed AMAR 1 km
2016-May-25	15:16	Calibrated AMAR 10 m
2016-May-25	N/A	Deployed AMAR 10 m
2016-May-25	18:30	Calibrated drift system
2016-May-25	18:35	Drift recording of vibro piling
2016-May-25	20:58	Drift recording of impact piling
2016-May-25	22:39	Calibrated drift system
2016-May-25	23:31	Retrieved AMAR 1 km
2016-May-25	23:08	Retrieved AMAR 10 m
2016-May-26	00:01	Calibrated AMAR 2
2016-May-26	00:05	Calibrated AMAR 1

### A.7.2. Log of Pile Driving Activities for IP7

Date (UTC)	Time (UTC)	Activity
2016-May-25	19:00	Soft start of vibratory driving of IP7
2016-May-25	19:09	Vibratory driving of IP7
2016-May-25	19:34	Finished vibratory driving of IP7
2016-May-25	21:31	Soft start of impact driving of IP7
2016-May-25	21:39	Impact driving of IP7
2016-May-25	22:13	Attaching sensors
2016-May-25	22:18	Re-start impact driving of IP7
2016-May-25	22:39	Finished impact driving of IP7



### A.8. IP8 Activity Logs

### A.8.1. Log of JASCO Activities for IP8

Date (UTC)	Time (UTC)	Activity						
2016-May-01	20:36	Calibrated AMAR 1 km						
2016-May-02	01:16	Deployed AMAR 1 km						
2016-May-01	19:02	Calibrated AMAR 10 m						
2016-May-02	17:56	Deployed AMAR 10 m						
2016-May-03	24:00	Calibrated drift system						
2016-May-04	00:11	Drift recording of vibro piling						
2016-May-04	03:00	Drift recording of impact piling						
2016-May-04	04:35	Calibrated drift system						
2016-May-04	20:37	Retrieved AMAR 1 km						
2016-May-04	N/A	Retrieved AMAR 10 m						
2015-May-04	06:04	Calibrated AMAR 2						
2016-May-04	22:12	Calibrated AMAR 1						

### A.8.2. Log of Pile Driving Activities for IP8

Date (UTC)	Time (UTC)	Activity
2016-May-04	00:42	Soft start of vibratory driving of IP8
2016-May-04	00:50	Vibratory driving of IP8
2016-May-04	01:03	Finished vibratory driving of IP8
2016-May-04	03:08	Soft start of impact driving of IP8
2016-May-04	03:10	Impact driving of IP8
2016-May-04	N/A	Attaching sensors
2016-May-04	03:21	Re-start impact driving of IP8
2016-May-04	04:30	Finished impact driving of IP8



### A.9. IP9 Activity Logs

### A.9.1. Log of JASCO Activities for IP9

Date (UTC)	Time (UTC)	Activity
2016-May-05	01:57	Calibrated AMAR 1 km
2016-May-05	N/A	Deployed AMAR 1 km
2016-May-05	03:01	Calibrated AMAR 10 m
2016-May-05	N/A	Deployed AMAR 10 m
2016-May-06	N/A	Calibrated drift system
2016-May-06	15:19	Drift recording of vibro piling
2016-May-07	18:47	Drift recording of impact piling
2016-May-07	19:24	Calibrated drift system
2016-May-07	20:35	Retrieved AMAR 1 km
2016-May-07	20:23	Retrieved AMAR 10 m
2016-May-07	21:42	Calibrated AMAR 2
2016-May-07	21:30	Calibrated AMAR 1

### A.9.2. Log of Pile Driving Activities for IP9

Date (UTC)	Time (UTC)	Activity
2016-May-06	15:44	Soft start of vibratory driving of IP9
2016-May-06	15:49	Vibratory driving of IP9
2016-May-06	16:18	Finished vibratory driving of IP9
2016-May-07	18:48	Soft start of impact driving of IP9
2016-May-07	18:55	Impact driving of IP9
2016-May-07	N/A	Attaching sensors
2016-May-07	19:18	Re-start impact driving of IP9
2016-May-07	19:20	Finished impact driving of IP9



### A.10. IP10 Activity Logs

### A.10.1. Log of JASCO Activities for IP10

Date (UTC)	Time (UTC)	Activity						
2016-May-26	13:43	Calibrated AMAR 1 km						
2016-May-26	14:36	Deployed AMAR 1 km						
2016-May-26	13:40	Calibrated AMAR 10 m						
2016-May-26	16:28	Deployed AMAR 10 m						
2016-May-26	18:59	Calibrated drift system						
2016-May-26	19:04	Drift recording of vibro piling						
2016-May-26	22:03	Drift recording of impact piling						
2016-May-26	23:44	Calibrated drift system						
2016-May-27	01:00	Retrieved AMAR 1 km						
2016-May-27	00:50	Retrieved AMAR 10 m						
2016-May-27	01:30	Calibrated AMAR 2						
2016-May-27	01:33	Calibrated AMAR 1						

### A.10.2. Log of Pile Driving Activities for IP10

Date (UTC)	Time (UTC)	Activity
2016-May-26	19:14	Soft start of vibratory driving of IP10
2016-May-26	19:17	Vibratory driving of IP10
2016-May-26	19:50	Finished vibratory driving of IP10
2016-May-26	22:04	Soft start of impact driving of IP10
2016-May-26	22:08	Impact driving of IP10
2016-May-26	22:17	Adjusting sensors
2016-May-26	22:43	Re-start impact driving of IP10
2016-May-26	23:37	Finished impact driving of IP10



### A.11. Ambient Measurements Activity Logs

### A.11.1. Log of JASCO Activities for Ambient Monitoring

Date (UTC)	Time (UTC)	Activity
2016-May-27	20:10	Calibrated ambient dock AMAR
2016-May-27	20:17	Calibrated ambient offshore AMAR
2016-May-27	20:50	Deployed ambient offshore AMAR
2016-May-27	21:03	Deployed ambient dock AMAR
2016-May-27	21:27	Calibrated drift system
2016-May-27	21:41	Began ambient drift recordings
2016-May-27	23:29	Finished ambient drift recordings
2016-May-30	22:29	Calibrated drift system
2016-May-30	22:34	Began ambient drift recordings
2016-May-30	23:00	Finished ambient drift recordings
2016-May-30	23:01	Calibrated drift recordings
2016-May-30	23:16	Retrieved ambient offshore AMAR
2016-May-30	23:42	Retrieved ambient dock AMAR
2016-May-31	00:00	Calibrated ambient offshore AMAR
2016-May-31	00:08	Calibrated ambient dock AMAR

# **Appendix B. Drift Measurement Distances**

#### **B.1. IP1 Drift Measurement Distances**

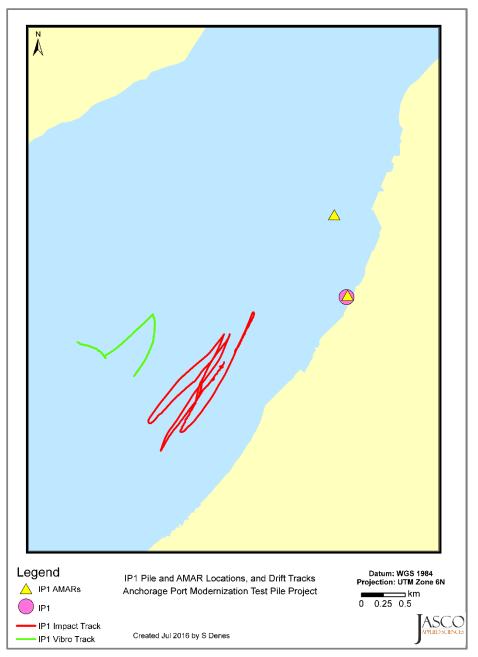



Figure B-1. Map of IP1 pile and AMAR locations, and drift tracks.

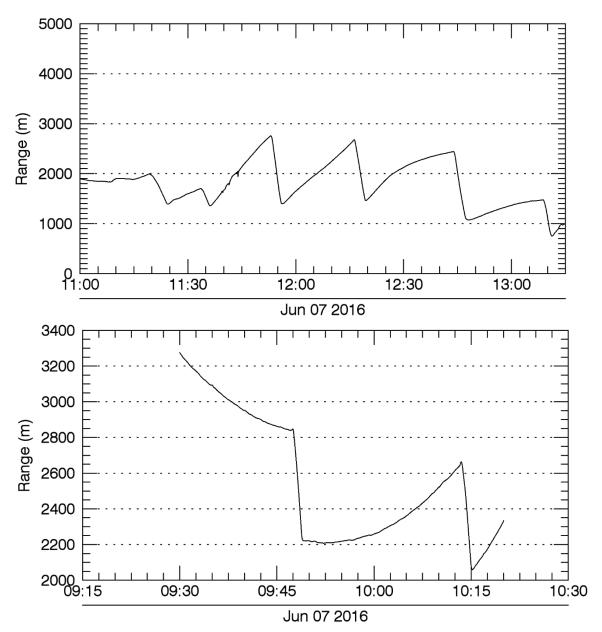



Figure B-2. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP1.

#### **B.2. IP2 Drift Measurement Distances**

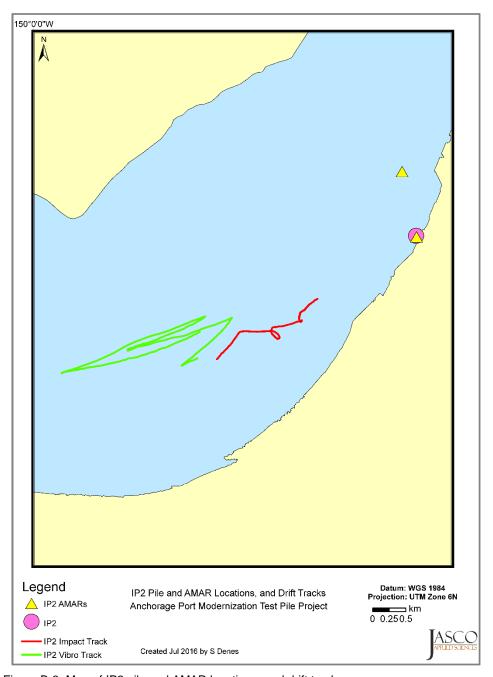



Figure B-3. Map of IP2 pile and AMAR locations, and drift tracks.

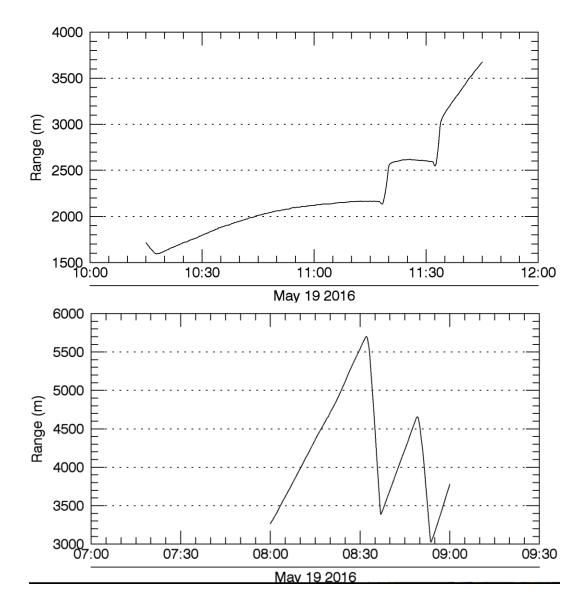



Figure B-4. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP2.

#### **B.3. IP3 Drift Measurement Distances**

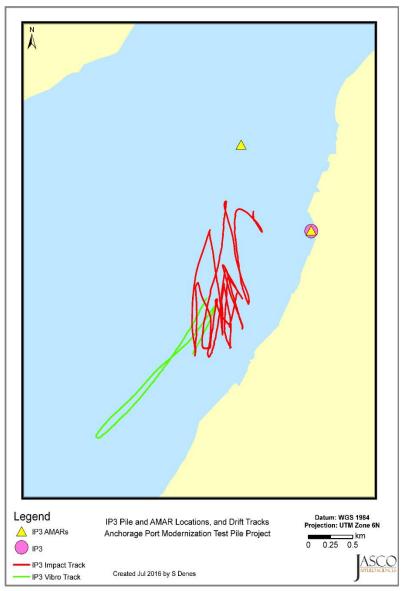



Figure B-5. Map of IP3 pile and AMAR locations, and drift tracks.

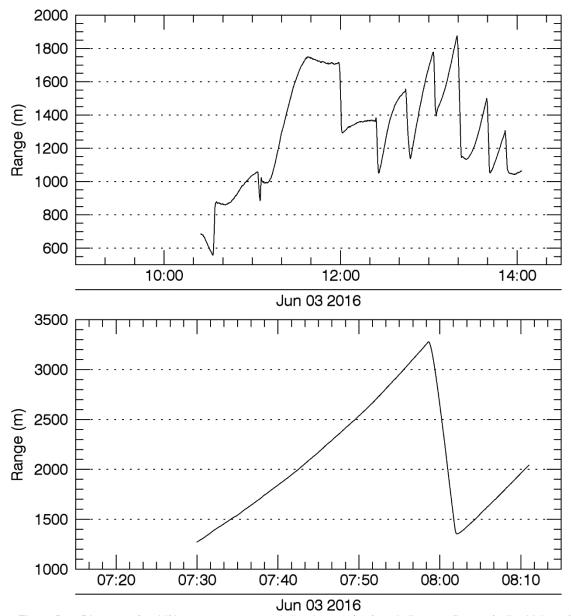



Figure B-6. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP3.

### **B.4. IP4 Drift Measurement Distances**

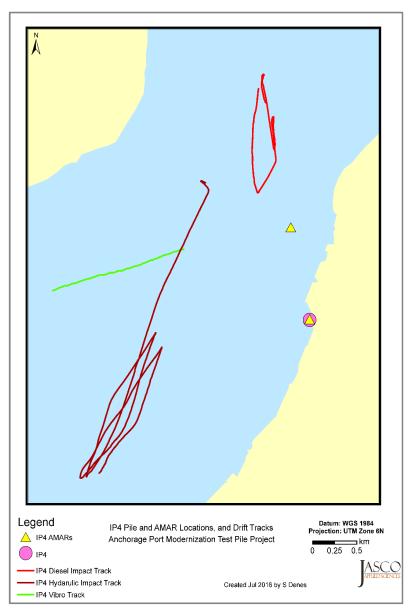



Figure B-7. Map of IP4 pile and AMAR locations, and drift tracks.

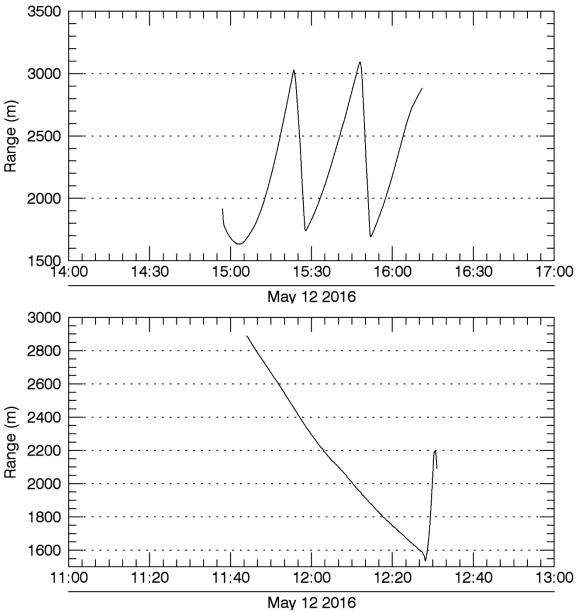



Figure B-8. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP4.



#### **B.5. IP5 Drift Measurement Distances**

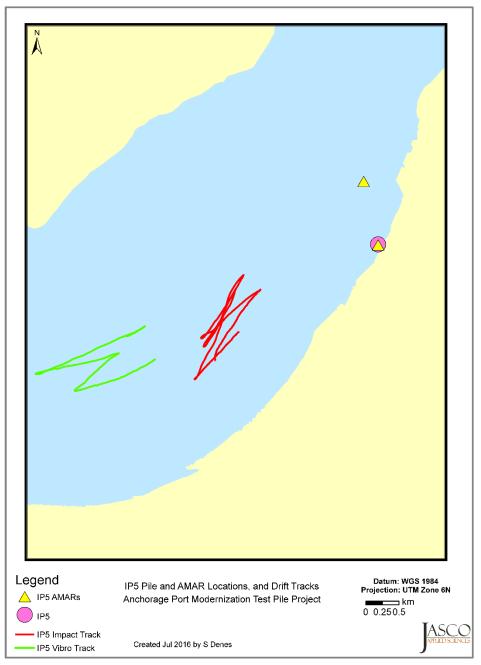



Figure B-9. Map of IP5 pile and AMAR locations, and drift tracks.

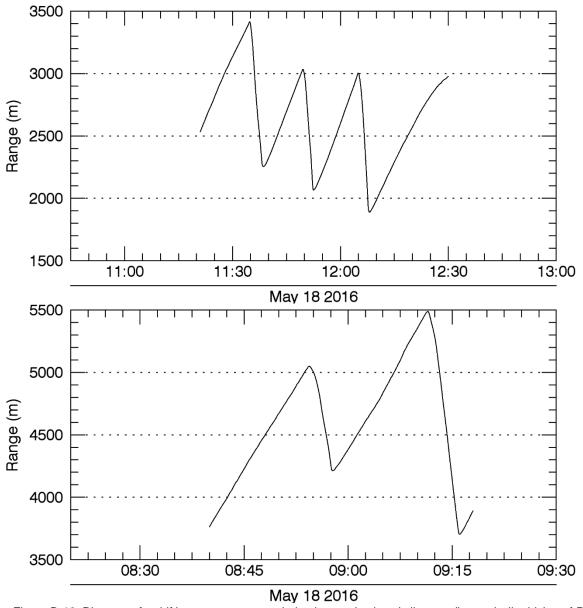



Figure B-10. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP5.



#### **B.6. IP6 Drift Measurement Distances**

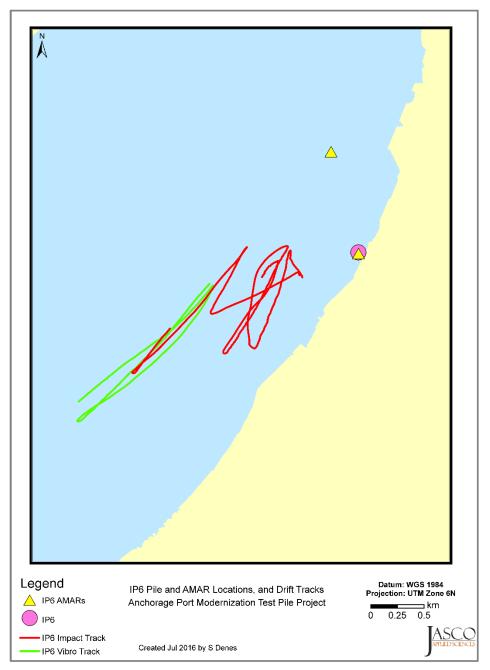



Figure B-11. Map of IP6 pile and AMAR locations, and drift tracks.

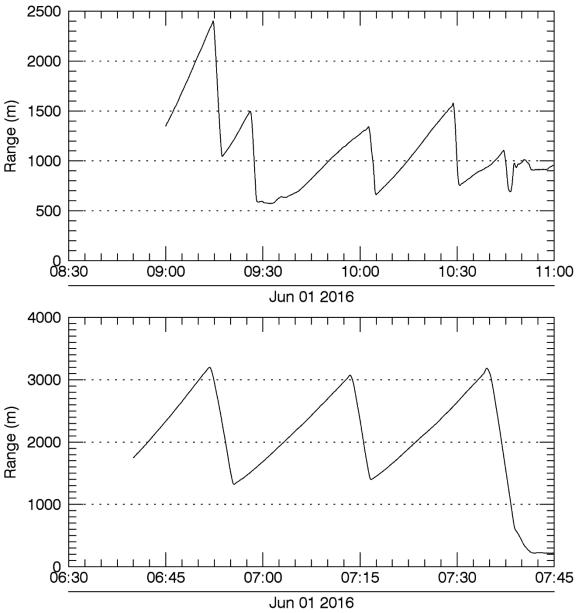



Figure B-12. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP6.

#### **B.7. IP7 Drift Measurement Distances**

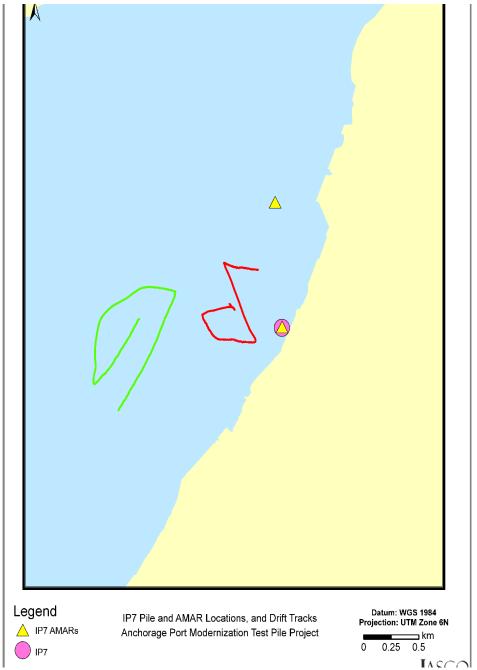



Figure B-13. Map of IP7 pile and AMAR locations, and drift tracks.

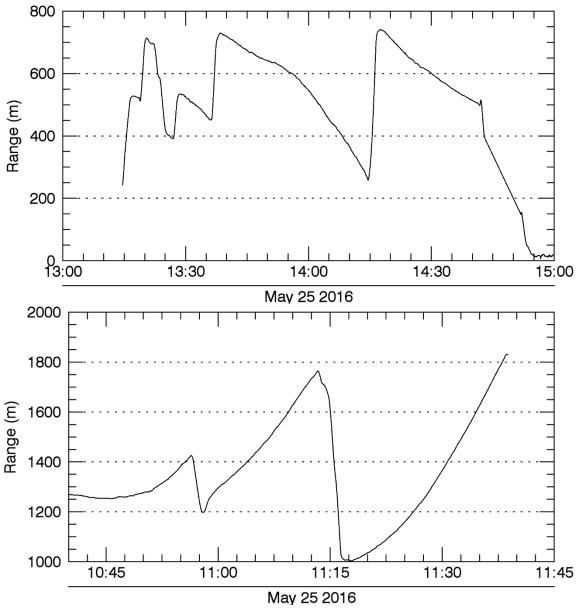



Figure B-14. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP7.



#### **B.8. IP8 Drift Measurement Distances**

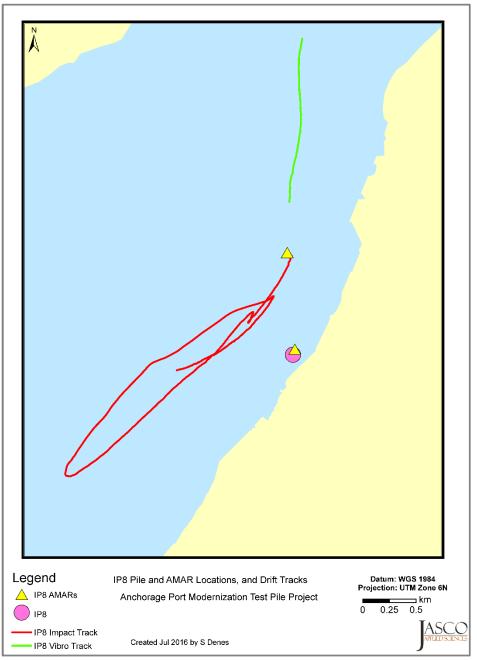



Figure B-15. Map of IP8 pile and AMAR locations, and drift tracks.

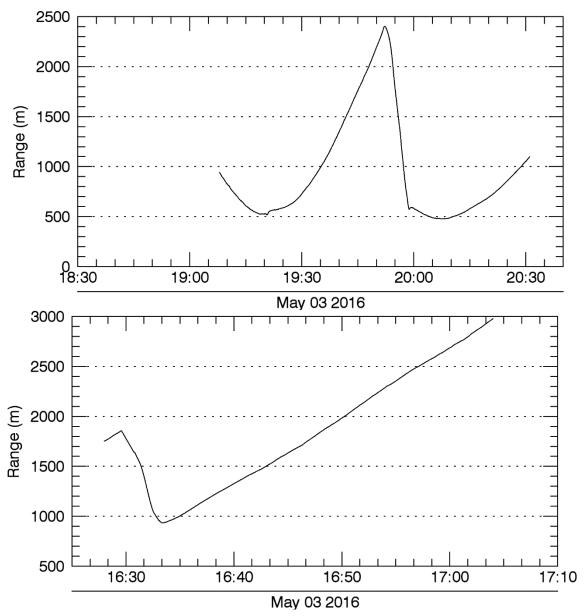



Figure 110. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP8.

#### **B.9. IP9 Drift Measurement Distances**

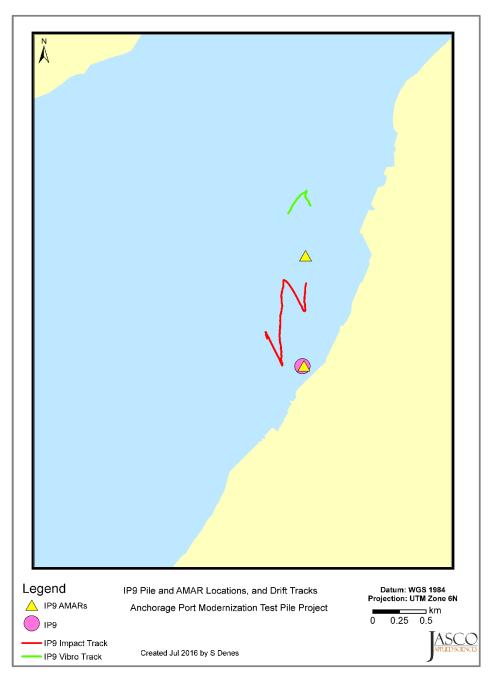



Figure B-16. Map of IP9 pile and AMAR locations, and drift tracks.

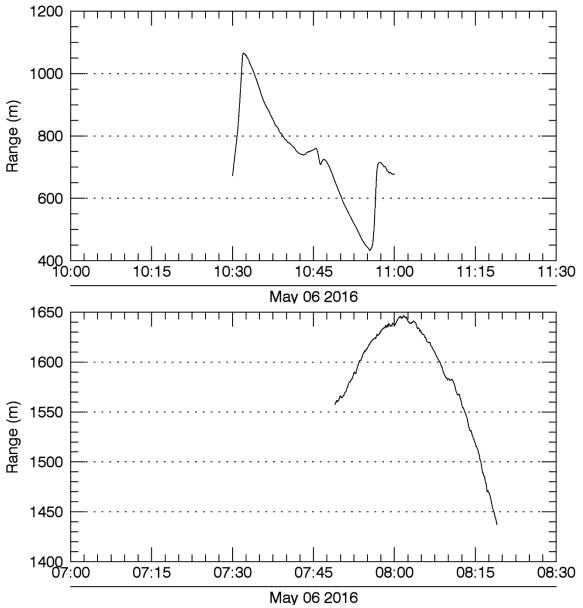



Figure B-17. Distances for drifting measurements during vibratory pile driving of Pile IP9.

#### **B.10. IP10 Drift Measurement Distances**

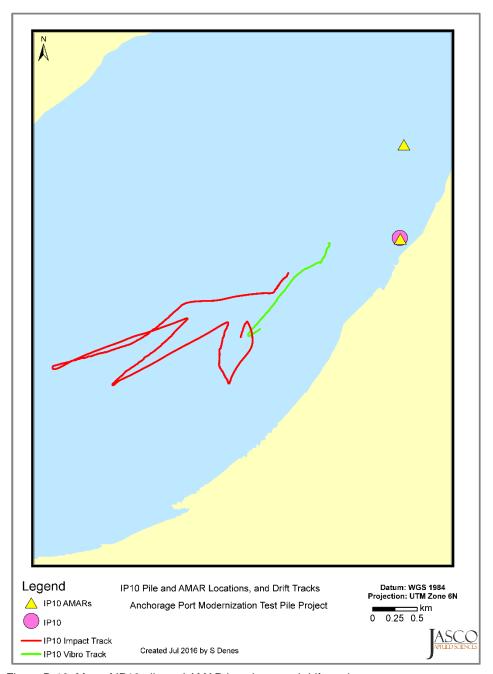



Figure B-18. Map of IP10 pile and AMAR locations, and drift tracks.

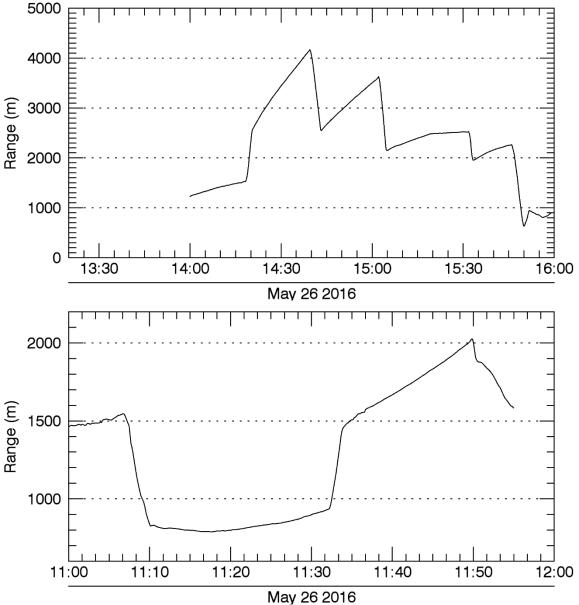



Figure B-19. Distances for drifting measurements during impact (top) and vibratory (bottom) pile driving of Pile IP10.



# **Appendix C. M-Weighted Pile Driving Statistics**

### C.1. M-weighted Impulse Statistics

#### C.1.1. SEL statistics

Table C-1. Statistics of low-frequency cetacean M-weighted single-strike SEL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound leve	el (dB re 1 µl	Pa²·s)						
AMAR-10M	MMAR-10M												
	IP1 R = 14 m n = 2153	IP2 R = 11 m n = 1504	IP3 R = 12 m n = 4801	IP4(H) R = 10 m n = 1626	IP4(D) R = 10 m n = 1218	IP5 R = 11 m n = 1213	IP6(off) R = 12 m n = 1246	IP6(on) R = 12 m n = 1087	IP7 R = 12 m n = 1427	IP8 R = 17 m n = 2000	IP9 R = 17 m n = 845	IP10 R = 12 m n = 1459	
Mean	183.6	175.4	173.9	182.6	179.3	183.9	182.6	179.5	174.4	177.7	180.2	171.2	
Median	183.6	175.0	173.5	182.4	178.3	184.4	182.6	178.7	173.5	177.7	179.9	171.0	
Max	185.1	180.7	178.6	184.6	182.8	188.0	185.4	183.2	179.1	180.0	184.0	174.1	
90th percentile	184.6	177.9	175.8	183.9	181.3	185.6	183.7	182.0	177.3	178.7	181.7	172.9	
Cumulative	216.9	207.1	210.7	214.7	210.2	214.7	213.6	209.8	206.0	210.7	209.5	202.9	
AMAR-1KM		<u> </u>	·					·	·				
	IP1 R = 959 m n = 2151	IP2 R = 943 m n = 1499	IP3 R = 1182 m n = 4721	IP4(H) R = 1008 m n = 1634	IP4(D) R = 1008 m n = 1214	IP5 R = 968 m n = 1207	IP6(off) R = 977 m n = 1248	IP6(on) R = 977 m n = 1087	IP7 R = 1013 m n = 1428	IP8 R = 960 m n = 1999	IP9 R = 1037 m n = 840	IP10 R = 1064m n = 1463	
Mean	150.0	147.9	144.8	141.3	140.3	151.7	146.9	145.9	144.6	153.5	154.7	154.9	
Median	150.1	147.1	144.8	141.0	139.5	152.4	147.0	145.8	143.7	153.4	154.3	154.7	
Max	151.8	153.5	147.0	144.2	144.3	157.6	149.0	148.7	149.8	156.1	158.1	156.5	
90th percentile	150.9	150.8	145.9	143.4	142.2	153.2	147.9	148.0	147.4	154.6	156.0	155.6	
Cumulative	183.3	179.7	181.5	173.4	171.1	182.5	177.9	176.3	176.1	186.5	183.9	186.5	



Table C-2. Statistics of mid-frequency cetacean M-weighted single-strike SEL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound leve	el (dB re 1 µ	Pa²·s)						
AMAR-10M	MAR-10M												
	IP1 R = 14 m n = 2153	IP2 R = 11 m n = 1504	IP3 R = 12 m n = 4801	IP4(H) R = 10 m n = 1626	IP4(D) R = 10 m n = 1218	IP5 R = 11 m n = 1213	IP6(off) R = 12 m n = 1246	IP6(on) R = 12 m n = 1087	IP7 R = 12 m n = 1427	IP8 R = 17 m n = 2000	IP9 R = 17 m n = 845	IP10 R = 12 m n = 1459	
Mean	164.3	158.7	146.4	160.4	161.9	165.3	163.7	157.6	152.5	157.7	159.3	147.0	
Median	154.3	158.1	145.7	160.0	161.3	165.3	163.7	156.2	150.8	157.9	157.3	144.8	
Max	166.9	164.7	151.4	163.3	168.2	169.4	167.4	162.1	160.5	160.2	164.0	155.9	
90th percentile	165.8	160.7	148.8	162.0	164.8	168.0	164.9	160.6	156.1	158.9	162.4	150.3	
Cumulative	197.6	190.5	183.2	192.5	192.7	196.1	194.6	188.0	184.1	190.7	188.6	178.6	
AMAR-1KM	<u>'</u>		'										
	IP1 R = 959 m n = 2151	IP2 R = 943 m n = 1499	IP3 R = 1182 m n = 4721	IP4(H) R = 1008 m n = 1634	IP4(D) R = 1008 m n = 1214	IP5 R = 968 m n = 1207	IP6(off) R = 977 m n = 1248	IP6(on) R = 977 m n = 1087	IP7 R = 1013 m n = 1428	IP8 R = 960 m n = 1999	IP9 R = 1037 m n = 840	IP10 R = 1064m n = 1463	
Mean	118.3	116.9	107.1	103.6	100.2	123.6	115.1	110.4	108.3	1523.6	116.3	112.6	
Median	118.3	116.0	107.0	103.2	99.0	123.4	114.9	110.7	107.1	123.4	115.6	112.7	
Max	120.5	122.7	117.7	106.2	104.3	127.3	118.2	117.3	113.4	127.0	120.8	114.2	
90th percentile	119.8	119.2	108.0	105.5	102.6	125.9	116.8	112.0	111.4	125.0	118.3	113.3	
Cumulative	151.6	148.6	143.8	135.8	131.1	154.4	146.1	140.7	139.9	156.6	145.5	144.3	



Table C-3. Statistics of high-frequency cetacean M-weighted single-strike SEL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound leve	el (dB re 1 µl	Pa²·s)					
AMAR-10M												
	IP1 R = 14 m n = 2153	IP2 R = 11 m n = 1504	IP3 R = 12 m n = 4801	IP4(H) R = 10 m n = 1626	IP4(D) R = 10 m n = 1218	IP5 R = 11 m n = 1213	IP6(off) R = 12 m n = 1246	IP6(on) R = 12 m n = 1087	IP7 R = 12 m n = 1427	IP8 R = 17 m n = 2000	IP9 R = 17 m n = 865	IP10 R = 12 m n = 1459
Mean	161.3	156.3	141.2	157.5	159.2	162.9	160.4	153.9	149.1	154.8	156.5	143.5
Median	175.3	155.7	140.3	157.2	158.7	162.9	160.4	151.9	147.0	154.9	154.5	140.9
Max	163.9	162.5	147.3	160.7	166.0	167.1	164.6	159.4	157.4	157.5	161.3	153.1
90th percentile	162.8	158.3	143.9	159.2	162.2	165.7	161.8	157.1	153.2	155.9	159.7	147.0
Cumulative	194.7	188.1	178.1	189.6	190.1	193.7	191.4	184.2	180.7	187.8	185.8	175.1
AMAR-1KM			·				·	·				
	IP1 R = 959 m n = 2151	IP2 R = 943 m n = 1499	IP3 R = 1182 m n = 4721	IP4(H) R = 1008 m n = 1634	IP4(D) R = 1008 m n = 1214	IP5 R = 968 m n = 1207	IP6(off) R = 977 m n = 1248	IP6(on) R = 977 m n = 1087	IP7 R = 1013 m n = 1428	IP8 R = 960 m n = 1999	IP9 R = 1037 m n = 840	IP10 R = 1064m n = 1463
Mean	110.5	111.3	99.6	96.2	94.1	118.7	108.9	103.2	101.0	117.9	108.3	103.4
Median	110.5	110.6	98.9	95.6	93.2	118.5	108.9	103.5	99.6	116.8	107.4	103.3
Max	112.8	117.7	114.9	99.9	98.5	122.8	112.3	112.4	106.8	121.6	112.8	107.5
90th percentile	112.1	113.1	100.5	98.1	96.5	121.2	110.6	104.8	104.1	119.7	110.6	104.3
Cumulative	143.8	143.1	136.4	128.3	124.9	149.6	139.9	133.5	132.6	150.9	137.6	135.0



Table C-4. Statistics of phocid pinniped M-weighted single-strike SEL for impact pile driving R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound leve	el (dB re 1 µl	Pa²·s)					
AMAR-10M												
	IP1 R = 14 m n = 2153	IP2 R = 11 m n = 1504	IP3 R = 12 m n = 4801	IP4(H) R = 10 m n = 1626	IP4(D) R = 10 m n = 1218	IP5 R = 11 m n = 1213	IP6(off) R = 12 m n = 1246	IP6(on) R = 12 m n = 1087	IP7 R = 12 m n = 1427	IP8 R = 17 m n = 2000	IP9 R = 17 m n = 845	IP10 R = 12 m n = 1459
Mean	176.2	166.7	164.0	173.5	171.0	173.6	174.9	170.5	165.5	170.1	171.2	161.7
Median	176.3	166.3	163.3	173.3	170.3	173.7	174.7	169.9	164.6	169.5	170.6	160.7
Max	178.2	172.1	169.3	175.3	175.3	176.7	178.5	174.4	171.1	172.8	175.9	166.0
90th percentile	177.4	168.5	166.4	174.8	173.1	175.6	176.4	173.0	168.3	171.2	173.1	164.5
Cumulative	209.5	198.5	200.8	205.6	201.9	204.4	205.9	200.9	197.1	203.1	200.5	193.3
AMAR-1KM												
	IP1 R = 959 m n = 2151	IP2 R = 943 m n = 1499	IP3 R = 1182 m n = 4721	IP4(H) R = 1008 m n = 1634	IP4(D) R = 1008 m n = 1214	IP5 R = 968 m n = 1207	IP6(off) R = 977 m n = 1248	IP6(on) R = 977 m n = 1087	IP7 R = 1013 m n = 1428	IP8 R = 960 m n = 1999	IP9 R = 1037 m n = 840	IP10 R = 1064m n = 1463
Mean	141.0	136.4	132.6	128.8	125.7	140.7	135.7	133.7	132.5	143.6	142.2	141.2
Median	141.1	135.4	132.7	128.7	124.7	141.0	135.6	133.8	131.6	143.6	141.9	141.1
Max	142.9	142.2	134.6	131.5	129.7	145.5	138.0	136.7	137.0	146.6	146.3	142.5
90th percentile	142.2	139.4	133.4	130.8	127.7	142.4	136.7	135.6	135.3	145.0	143.7	141.7
Cumulative	174.3	168.2	169.3	161.0	156.6	171.5	166.7	164.0	164.0	176.6	171.5	172.8



Table C-5. Statistics of otariid pinniped M-weighted single-strike SEL for impact pile driving R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound leve	el (dB re 1 µl	Pa²·s)					
AMAR-10M												
	IP1 R = 14 m n = 2153	IP2 R = 11 m n = 1504	IP3 R = 12 m n = 4801	IP4(H) R = 10 m n = 1626	IP4(D) R = 10 m n = 1218	IP5 R = 11 m n = 1213	IP6(off) R = 12 m n = 1246	IP6(on) R = 12 m n = 1087	IP7 R = 12 m n = 1427	IP8 R = 17 m n = 2000	IP9 R = 17 m n = 845	IP10 R = 12 m n = 1459
Mean	176.5	166.2	163.8	173.3	170.8	172.5	175.1	170.4	165.5	170.3	170.9	161.6
Median	176.6	165.8	163.1	173.1	170.2	172.6	174.7	169.9	164.5	170.5	170.3	160.4
Max	178.6	171.7	169.5	175.1	175.4	175.9	178.7	174.2	171.2	173.1	176.1	166.2
90th percentile	177.7	167.9	166.3	174.4	172.9	174.7	176.6	172.8	168.3	171.5	173.0	164.5
Cumulative	209.8	198.0	200.6	205.4	201.7	203.4	206.0	200.7	197.1	203.4	200.2	193.2
AMAR-1KM	'											
	IP1 R = 959 m n = 2151	IP2 R = 943 m n = 1499	IP3 R = 1182 m n = 4721	IP4(H) R = 1008 m n = 1634	IP4(D) R = 1008 m n = 1214	IP5 R = 968 m n = 1207	IP6(off) R = 977 m n = 1248	IP6(on) R = 977 m n = 1087	IP7 R = 1013 m n = 1428	IP8 R = 960 m n = 1999	IP9 R = 1037 m n = 840	IP10 R = 1064m n = 1463
Mean	141.2	135.5	131.4	127.3	122.1	140.0	135.2	132.5	131.0	143.5	140.2	137.9
Median	141.3	134.2	131.5	127.1	121.0	140.1	135.0	132.7	130.2	143.5	139.8	137.9
Max	143.1	141.6	133.2	129.7	126.2	144.2	138.1	135.7	135.5	146.7	144.8	139.1
90th percentile	142.6	138.6	132.4	129.0	124.1	141.9	136.6	134.4	133.9	145.1	141.9	138.4
Cumulative	174.5	167.3	168.1	159.4	153.0	170.9	166.2	162.9	162.6	176.5	169.4	169.5



#### C.1.2. 90% rms SPL statistics

Table C-6. Statistics of low-frequency cetacean M-weighted rms SPL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

	Sound level (dB re 1 μPa)												
AMAR-10M													
	IP1 R = 14 m n = 2148	IP2 R = 11 m n = 1516	IP3 R = 12 m n = 4825	IP4(H) R = 10 m n = 1640	IP4(D) R = 10 m n = 1237	IP5 R = 11 m n = 1217	IP6(off) R = 12 m n = 1248	IP6(on) R = 12 m n = 1090	IP7 R = 12 m n = 1473	IP8 R = 17 m n = 2018	IP9 R = 17 m n = 867	IP10 R = 12 m n = 1461	
Mean	197.0	186.3	186.9	194.7	189.8	194.1	190.5	187.6	184.5	190.3	192.0	181.6	
Median	196.7	186.0	186.7	194.5	189.2	194.0	190.1	186.1	183.8	190.2	192.0	181.0	
Max	199.9	190.8	191.0	197.3	193.3	198.1	193.8	191.8	191.7	194.4	195.1	185.6	
90th percentile	198.8	188.4	188.5	195.9	191.7	196.0	192.2	190.3	187.2	192.1	193.1	183.5	
AMAR-1KM													
	IP1 R = 959 m n = 2156	IP2 R = 943 m n = 1525	IP3 R = 1182 m n = 4817	IP4(H) R = 1008 m n = 1613	IP4(D) R = 1008 m n = 1226	IP5 R = 968 m n = 1208	IP6(off) R = 977 m n = 1249	IP6(on) R = 977 m n = 1093	IP7 R = 1013 m n = 1429	IP8 R = 960 m n = 2009	IP9 R = 1037 m n = 863	IP10 R = 1064m n = 1467	
Mean	161.1	157.9	153.2	143.8	141.9	161.2	153.3	152.4	151.2	163.1	165.7	166.3	
Median	161.1	157.1	153.0	143.7	140.9	161.5	153.2	152.0	149.9	162.9	165.4	166.6	
Max	164.1	163.9	156.4	146.9	146.4	167.5	156.3	155.6	157.5	167.2	169.4	167.4	
90th percentile	162.5	160.7	154.4	146.0	144.0	162.8	154.2	154.6	154.3	164.9	167.2	167.2	



Table C-7. Statistics of mid-frequency cetacean M-weighted rms SPL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound le	vel (dB re 1	μPa)					
AMAR-10M												
	IP1 R = 14 m n = 2148	IP2 R = 11 m n = 1507	IP3 R = 12 m n = 4812	IP4(H) R = 10 m n = 1638	IP4(D) R = 10 m n = 1224	IP5 R = 11 m n = 1209	IP6(off) R = 12 m n = 1252	IP6(on) R = 12 m n = 1091	IP7 R = 12 m n = 1424	IP8 R = 17 m n = 2015	IP9 R = 17 m n = 853	IP10 R = 12 m n = 1460
Mean	173.4	170.8	152.3	169.6	170.6	177.1	170.3	164.7	162.7	167.5	169.2	160.8
Median	173.3	170.2	151.4	169.2	170.4	175.8	170.1	159.8	161.0	167.3	165.3	155.1
Max	176.5	176.0	159.4	172.9	177.3	182.8	177.2	175.1	171.0	172.0	176.2	174.5
90th percentile	175.3	173.6	154.9	171.6	173.7	180.8	172.2	168.9	167.0	168.8	173.6	165.1
AMAR-1KM	-		'									
	IP1 R = 959 m n = 2167	IP2 R = 943 m n = 1545	IP3* R = 1182 m n = 3905	IP4(H)* R = 1008 m n = 1634	IP4(D)* R = 1008 m n = 1214	IP5 R = 968 m n = 1205	IP6(off) R = 977 m n = 1225	IP6(on) R = 977 m n = 959	IP7 R = 1013 m n = 880	IP8 R = 960 m n = 2010	IP9 R = 1037 m n = 862	IP10 R = 1064m n = 1167
Mean	105.2	119.1	99.7	95.6	96.1	130.4	112.1	100.4	98.0	125.8	106.2	96.3
Median	104.8	117.8	97.1	95.2	95.5	129.7	111.6	99.6	96.9	125.0	102.7	95.5
Max	109.7	126.5	123.2	98.6	102.3	136.2	119.1	119.1	104.8	133.7	113.4	108.8
90th percentile	107.2	122.6	100.7	97.0	97.9	133.8	114.7	102.1	100.2	128.4	110.2	98.1

^{*}Levels from AMAR-1KM IP3 and IP4 are calculated from the filtered signal based on detections identified in the unweighted signal. Signal-to-noise levels of filtered impact pile driving was insufficient to trigger automated detector. Reported levels are not representative of impact driving signals only.



Table C-8. Statistics of high-frequency cetacean M-weighted rms SPL for impact pile driving. R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound le	vel (dB re 1	µPa)					
AMAR-10M												
	IP1 R = 14 m n = 2152	IP2 R = 11 m n = 1505	IP3 R = 12 m n = 4821	IP4(H) R = 10 m n = 1638	IP4(D) R = 10 m n = 1222	IP5 R = 11 m n = 1208	IP6(off) R = 12 m n = 1288	IP6(on) R = 12 m n = 1105	IP7 R = 12 m n = 1434	IP8 R = 17 m n = 2011	IP9 R = 17 m n = 861	IP10 R = 12 m n = 1465
Mean	170.5	168.1	146.1	166.8	167.6	174.4	166.7	161.8	159.1	165.0	166.1	162.0
Median	170.3	167.5	143.8	166.4	167.3	173.4	166.6	153.4	156.3	164.7	162.4	155.0
Max	174.0	174.1	156.8	170.5	174.7	180.4	173.6	173.2	170.3	170.2	173.5	175.5
90th percentile	172.6	171.0	149.0	168.8	170.7	178.2	168.7	166.6	163.7	166.5	170.0	166.0
AMAR-1KM			'									
	IP1 R = 959 m n = 2089	IP2 R = 943 m n = 1408	IP3* R = 1182 m n = 3905	IP4(H)* R = 1008 m n = 1634	IP4(D)* R = 1008 m n = 1214	IP5 R = 968 m n = 1184	IP6(off) R = 977 m n = 1195	IP6(on)* R = 977 m n = 1087	IP7* R = 1013 m n = 1428	IP8 R = 960 m n = 2007	IP9 R = 1037 m n = 767	IP10* R = 1064m n = 1463
Mean	96.0	109.4	97.9	93.6	93.9	123.5	103.5	97.5	95.4	119.8	95.9	96.2
Median	96.0	107.0	95.2	93.6	93.8	122.5	101.9	96.3	94.8	118.5	95.2	95.7
Max	99.5	119.8	122.3	96.0	98.9	129.5	111.7	113.8	100.6	129.1	99.1	103.9
90th percentile	96.7	112.8	99.0	94.1	94.5	127.1	107.0	99.5	97.1	122.9	97.7	97.2

^{*}Levels from AMAR-1KM IP3, IP4, IP6(on), IP7, and IP10 are calculated from the filtered signal based on detections identified in the unweighted signal. Signal-to-noise levels of filtered impact pile driving was insufficient to trigger automated detector. Reported levels are not representative of impact driving signals only.



Table C-9. Statistics of phocid pinniped M-weighted rms SPL for impact pile driving R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound le	vel (dB re 1	µPa)					
AMAR-10M												
	IP1 R = 14 m n = 2148	IP2 R = 11 m n = 1509	IP3 R = 12 m n = 4810	IP4(H) R = 10 m n = 1639	IP4(D) R = 10 m n = 1229	IP5 R = 11 m n = 1209	IP6(off) R = 12 m n = 1225	IP6(on) R = 12 m n = 1090	IP7 R = 12 m n = 1445	IP8 R = 17 m n = 2001	IP9 R = 17 m n = 868	IP10 R = 12 m n = 1469
Mean	183.6	173.9	172.8	179.7	178.0	179.7	181.0	176.6	172.1	178.1	177.2	169.8
Median	183.6	173.1	172.5	179.6	176.8	179.1	180.1	176.0	171.3	178.0	176.1	168.5
Max	186.6	179.5	180.4	181.9	182.1	183.8	186.1	182.0	178.5	182.5	182.6	176.1
90th percentile	185.0	176.6	174.1	181.0	180.9	182.7	183.7	179.1	174.6	179.3	179.9	173.1
AMAR-1KM		·				·	·				<u>'</u>	
	IP1 R = 959 m n = 2157	IP2 R = 943 m n = 1547	IP3 R = 1182 m n = 4810	IP4(H)* R = 1008 m n = 1634	IP4(D)* R = 1008 m n = 1214	IP5 R = 968 m n = 1209	IP6(off) R = 977 m n = 1250	IP6(on) R = 977 m n = 1093	IP7 R = 1013 m n = 1416	IP8 R = 960 m n = 2005	IP9 R = 1037 m n = 872	IP10 R = 1064m n = 1469
Mean	147.6	140.8	134.8	124.4	119.4	145.8	138.2	134.2	132.4	148.2	142.7	141.4
Median	147.2	139.6	134.7	123.8	118.4	145.4	137.2	134.1	131.3	148.1	142.1	141.3
Max	152.0	147.1	137.0	127.2	123.5	150.7	143.1	139.1	139.2	152.0	147.7	144.2
90th percentile	149.9	144.0	136.2	126.6	121.6	148.2	140.9	136.2	135.4	150.2	145.0	142.3

^{*}Levels from AMAR-1KM IP4 are calculated from the filtered signal based on detections identified in the unweighted signal. Signal-to-noise levels of filtered impact pile driving was insufficient to trigger automated detector. Reported levels are not representative of impact driving signals only.



Table C-10. Statistics of otariid pinniped M-weighted rms SPL for impact pile driving R=the pile to AMAR range. n=the number of strikes over which the percentiles were calculated. Levels for IP4 include the (H) hydraulic and (D) diesel impact hammer. Levels for IP6 are given for impact hammering when bubble curtain mitigation was off and when it was on.

					Sound le	vel (dB re 1	µPa)					
AMAR-10M												
	IP1 R = 14 m n = 2148	IP2 R = 11 m n = 1509	IP3 R = 12 m n = 4811	IP4(H) R = 10 m n = 1631	IP4(D) R = 10 m n = 1232	IP5 R = 11 m n = 1211	IP6(off) R = 12 m n = 1250	IP6(on) R = 12 m n = 1082	IP7 R = 12 m n = 1445	IP8 R = 17 m n = 2014	IP9 R = 17 m n = 868	IP10 R = 12 m n = 1469
Mean	184.5	173.9	174.1	180.5	178.5	179.6	182.0	177.7	173.1	179.2	178.0	170.9
Median	184.5	173.2	173.8	180.4	177.5	178.9	180.9	177.2	172.3	179.1	177.2	169.7
Max	187.6	179.5	181.8	182.6	182.6	183.7	187.2	183.4	179.3	183.7	183.7	177.4
90th percentile	186.0	176.6	175.5	181.7	181.4	182.6	184.7	180.1	175.6	180.4	180.6	174.2
AMAR-1KM		·				·	·					
	IP1 R = 959 m n = 2159	IP2 R = 943 m n = 1546	IP3 R = 1182 m n = 4813	IP4(H)* R = 1008 m n = 1634	IP4(D)* R = 1008 m n = 1214	IP5 R = 968 m n = 1210	IP6(off) R = 977 m n = 1250	IP6(on) R = 977 m n = 1093	IP7 R = 1013 m n = 1407	IP8 R = 960 m n = 2007	IP9 R = 1037 m n = 861	IP10 R = 1064m n = 1468
Mean	149.4	142.4	135.5	125.4	119.9	146.9	139.9	135.8	133.3	149.8	142.1	139.7
Median	148.8	140.9	135.5	125.0	119.0	146.4	138.8	135.7	132.1	149.6	141.3	139.4
Max	154.4	148.6	138.0	127.8	124.2	152.1	144.9	140.7	140.7	154.3	147.4	144.3
90th percentile	151.9	145.9	137.0	127.2	122.0	149.5	142.6	137.8	136.4	151.9	144.6	141.3

^{*}Levels from AMAR-1KM IP4 are calculated from the filtered signal based on detections identified in the unweighted signal. Signal-to-noise levels of filtered impact pile driving was insufficient to trigger automated detector. Reported levels are not representative of impact driving signals only.



# **C.2. M-weighted Vibratory Statistics**

#### C.2.1. 1 second rms SPL statistics

Table C-11. Statistics of unweighted rms SPL for vibratory pile driving. R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

				S	ound level (di	3 re 1 µPa)								
AMAR-10M	<u>AMAR-10M</u>													
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b^ R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377			
Mean	168.2	163.3	157.2	163.4	169.3	163.7	183.8	161.4	166.5	159.1	158.0			
Median	166.4	161.4	154.7	159.8	166.7	163.0	183.8	159.0	162.0	151.2	156.9			
Max	177.7	175.4	168.8	172.6	177.7	171.4	188.2	169.1	175.9	171.1	168.3			
90th percentile	172.2	166.3	161.0	168.4	173.5	167.2	186.9	166.0	171.4	164.8	161.4			
AMAR-1KM	·													
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b^ R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380			
Mean	137.0	140.8	153.6	128.9	138.7	141.9	150.2	133.9	139.5	138.1	139.8			
Median	136.4	138.6	146.3	129.4	136.7	138.0	150.4	130.7	136.2	135.5	139.5			
Max	143.8	148.7	168.4	133.9	145.3	153.1	155.2	146.3	154.7	147.8	146.0			
90th percentile	140.3	144.4	157.8	131.6	142.7	145.8	152.9	136.7	142.9	142.6	143.3			

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



Table C-12. Statistics of low-frequency cetacean rms SPL for vibratory pile driving. R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

Sound level (dB re 1 µPa)															
AMAR-10M	MAR-10M														
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b [^] R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377				
Mean	166.3	160.9	148.8	161.6	167.2	157.8	182.5	155.3	156.2	157.4	150.3				
Median	162.7	1656.4	145.6	153.1	163.8	154.9	182.5	150.7	149.0	143.2	149.5				
Max	176.4	173.9	162.8	172.1	175.9	167.1	186.9	163.9	173.0	169.2	161.5				
90th percentile	171.0	164.4	152.1	167.5	172.0	161.9	185.6	160.7	158.0	163.6	153.2				
AMAR-1KM	<u>'</u>									,					
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b^ R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380				
Mean	134.5	135.4	136.9	121.4	136.1	131.7	148.0	130.8	131.0	132.1	129.8				
Median	132.5	134.8	130.6	119.3	132.8	130.0	148.4	126.2	124.6	125.3	128.9				
Max	142.5	145.4	152.2	128.9	143.7	140.7	151.8	144.3	147.4	140.5	137.2				
90th percentile	138.5	138.2	140.6	125.8	140.6	135.2	150.7	133.8	134.8	137.4	133.4				

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



Table C-13. Statistics of mid-frequency cetacean rms SPL for vibratory pile driving. R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

Sound level (dB re 1 μPa)															
AMAR-10M	MAR-10M														
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b [^] R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377				
Mean	154	149.7	125.9	149.6	152.7	134.0	165.9	133	142.3	147.5	134.4				
Median	141.7	137.5	117.6	123.1	134.8	124.6	164.2	122	121.7	116.5	134				
Max	169.5	168.4	151.2	162.7	165.7	153.5	172.9	151.7	164.8	163.6	143.3				
90th percentile	159.2	153.4	121	154.9	157.4	136.3	170.4	135.4	131	153.5	136				
AMAR-1KM	·			'				,		,					
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b^ R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380				
Mean	115.2	114.3	111.6	97.7	113.1	98.5	117.7	103.4	107.7	113.9	99.2				
Median	108.4	110.6	107.3	89.8	104.3	96.9	117.3	97.4	95.4	95.3	96.9				
Max	129.8	129.4	132.2	108.7	122.5	109.7	122.7	119.4	129.3	125.0	108.9				
90th percentile	119.8	117.3	114.1	102.6	118.3	101.5	121.1	105.4	104.8	120.0	103.1				

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



Table C-14. Statistics of high-frequency cetacean rms SPL for vibratory pile driving R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

				S	ound level (di	3 re 1 μPa)					
AMAR-10M											
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b [^] R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377
Mean	150.9	147.0	122.4	146.6	149.9	129.7	161.4	128.8	139.2	144.6	131.6
Median	138.0	133.6	114.6	117.3	130.0	121.2	159.5	118.3	119.1	113.1	131.2
Max	167.0	166.0	148.6	160.1	163.4	150.0	168.9	148.5	161.8	161.1	140.4
90th percentile	156.0	150.3	117.6	151.7	154.4	131.4	166.0	130.2	126.5	150.6	133.3
AMAR-1KM	·							,		,	
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b^ R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380
Mean	110.8	109.1	109.7	92.5	107.4	94.8	110.9	98.5	102.7	109.3	95.9
Median	103.3	105.1	105.4	86.1	97.6	92.4	110.2	91.9	91.8	91.4	93.5
Max	126.6	124.8	130.3	103.4	117.7	107.9	118.9	115.2	124.5	120.9	104.6
90th percentile	115.5	111.9	112.3	97.0	112.4	97.1	114.3	100.4	99.3	115.3	99.9

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



Table C-15. Statistics of phocid pinniped rms SPL for vibratory pile driving. R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

				S	ound level (di	3 re 1 µPa)					
AMAR-10M											
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b [^] R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377
Mean	162.7	157.1	138.6	158.0	160.3	148.0	178.1	147.0	150.9	155.0	141.5
Median	155.7	151.0	131.0	143.4	154.1	140.4	177.3	139.5	133.6	133.3	140.7
Max	175.1	172.9	158.2	169.1	169.8	162.3	183.6	160.7	171.4	168.2	149.0
90th percentile	168.1	161.0	138.4	163.6	165.3	151.6	181.9	151.9	147.8	161.2	144.2
AMAR-1KM	·			,				,		,	
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b^ R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380
Mean	129.7	129.9	120.4	113.9	130.3	118.7	138.7	121.2	123.6	127.3	116.5
Median	125.9	127.5	116.8	106.8	125.0	117.4	139.1	116.3	113.0	113.7	114.5
Max	139.6	142.0	134.2	123.5	138.6	127.2	142.7	134.3	143.0	136.9	125.6
90th percentile	134.1	133.0	123.6	119.1	135.5	122.1	141.4	123.9	124.7	133.3	120.2

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



Table C-16. Statistics of otariid pinniped rms SPL for vibratory pile driving. R=AMAR to pile range. n=the number of sound levels from 1 s analysis windows over which the percentiles were calculated.

Sound level (dB re 1 µPa)															
AMAR-10M	<u>IMAR-10M</u>														
	IP1 R = 14 m n = 1928	IP2 R = 11 m n = 2089	IP3 R = 12 m n = 1895	IP4 R = 10 m n = 1924	IP5 R = 11 m n = 1124	IP6a^ R = 12 m n = 1567	IP6b [^] R = 12 m n = 1043	IP7 R = 12 m n = 1323	IP8 R = 17 m n = 1413	IP9 R = 17 m n = 1422	IP10 R = 12 m n = 1377				
Mean	163.2	157.5	138.6	158.4	160.3	147.8	178.5	147.3	151.2	155.4	141.2				
Median	156.2	151.4	128.8	143.5	153.7	138.1	177.8	139.4	130.9	133.5	140.3				
Max	175.3	172.9	158.4	169.6	169.5	162.5	184.2	161.1	171.5	168.3	149.4				
90th percentile	168.6	161.2	137.0	163.9	165.3	151.2	182.4	152.3	148.0	161.7	144.0				
AMAR-1KM	·	'	,	'				,		,					
	IP1 R = 959 m n = 1922	IP2 R = 943 m n = 1519	IP3 R = 1182 m n = 1893	IP4 R = 1008 m n = 1921	IP5 R = 968 m n = 1070	IP6a^ R = 977 m n = 1572	IP6b ^A R = 977 m n = 1046	IP7 R = 1013 m n = 1323	IP8 R = 960 m n = 1594	IP9 R = 1037 m n = 1422	IP10 R = 1064m n = 1380				
Mean	130.4	130.7	116.5	114.3	131.0	117.8	138.8	121.1	124.2	128.0	115.0				
Median	126.6	128.1	113.8	106.2	125.5	116.1	139.0	116.1	112.3	112.9	112.7				
Max	140.2	142.7	133.4	124.1	139.4	126.4	142.8	134.5	143.8	137.5	125.2				
90th percentile	134.8	133.8	119.0	119.7	136.3	121.4	141.5	123.9	124.7	133.9	118.7				

[^] Pile IP6 had a bearing plate installed. IP6a includes data prior to 07:18 AKDT, IP6b includes data after 07:18 AKDT.



# **Appendix D. Third-Octave Band Received Levels**

### **D.1. Impact Hammer Pile Driving Sound Levels**

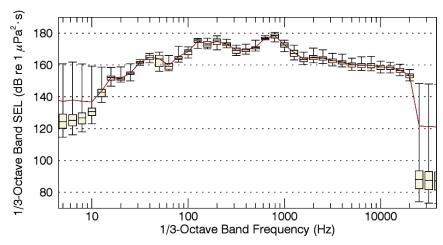



Figure D-1. Pile IP1 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 14 m.

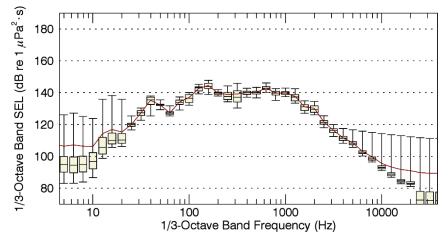



Figure D-2. Pile IP1 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 959 m.

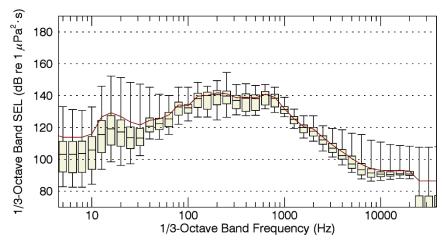



Figure D-3. Pile IP1 1/3-octave band level box plots for impact hammer driving from the drift system.

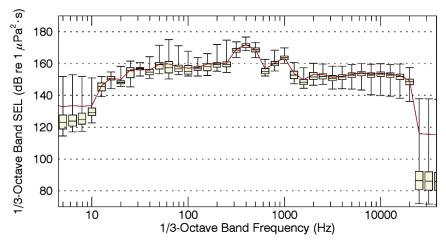



Figure D-4. Pile IP2 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 12 m.

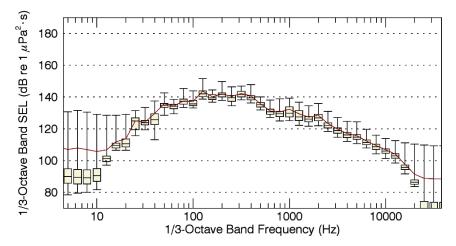



Figure D-5. Pile IP2 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 943 m.

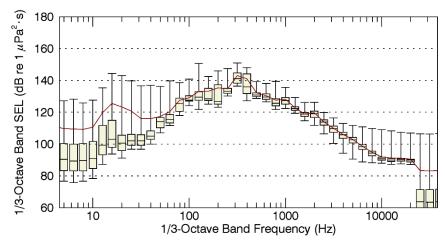



Figure D-6. Pile IP2 1/3-octave band level box plots for impact hammer driving from the drift system.

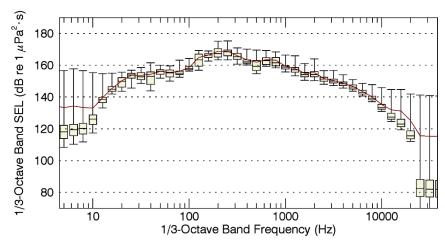



Figure D-7. Pile IP3 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 12 m.

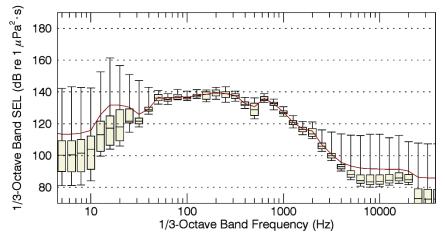



Figure D-8. Pile IP3 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 1182 m.

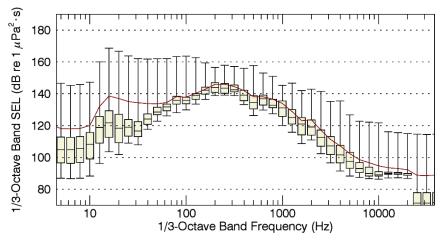



Figure D-9. Pile IP3 1/3-octave band level box plots for impact hammer driving from the drift system.

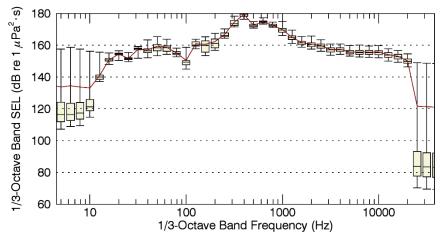



Figure D-10. Pile IP4 1/3-octave band level box plots for hydraulic impact hammer driving from AMAR recordings at a range of 12 m.

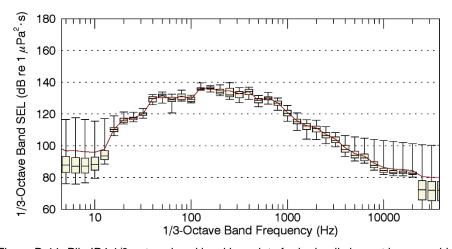



Figure D-11. Pile IP4 1/3-octave band level box plots for hydraulic impact hammer driving from AMAR recordings at a range of 1008 m.

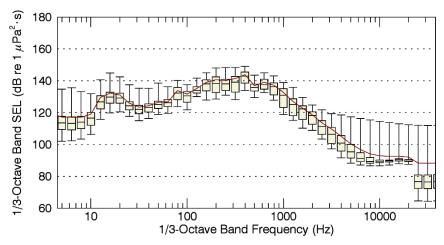



Figure D-12. Pile IP4 1/3-octave band level box plots for hydraulic impact hammer driving from the drift system.

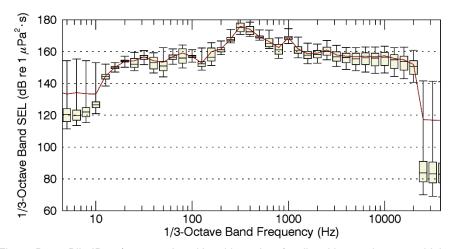



Figure D-13. Pile IP4 1/3-octave band level box plots for diesel impact hammer driving from AMAR recordings at a range of 12 m.

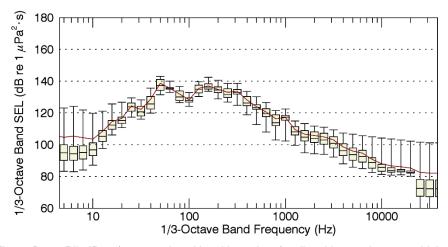



Figure D-14. Pile IP4 1/3-octave band level box plots for diesel impact hammer driving from AMAR recordings at a range of 1008 m.

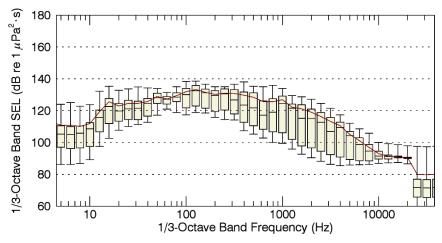



Figure D-15. Pile IP4 1/3-octave band level box plots for diesel impact hammer driving from the drift system.

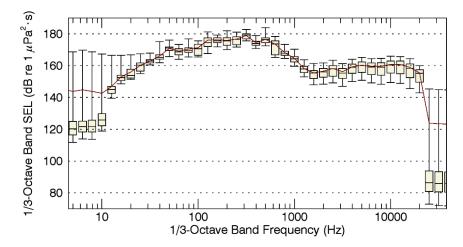



Figure D-16. Pile IP5 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 11 m.

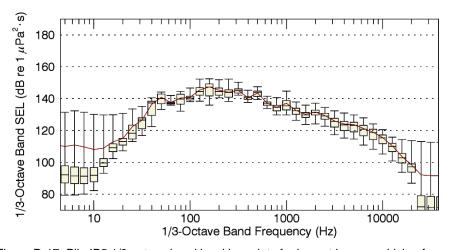



Figure D-17. Pile IP5 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 968 m.



Figure D-18. Pile IP5 1/3-octave band level box plots for impact hammer driving from the drift system.

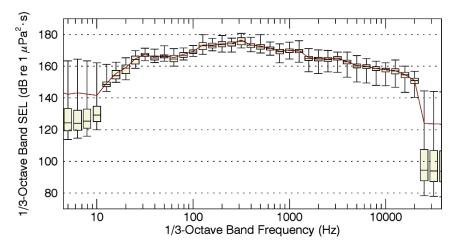



Figure D-19. Pile IP6 1/3-octave band level box plots for un-attenuated impact hammer driving from AMAR recordings at a range of 12 m.

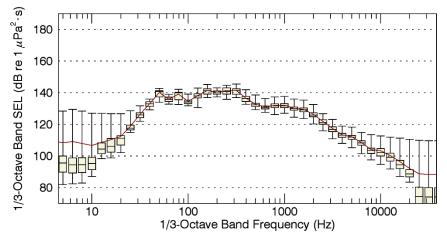



Figure D-20. Pile IP6 1/3-octave band level box plots for un-attenuated impact hammer driving from AMAR recordings at a range of 977 m.

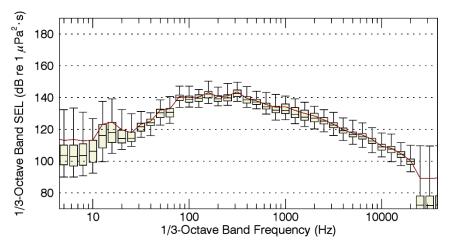



Figure D-21. Pile IP6 1/3-octave band level box plots for un-attenuated impact hammer driving from the drift system.

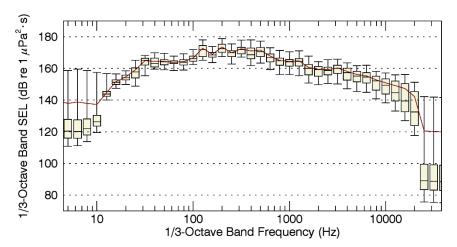



Figure D-22. Pile IP6 1/3-octave band level box plots for impact hammer driving while a bubble curtain attenuation was operating from AMAR recordings at a range of 12 m.

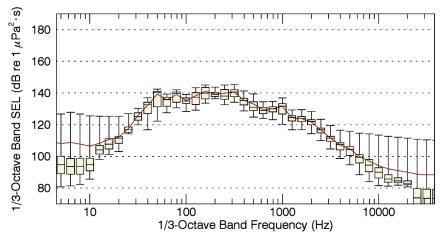



Figure D-23. Pile IP6 1/3-octave band level box plots for impact hammer driving while a bubble curtain attenuation was operating from AMAR recordings at a range of 977 m.

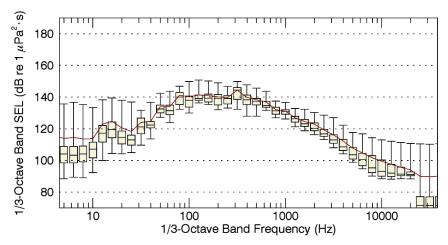



Figure D-24. Pile IP6 1/3-octave band level box plots for impact hammer driving while a bubble curtain attenuation was operating from the drift system.

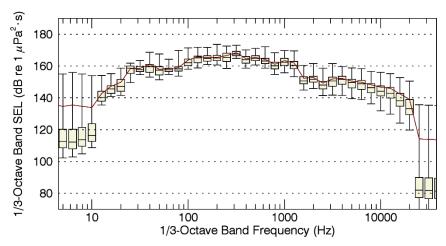



Figure D-25. Pile IP7 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 12 m.

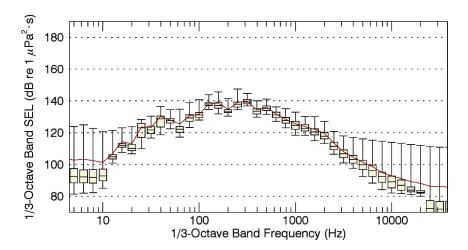



Figure D-26. Pile IP7 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 1013 m.

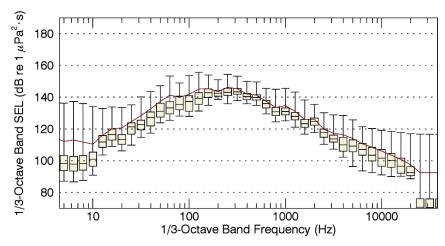



Figure D-27. Pile IP7 1/3-octave band level box plots for impact hammer driving from the drift system.

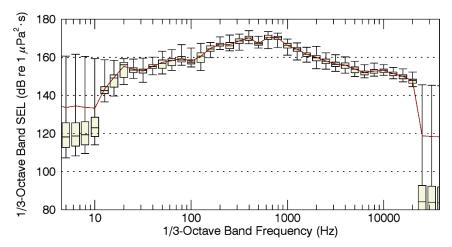



Figure D-28. Pile IP8 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 17 m.

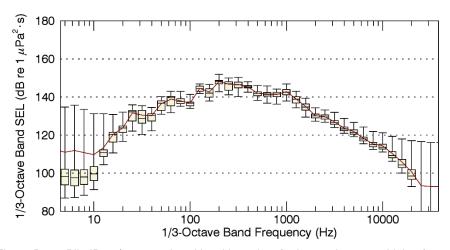



Figure D-29. Pile IP8 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 960 m.

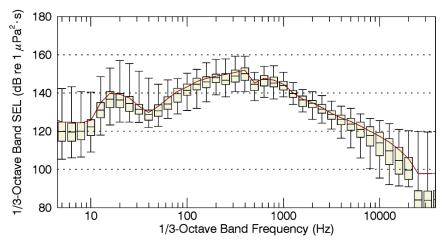



Figure D-30. Pile IP8 1/3-octave band level box plots for impact hammer driving from the drift system.

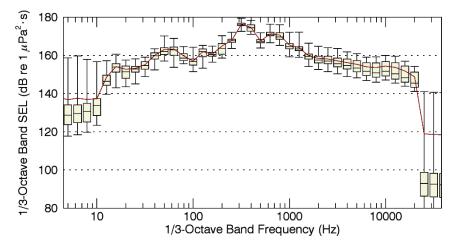



Figure D-31. Pile IP9 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 17 m.

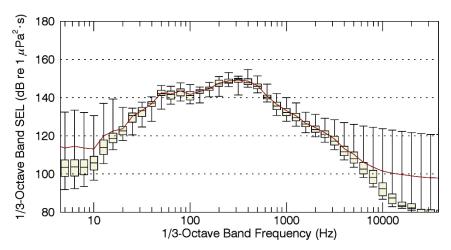



Figure D-32. Pile IP9 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 1037 m.

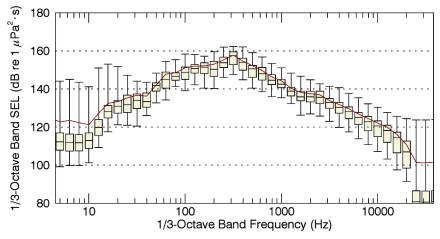



Figure D-33. Pile IP9 1/3-octave band level box plots for impact hammer driving from the drift system.

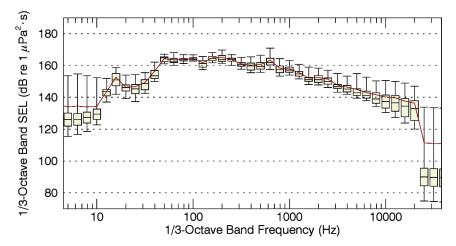



Figure D-34. Pile IP10 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 12 m.

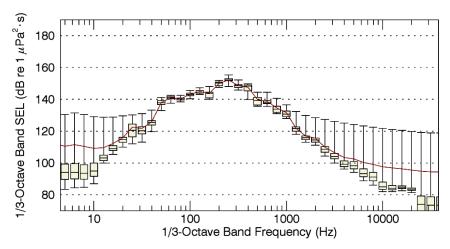



Figure D-35. Pile IP10 1/3-octave band level box plots for impact hammer driving from AMAR recordings at a range of 1064 m.

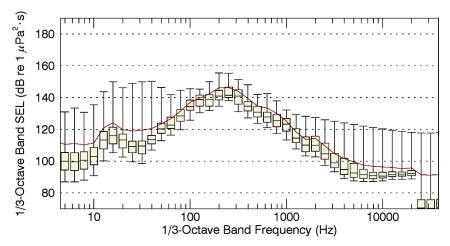



Figure D-36. Pile IP10 1/3-octave band level box plots for impact hammer driving from the drift system.

### D.2. Vibratory Pile Driving Sound Levels

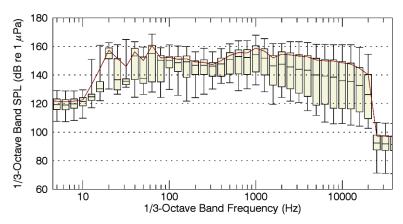



Figure D-37. Pile IP1 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 14 m.

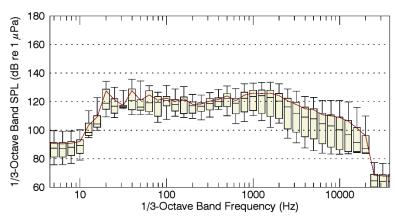



Figure D-38. Pile IP1 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 959 m.

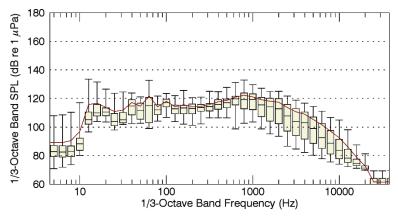



Figure D-39. Pile IP1 1/3-octave band level box plot for vibratory driving from the drift system recordings.

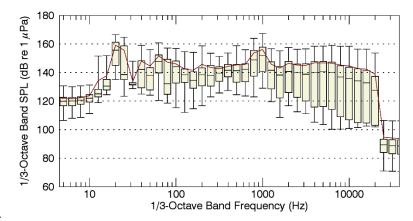



Figure D-40. Pile IP2 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

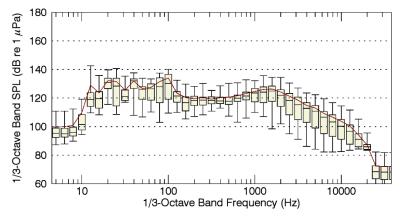



Figure D-41. Pile IP2 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 943 m.

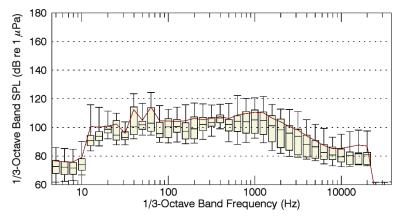



Figure D-42. Pile IP2 1/3-octave band level box plot for vibratory driving from the drift system recordings.

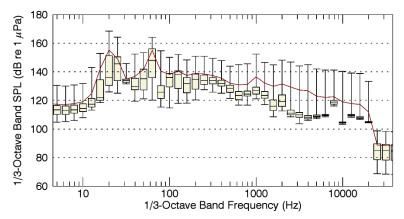



Figure D-43. Pile IP3 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

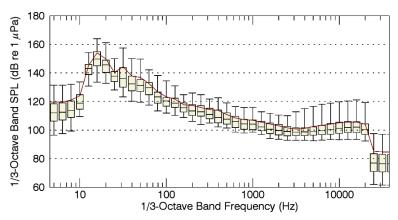



Figure D-44. Pile IP3 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 1182 m.

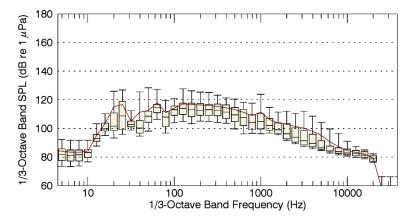



Figure D-45. Pile IP3 1/3-octave band level box plot for vibratory driving from the drift system recordings.

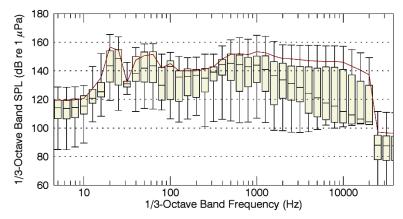



Figure D-46. Pile IP4 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

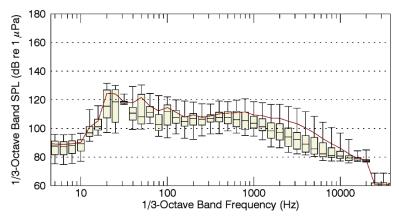



Figure D-47. Pile IP4 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 1008 m.

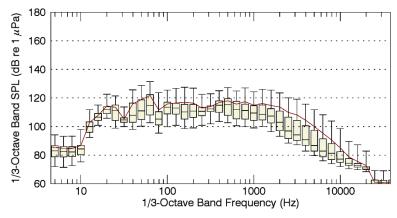



Figure D-48. Pile IP4 1/3-octave band level box plot for vibratory driving from the drift system recordings.

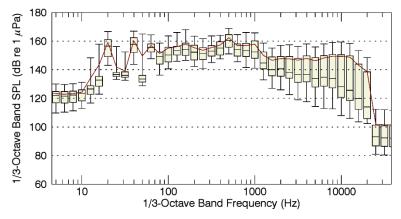



Figure D-49. Pile IP5 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 11 m.

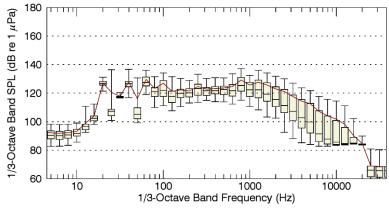



Figure D-50. Pile IP5 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 968 m.

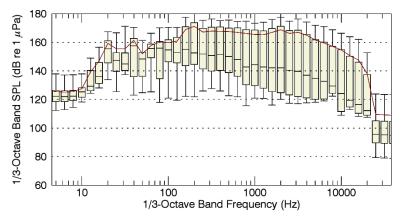



Figure D-51. Pile IP6 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

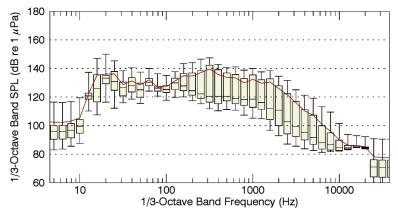



Figure D-52. Pile IP6 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 977 m.




Figure D-53. Pile IP6 1/3-octave band level box plot for vibratory driving from the drift system recordings.

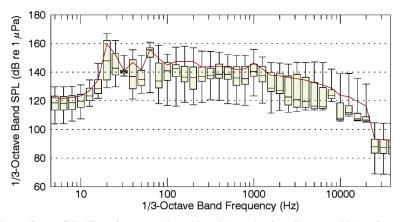



Figure D-54. Pile IP7 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

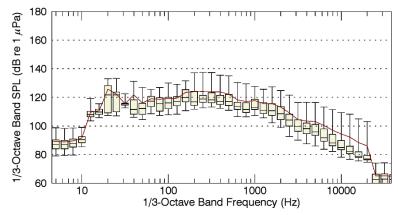



Figure D-55. Pile IP7 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 1013 m.

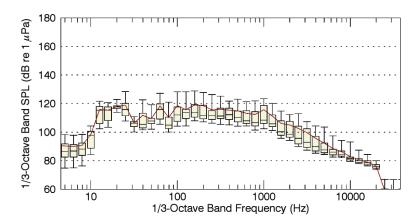



Figure D-56. Pile IP7 1/3-octave band level box plot for vibratory driving from the drift system recordings.

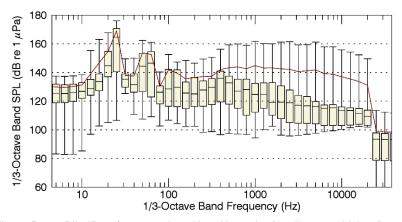



Figure D-57. Pile IP8 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 17 m.

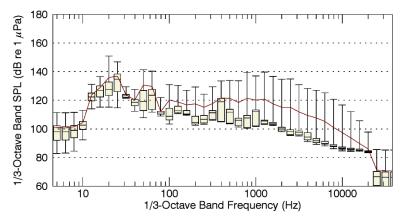



Figure D-58. Pile IP8 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 960 m.

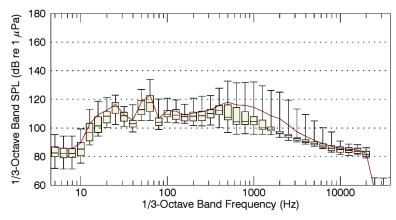



Figure D-59. Pile IP8 1/3-octave band level box plot for vibratory driving from the drift system recordings.

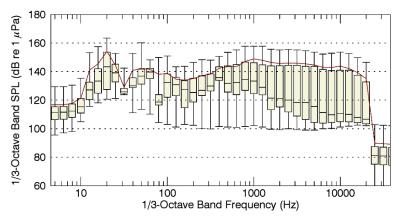



Figure D-60. Pile IP9 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 17 m.

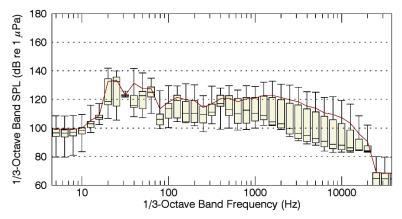



Figure D-61. Pile IP9 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 1037 m.

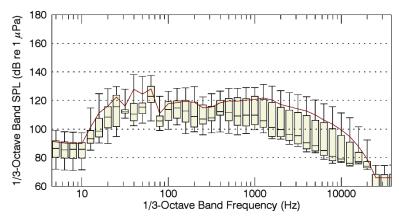



Figure D-62. Pile IP9 1/3-octave band level box plot for vibratory driving from the drift system recordings.

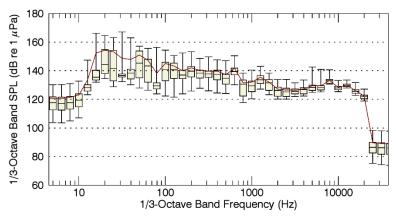



Figure D-63. Pile IP10 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 12 m.

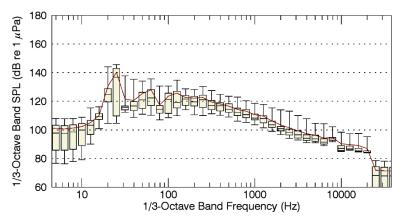



Figure D-64. Pile IP10 1/3-octave band level box plot for vibratory driving from AMAR recordings at a range of 1064 m.

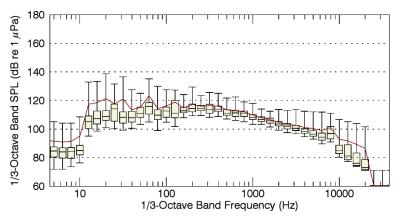



Figure D-65. Pile IP10 1/3-octave band level box plot for vibratory driving from the drift system recordings.



## **Appendix E. Acoustic Metrics**

Underwater sound amplitude is measured in decibels (dB) relative to a fixed reference pressure of  $p_0 = 1 \mu Pa$ . Because the perceived loudness of sound, especially impulsive noise such as from impact-hammer pile driving, is not generally proportional to the instantaneous acoustic pressure, several sound level metrics are commonly used to evaluate noise and its effects on marine life.

The zero-to-peak SPL, or peak SPL (dB re 1  $\mu$ Pa), is the maximum instantaneous sound pressure level in a stated frequency band attained by an acoustic pressure signal, p(t):

Peak SPL = 
$$10\log_{10} \left\lceil \frac{\max(p^2(t)|)}{p_0^2} \right\rceil$$
 (E-1)

At high intensities, the peak SPL can be a valid criterion for assessing whether a sound is potentially injurious; however, because the peak SPL does not account for the duration of a noise event, it is a poor indicator of perceived loudness.

The root-mean-square (rms) SPL (dB re 1  $\mu$ Pa) is the rms pressure level in a stated frequency band over a time window (T, s) containing the acoustic event:

rms SPL = 
$$10\log_{10}\left(\frac{1}{T}\int_{T}p^{2}(t)dt/p_{0}^{2}\right)$$
 (E-2)

The rms SPL is a measure of the average pressure or of the effective pressure over the duration of an acoustic event, such as the emission of one acoustic pulse. Because the window length, T, is the divisor, events more spread out in time have a lower rms SPL for the same total acoustic energy density.

In studies of impulsive noise, T is often defined as the "90% energy pulse duration" ( $T_{90}$ ): the interval over which the pulse energy curve rises from 5% to 95% of the total energy. The SPL computed over this  $T_{90}$  interval is commonly called the 90% rms SPL (dB re 1  $\mu$ Pa):

90% rms SPL = 
$$10\log_{10} \left( \frac{1}{T_{90}} \int_{T_{90}} p^2(t) dt / p_0^2 \right)$$
 (E-3)

The sound exposure level (SEL, dB re 1  $\mu$ Pa²·s) is a measure of the total acoustic energy contained in one or more (*N*) acoustic events. The SEL for a single event is computed from the time-integral of the squared pressure over the full event duration ( $T_{100}$ ):

SEL = 
$$10\log_{10} \left( \int_{T_{100}} p^2(t) dt / T_0 p_0^2 \right)$$
 (E-4)

where  $T_0$  is a reference time interval of 1 s. The SEL represents the total acoustic energy received at some location during an acoustic event; it measures the total sound energy to which an organism at that location would be exposed.

SEL can be calculated over periods with multiple acoustic events (e.g. multiple pile driving impulses) or over a fixed period. For multiple events, the cumulative SEL (dB re 1  $\mu$ Pa²·s) can be computed by summing (in linear units) the SELs of the *N* individual events:

Cumulative SEL = 
$$10\log_{10}\left(\sum_{i=1}^{N} 10^{\frac{\text{SEL}_i}{10}}\right)$$
 (E-5)

Because the rms SPL and SEL are both computed from the integral of square pressure, these metrics are related by the following expression, which depends only on the duration of the energy time window *T*:

$$rms SPL=SEL-10log_{10}(T)$$
 (E-6)

rms SPL = SEL 
$$-10\log_{10}(T_{90}) - 0.458$$
 (E-7)

where the term -0.458 dB, which is  $10\log_{10}(0.9)$ , accounts for the rms SPL containing 90% of the total energy from the per-pulse SEL.

#### E.1. 1/3-Octave Band Analysis

The distribution of a sound's power with frequency is described by the sound's spectrum. The sound spectrum can be split into a series of adjacent frequency bands. Splitting a spectrum into 1 Hz wide bands, called passbands, yields the "power spectral density" of the sound. This splitting of the spectrum into passbands of a constant width of 1 Hz, however, does not represent how animals perceive sound.

Because animals perceive exponential increases in frequency rather than linear increases, analyzing a sound spectrum with passbands that increase exponentially in size is more meaningful to marine-mammal hearing. In underwater acoustics, a spectrum is commonly split into 1/3-octave bands, which are one-third of an octave wide; each octave represents a doubling in sound frequency. The center frequency of the ith 1/3-octave band,  $f_c(i)$ , is defined as:

$$f_{\rm c}(i) = 10^{i/10}$$
 (E-8)

and the low ( $f_{lo}$ ) and high ( $f_{hi}$ ) frequency limits of the *i*th 1/3-octave band are defined as:

$$f_{\text{lo}} = 10^{-1/20} f_{\text{c}}(i) \text{ and } f_{\text{hi}} = 10^{1/20} f_{\text{c}}(i)$$
 (E-9)

The 1/3-octave bands become wider with increasing frequency, and on a logarithmic scale the bands appear equally spaced (Figure E-1).

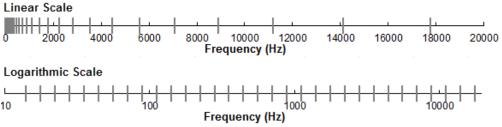



Figure E-1. One-third-octave bands shown on a linear frequency scale and on a logarithmic scale.

The sound pressure level in the *i*th 1/3-octave band  $(L_b^{(i)})$  is computed from the power spectrum S(f) between  $f_{lo}$  and  $f_{hi}$ :

$$L_{b}^{(i)} = 10\log_{10}\left(\int_{f_{lo}}^{f_{hi}} S(f)df\right)$$
 (E-10)

Summing the sound pressure level of all the 1/3-octave bands yields the broadband sound pressure level:

Broadband SPL = 
$$10\log_{10} \sum_{i} 10^{I_b^{(i)}/10}$$
 (E-11)

Figure E-2 shows an example of how the 1/3-octave band sound pressure levels compare to the power spectrum of an ambient noise signal. Because the 1/3-octave bands are wider with increasing frequency, the 1/3-octave band SPL is higher than the power spectrum, especially at higher frequencies.



Figure E-2. A power spectrum and the corresponding 1/3-octave band sound pressure levels of example ambient noise shown on a logarithmic frequency scale.

#### **E.2. Marine Mammal Auditory Weighting Functions**

The potential for noise to affect animals depends on how well the animals can hear it. Noises are less likely to disturb or injure an animal if they are at frequencies that the animal cannot hear well. An exception occurs when the sound pressure is so high that it can physically injure an animal by non-auditory means (i.e., barotrauma). For sound levels below such extremes, the importance of sound components at particular frequencies can be scaled by frequency weighting relevant to an animal's sensitivity to those frequencies (Nedwell and Turnpenny 1998, Nedwell et al. 2007).

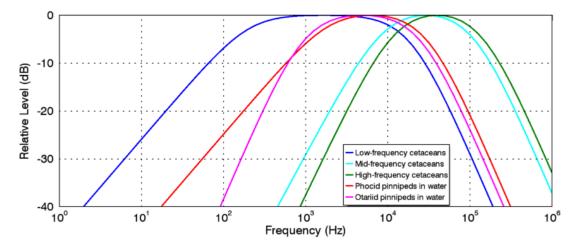
Prior to August 2016, the NMFS SPL criteria for acoustic exposure injury to marine mammals were set according to recommendations for cautionary estimates of sound levels leading to onset of permanent hearing threshold shift (PTS). These criteria prescribed injury thresholds of 190 dB re 1  $\mu Pa$  SPL for pinnipeds and 180 dB re 1  $\mu Pa$  SPL for cetaceans. A corresponding injury threshold was not defined for non-impulsive sounds at that time. NMFS indicated that the SPL criteria should be used for all sources including sonars and explosives. These injury thresholds were applied to individual noise pulses and did not consider the overall duration of the noise or its acoustic frequency distribution.



Criteria that do not take into account exposure duration or noise spectra are generally insufficient for assessing hearing injury. Human workplace noise assessments consider the SPL as well as the duration of exposure and sound spectral characteristics. For example, the International Institute of Noise Control Engineering (I-INCE) and the Occupational Safety and Health Administration (OSHA) suggests thresholds in C-weighted peak pressure level and A-weighted time-average sound level (dB(A) Leq). They also suggest exchange rates that increase the allowable thresholds for each halving or doubling of exposure time. This approach assumes that hearing damage depends on the relative loudness perceived by the human ear. It also assumes that the ear might partially recover from past exposures, particularly if there are periods of quiet nested within the overall exposure.

In recognition of shortcomings of the SPL-only based injury criteria, in 2005 NMFS sponsored the Noise Criteria Group to review literature on marine mammal hearing to propose new noise exposure criteria. Some members of this expert group published a landmark paper (Southall et al. 2007) that suggested assessment methods similar to those applied for humans. The resulting recommendations introduced dual acoustic injury criteria for impulsive sounds that included peak pressure level thresholds and cumulative SEL_{24h} thresholds, where the subscripted 24h refers to the accumulation period for calculating SEL. The peak pressure level criterion is not frequency weighted whereas the SEL_{24h} is frequency weighted according to one of four marine mammal species functional hearing groups: Low-, Mid- and High-Frequency Cetaceans (LFC, MFC, and HFC respectively) and Pinnipeds in Water (PINN). These weighting functions are referred to as M-weighting filters (analogous to the A-weighting filter for human). The SEL_{24h} thresholds were obtained by extrapolating measurements of onset levels of Temporary Threshold Shift (TTS) in belugas by the amount of TTS required to produce Permanent Threshold Shift (PTS) in chinchillas. The Southall et al. (2007) recommendations do not specify an exchange rate, which suggests that the thresholds are the same regardless of the duration of exposure (i.e., it infers a 3 dB exchange rate).

Wood et al. (2012) refined Southall et al.'s (2007) thresholds, suggesting lower injury values for LFC and HFC while retaining the filter shapes. Their revised thresholds were based on TTS-onset levels in harbour porpoises from Lucke et al. (2009), which led to a revised impulsive sound PTS threshold for HFC of 179 dB re 1  $\mu$ Pa²·s. Because there were no data available for baleen whales, Wood et al. (2012) based their recommendations for LFC on results obtained from MFC studies. In particular they referenced Finneran and Schlundt (2010) research, which found mid-frequency cetaceans are more sensitive to non-impulsive sound exposure than Southall et al. (2007) assumed. Wood et al. (2012) thus recommended a more conservative TTS-onset level for LFC of 192 dB re 1  $\mu$ Pa²·s


Also in 2012, the US Navy recommended a different set of criteria for assessing Navy operations (Finneran and Jenkins 2012). Their analysis incorporated new dolphin equal-loudness contours to update weighting functions and injury thresholds for LFC, MFC, and HFC. They recommended separating the pinniped group into otariids (eared seals) and phocids (earless seals) and assigning adjusted frequency thresholds to the former based on several sensitivity studies (Schusterman et al. 1972, Moore and Schusterman 1987, Babushina et al. 1991, Kastak and Schusterman 1998, Kastelein et al. 2005, Mulsow and Reichmuth 2007, Mulsow et al. 2011a, Mulsow et al. 2011b).

In August 2016, after substantial public and expert input into three draft versions and based largely on the above-mentioned literature, NMFS finalized technical guidance for assessing the effect of anthropogenic sound on marine mammal hearing. The guidance describes injury criteria with new thresholds and frequency weighting functions for five functional hearing groups described by Finneran and Jenkins (2012).

In the NMFS proposed guidelines the cumulative SEL are computed as frequency-weighted sums of perpulse SEL at the receiver (animal) position. These levels are directly compared with set thresholds to determine if a take has occurred. The frequency weighting filters and thresholds have been designed for up to five marine mammal classes: Low-Frequency Cetaceans (LFC), Mid-Frequency Cetaceans (MFC), High-Frequency Cetaceans (HFC), and two classes of Pinnipeds in water: phocids (PPW) and otariids (OPW). These weighting functions are graphed in the figure below.

To compute frequency weighted 90% SPL, a time domain filter corresponding to each functional hearing group weighting function was applied. FIR filters (order=65536) with magnitude specified by the NOAA

2016 weighting functions for each functional hear group were generated. The time domain filter was applied to the recorded signal prior to automated detection of individual impacts.



Frequency weighting filters defined the NMFS Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (NMFS, 2016).

Version 3.0 E-5

# ATTACHMENT 3 Marine Mammal Observation (MMO) Report

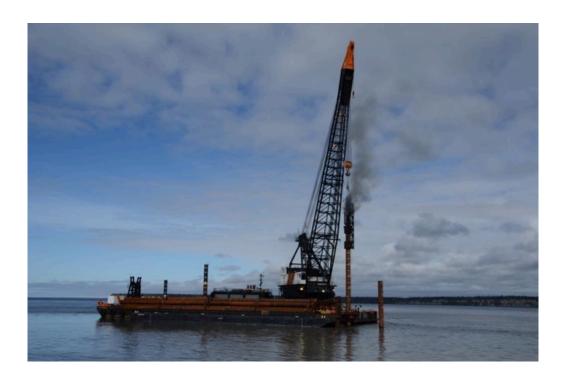


# **Final Project Report**

# **Anchorage Port Modernization Project Test Pile Program Marine Mammal Observing Program**

Submitted to:




2200 Columbia House Boulevard Vancouver, Washington 98681 Contract No. C-20150888

31 July 2016

#### **Prepared in Consultation With:**



4101 University Drive Anchorage, Alaska 99508





#### Suggested citation:

Cornick, L. and Seagars, D.J. 2016. Final Report: Anchorage Port Modernization Project Test Pile Program. Technical report by AECOM for Kiewit.

#### Authors:

Leslie Cornick, Ph.D., APU Dana J. Seagars, AECOM

#### Reviewers/Editors:

Jon Isaacs, AECOM

i



### **Table of Contents**

1.0	Introduction	4
2.0 2.1 2.2 2.3 2.4	Environmental Sampling Protocols Pile Driving	4 10 10 10
3.0 3.1 3.2 3.3 3.4	Environmental Conditions  Marine Mammal Observations  Sighting Rates and Detectability	12 13 20 21
4.0	References Cited	28
5.0	Acknowledgements	28
	of Figures	
_	e 2.1. Aerial map of study area with 500 x 500 m grid overlay and extent of monitoring s	6
Figur	e 2.2. Configuration of observation stations.	7
_	e 2.3. Panoramic views of field of view from the North Station (panel a) and South Staticel b)	
Figur	e 3.1. Distribution of beluga whale observations	. 17
Figur	e 3.2. Distribution of Steller sea lion observations	. 18
Figur	e 3.3. Distribution of harbor seal observations.	. 19
Figur	e 3.4. Frequency of primary marine mammal behaviors by species	. 19
Figur	e 3.5. Location of marine mammal take 03 May 2016	. 25
Figur	e 3.6. Locations of marine mammal takes 25 May, 2016	. 25
Figur	e 3.7. Locations of marine mammal takes 07 June, 2016	. 26
Figur	e 3.8. Locations of marine mammal takes 10 June, 2016	. 26
Figur	e 3.9. Location of marine mammal take 16 June, 2016	. 27
Figur	e 3.10. Location of marine mammal take 21 June, 2016	. 27



## **List of Tables**

	Required monitoring and Level-B harassment (take) zones for beluga whales and ne mammals	9
Table 2.2.	Attribute definitions and units for environmental data	10
Table 2.3.	Attribute definitions and units for marine mammal data	12
Table 3.1.	Summary of environmental conditions	13
Table 3.2.	Beluga whale observations	15
Table 3.3.	Other marine mammal observations	16
Table 3.4.	Daily and cumulative sighting rates	20
Table 3.5.	Summary of marine mammal takes with rationale	24
List of A	Acronyms	
APMP	Anchorage Port Modernization Project	
APU	Alaska Pacific University	
ESA	Endangered Species Act	
IHA	Incidental Harassment Authorization	
MMPA	Marine Mammal Protection Act	
MMOs	Marine Mammal Observers	
NMFS	National Marine Fisheries Service	
NOAA	National Oceanic and Atmospheric Administration	
POA	Port of Anchorage Administration	
TPP	Test Pile Program	



#### 1.0 Introduction

This document presents the final report for monitoring and data collection of beluga whale (*Delphinapterus leucas*) and other marine mammal observations during project activities associated with the Anchorage Port Modernization Project (APMP) Test Pile Program (TPP). Kiewit was contracted by the Port of Anchorage (POA) to conduct the TTP. AECOM and its subcontractor Alaska Pacific University (APU) were part of the Kiewit team, responsible for marine mammal observation tasks.

The monitoring effort and data collection were conducted at three locations: 1) the Anchorage Public Boat Dock, 2) the North End, which is located just above shore level at the north end of the APMP, and 3) a roving observer with primary responsibility for the mandatory 100 m shutdown zone and areas immediately adjacent to TPP in-water activity that were not observable from other stations under all scenarios. Marine mammal monitoring was conducted by Marine Mammal Observers (MMOs) primarily from APU, during 19 non-consecutive days from 03 May through 21 June, 2016. Monitoring was conducted according to the conditions of the Incidental Harassment Authorization (IHA) issued to the POA on 4 March, 2016, Sections 4(f) and 5(b-c) and the Marine Mammal Monitoring and Mitigation Plan (updated 3 March, 2016) submitted to the POA by CH2M, their prime contractor for the APMP.

#### 2.0 Monitoring Effort and Methods

#### 2.1 Observation Stations

Monitoring was conducted by trained MMOs primarily from the Marine and Environmental Sciences program at APU, with additional MMOs provided by AECOM. In order to ensure full MMO coverage of the Level-B harassment and shutdown zones implemented in the IHA, we used two observation stations located at the northern and southern extents of the project area (Figure 2.1). One station was located at the Anchorage Public Boat Dock and the other at the North End of the Port, based on previous monitoring conducted for the Port (Cornick et al. 2011). The alignment, configuration, and height of these stations generally provided a wide sweeping view of the required monitoring area with good overlap between stations (Figures 2.2 - 2.3 a-b).

However, once the pile barge and crane arrived on scene and were positioned for driving, it was discovered that a portion of the nearshore areas where pile driving was to occur was obscured from view by the barges themselves, various other Port machinery, and topography. At the South Station, stacks of unloaded shipping containers and a barge, grounded off the Spenard Builders yard with the landing gate lofted high in the air, obscured the view to the north towards



the inshore side of the Coast Guard pier. At the North station the view of a small bight at the northern end of the existing Matson pier and ~500m south along the northern extent of that pier was also obscured.

As a result, an additional MMO (Rover) was stationed adjacent to TPP activities in order to monitor the 100m mandatory shutdown zone for all marine mammals, as well as portions of the beluga shutdown zones not observable from the North and South stations under all scenarios. By virtue of being directly adjacent to the driving location, the Rover was able to serve as primary contact between the pile drivers and the observers, manage decision making for the MMO teams, ensure the area immediately adjacent to the in-water activities was effectively monitored, and relayed specific information about TPP activities to both stations. This facilitated appropriate preparations and monitoring without having to involve construction staff in additional communications.

A team of four MMOs (3 observers, 1 Field Chief) was positioned at each of the two observation stations. Each morning the teams were provided with large format maps depicting the monitoring, take, and shutdown zones defined in the IHA (Table 2.1) and specific to the location of the particular pile being driven that date. These maps facilitated correctly determining if a marine mammal sighting was within a particular zone. We recommend a similar protocol for future monitoring, with each station staffed by 4 MMOs, rotating between active and resting periods, in order to avoid eye strain, particularly for shifts in excess of 6 hours. A minimum of 3 MMOs is needed at each station in order to accommodate any necessary rest.



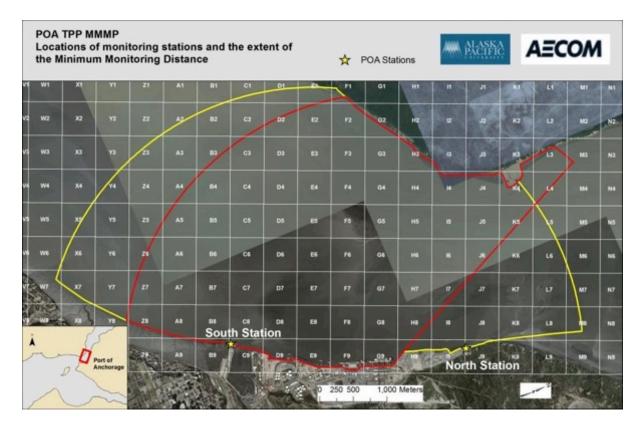



Figure 2.1. Aerial map of study area with 500 x 500 m grid overlay and extent of monitoring zones. The APMP footprint is enclosed within grid cells D9 – I9. Observation stations at Anchorage Public Boat Dock (South; grid cell C9) and POA (North; grid cell I9) are denoted by yellow stars.





Figure 2.2. Configuration of observation stations. Elevated platform provided maximum field of view of the water's surface.





Figure 2.3. Panoramic views of field of view from the North Station (panel a) and South Station (panel b).



Table 2.1. Required monitoring and Level-B harassment (take) zones for beluga whales and other marine mammals (as defined by NMFS, IHA issued to the Port of Anchorage, March 4, 2016). Red is mandatory shut down, orange is inferred Level-B harassment take, yellow is stated Level-B harassment take with the ability to continue pile driving operations; green is the overall "minimum required monitoring area."

Pile	Unatten	uated Piles	Attenuated Piles							
Activity	Belugas	Other marine mammals	Belugas	Other Marine Mammals						
All activity  – shut down		100 m		100 m						
Impact	1,400		300 m							
Vibratory	4,000		900 m							
		Level B Harassn	nent Take							
Impact	1,400	1,400	1,400	1,400						
Vibratory	4,000	4,000	4,000	4,000						
	Minin	num radial distanc	e for monitoring							
Impact			1,400 m							
Vibratory	Vibratory 4,000 m									
	Non-Pile Driving Activities									
All o	All operations cease if marine mammal within 10 m of vessel, machinery.									



#### 2.2 Environmental Sampling Protocols

Environmental data pertaining to monitoring conditions were logged every 30 minutes during observation sessions, or when conditions changed (Table 2.2). These data were used to assess overall monitoring conditions and determine if observations were obstructed by environmental conditions.

Table 2.2. Attribute definitions and units for environmental data.

Data Attribute	Attribute Definition and Units
Overall Conditions	Poor, moderate, excellent
	Sunny (S), partly cloudy (PC), light rain (LR), steady rain (SR), fog (F), overcast (OC),
Weather Conditions	light snow (LS), snow (S)
Light Conditions	Light, twilight, dark
Air Temperature	Celsius
Wind Speed	Knots
	From the north (N), northeast (NE), east (E), southeast (SE), south (S), southwest
Wind Direction	(SW), west (W), northwest (NW)
Sea State	Beaufort scale
Cloud Cover	0-100%
Visibility	km; maximum sighting distance
Glare	Low, moderate, high
Ice Cover	0-100%
Ice Type	No ice, new, brash, pancake, floes
Other Activities	Boat traffic or other anthropogenic activities

#### 2.3 Pile Driving

Pile driving activities were documented during observation sessions based on daily construction information provided by Kiewit during real-time communications with the Rover. Specific notations included whether the activity was impact or vibratory, unattenuated or attenuated, and type of attenuation, if applicable. "All clear" notice and start and stop times of all pile driving activity were recorded.

#### 2.4 Marine Mammal Monitoring and Observations

Monitoring was conducted throughout the study period during all pile driving operations. MMOs arrived onsite ~1 hour before scheduled pile driving startup, and monitoring commenced 30 minutes before the scheduled pile driving startup. The Rover served as the primary point of contact between Kiewit and the observation stations to coordinate activity and notifications of marine mammal sightings and shutdown recommendations, as appropriate. Communication between the Rover, station MMOs, and Kiewit staff was maintained throughout observation periods via hand-held radios and cellular phone. MMOs at the observation stations rotated through 3 duty stations (2 observing, 1 recording data) and a rest period every 30 min in order



to minimize eye strain. MMOs were provided additional breaks during periods of TPP downtime as practicable. Monitoring shifts lasted between 3-10 hours.

All required harassment and shutdown zones were monitored continuously using binoculars (Bushnell 7x50 with internal compass and range-finding reticle or Nikon Monarch ATB 10x42). The South station was also equipped with Celestron 71008 SkyMaster 25x70 long-range binoculars mounted on a tripod in order to provide additional viewing power of the 4 km beluga whale shutdown zone for vibratory pile driving.

Beluga whales were classified by color (white, gray, or dark gray, which are classified as calves) and proximity (calves remain in close proximity to mothers, usually in direct contact). White beluga whales are typically adults and gray beluga whales are typically juveniles; however, there is considerable variation in the age at which beluga whales acquire their full white color. Therefore, color cannot be used reliably to determine age class beyond calves. Gray beluga whales (normally considered juveniles) have been reported closely associated with calves, suggesting that they may be reproductively mature (NMFS, unpublished data). Other marine mammals (harbor seals, Steller sea lions, harbor porpoises, killer whales) were classified as adult, juvenile or unknown; sex was noted if observable. Primary behavioral states of observed marine mammals were recorded, and secondary and/or abrupt behavioral changes were recorded, if applicable.

Attributes for data collection when beluga whales or other marine mammals were observed are summarized in **Table 2.3**. Locations were classified according to the grid-cell map using bearings obtained from sighting binoculars and distances from known landmarks estimated by eye (Figure 2.1). A surveyor's theodolite was used to mark GPS locations when animals were in view long enough to obtain a fix.

Other anthropogenic activity in the study area was also recorded. If a marine mammal was observed within 10m of any in-water project-related work other than pile driving (e.g., movement of the barge to the pile location, positioning the pile on the substrate, support watercraft activity), communication was initiated and appropriate action recommended (e.g., shutdown of pile driving, reduced watercraft speed).



Table 2.3. Attribute definitions and units for marine mammal data.

Data Attribute	Attribute Definition and Units
Initial Sighting Time	HH:MM
Final Sighting Time	HH:MM
Species	Beluga whale, harbor seal, harbor porpoise, Steller sea lion, killer whale, other
Grid Cell #	First, mid, last
Distance	From animal to noise source (initial, closest, final); meters
Number of Animals	Minimum, maximum, best count
Number of Animals in Each Class	White, gray, dark gray, unknown; adult, juvenile, pup; male, female, unknown
Initial and Final Heading	N, NE, NW, W, S, SE, SW, E
Number of Animals Entered H-Zone B	If applicable
Time Entered H-Zone B	HH:MM
Time Exited H-Zone B	HH:MM
Time Entered Shutdown Zone	HH:MM
Time Exited Shutdown Zone	HH:MM
	Traveling, diving, milling, resting, socializing, feeding suspected, feeding
	observed, spyhopping, mating suspected, bubbling, snorkeling, vocalizing,
Behavior	swimming towards site, directional change, other
Group Cohesion	Packed, loose, aligned, abreast, random
Changes in Behavior	Description, time, related to project activities or other
Project Activities	In-water work occuring or not; type of activity, attenuation, shutdown or delay

#### 3.0 Results

#### 3.1 Environmental Conditions

Environmental conditions during the observation periods are summarized in Table 3.1.

Overall conditions were excellent; however, on 18 May at ~0911 a storm front moved through the monitoring zone from south to north over a period of ~20 minutes during unattenuated vibratory pile driving. Observers at the South Station reported the onset of obscured visibility at the edge of the 4000m monitoring zone to the Rover at ~0919 and shutdown was recommended; Kiewit indicated that vibratory was near completion, so the decision was made to shutdown due to weather and prepare for impact pile driving. At that time MMOs initiated the 30-min post strike monitoring period. Visibility of the complete 4000m monitoring zone returned at ~0941, for a total shutdown period of 22 min. Post-strike monitoring was completed at 0949.



Table 3.1. Summary of environmental conditions. Weather conditions are reported as % occurrence. All others are means.

	South Station	North Station	Rover Station
Overall Conditions	3	3	3
Excellent (3), Moderate (2), Poor (1)	(1-3)	(1-3)	(1-3)
Weather Conditions Party Cloudy (PC), Overcast (OC), Sunny (S), Light Rain (LR)	1.3 % LR	0.93 % LR	1.4 % LR
	24.5 % S	16.4 % OC	8.1 % OC
	26.2 % OC	18.7 % S	33.8 % S
	48.0 % PC	64.0 % PC	56.8% PC
Light Conditions Daylight (1), Twilight (2), Dark (3)	1	1	1
Air Temperature (°C)	11.9 °C	12.5 °C	12.5 °C
	(5.6-22.9)	(4.1-19.9)	(7-22.9)
Wind Speed (Knots)	4.1 knots	3.1 knots	4.7 knots
	(0-13)	(0-10)	(0-15)
Wind Direction (Compass Heading)	204	198	217
Beaufort Sea State	1.6	1.1	1.1
	(0-3)	(0-2)	(0-3)
Cloud Cover (%)	50.4 %	45.10 %	37.6 %
	(0-100)	(0-100)	(0-100)
Visibility (kilometers)	5.2 km	4.9 km	5.7 km
	(3-10)	(4-5)	(4-6)
Glare (%)	0.1 %	2.8 %	1.4 %
	(0-5)	(0-35)	(0-25)

#### 3.2 Marine Mammal Observations

Beluga whale and other marine mammal observations are summarized in Tables 3.2 and 3.3. Received sound levels (RL) for marine mammal sightings were calculated by JASCO Applied Sciences using the following equation:

$$RL=SL-nlog(R)$$

where R is the distance between the pile and the sighted marine mammal (in meters), SL is the pile driving source level, and n is the transmission loss coefficient. The calculations applied the median measured source level and the appropriate transmission loss coefficient (Table 12 in Austin et al, 2016) for the pile and hammer that corresponded to the time of the sighting.



Marine mammal sightings occurred throughout the observation area (Figures 3.1-3.3). There were a total of 10 beluga whales observed, with 1 take (see Section 3.4). There were a total of 6 Steller sea lions observed, with 1 take, and 28 harbor seals observed with 7 takes. No other marine mammal species were observed.

There was only one sighting of a marine mammal in a "shut-down" zone – a beluga whale, observed twice within the "pending" shutdown zone for pile # 7 at 0809 and 0811 on 25 May. The observation occurred during a "30 min pre-strike" watch period that was subsequently extended for mechanical adjustments; thus the animal was last observed 2 hours 49 minutes prior to pile driving activity. No shut down was initiated.

At 1007 on 03 June, the North Station reported what appeared to be a floating dead whale, or perhaps debris shaped as such, on the far side of the Inlet (grid cells K4-F2) drifting south with the outgoing tide. Despite additional observations with 25x binoculars from the South Station, no positive identification was possible and the object was recorded as "unidentified" at 1037. At 1256 on 08 June a similarly shaped object was observed on the far side of the Inlet in H3, again moving south. No positive identification was made. On the morning of 10 June a NOAA Law Enforcement Officer visited the North station to inform MMOs that they had a report of a large floating dead cetacean in the upper Inlet. The MMOs were alerted to watch for the whale during regular observations. At 0848 a large object, with similar shape and appearance to that seen previously, was sighted outside of the monitoring zone ~9100m to the west. Over the next 20 minutes the object drifted rapidly north into the monitoring zone on the incoming tide. By 0908, multiple MMOs could clearly see buccal grooves on an inflated throat region with numerous sea birds roosting on the carcass of the floating dead whale. The sighting was reported to Kiewit for forwarding on to NOAA. A NOAA vessel inspecting the object later that morning confirmed it was a large dead cetacean, with positive identification pending analysis of skin samples taken on site. In retrospect, improved lighting conditions (sun behind observers and at a relatively lower angle than prior dates) associated with the earlier observation time of the 08 June sighting may have facilitated visual identification of this object as a dead whale floating on the far side of the inlet nearly 4000m away.

Primary marine mammal behaviors were limited to traveling and milling (Figure 3.4). Diving was observed as a secondary behavior on 3 occasions; once in a beluga whale and in two Steller sea lion observations. There were two events where an abrupt change in behavior was noted (see Section 3.4). No other behaviors were observed.



Table 3.2. Beluga whale observations.

	Beluga Whales - All Stations													
Date	White (#)	Gray (#)	Dark Gray (#)	Unknown (#)	First Sighted	Sighting Duration (min)	Grid Cells Occupied	In-Water TPP Activity	Attenuation Method	Received Sound Level (dB re 1 µPa)	Entered Level-B	Shutdown	Takes (#)	
3-May-16	0	2	0	0	20:52	1	J4	None	N/A	N/A	N	N/A	0	
12-May-16	0	1	0	0	12:53	1	G2	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	8:09	2	F9	None	N/A	N/A	N	N/A	0	
25-May-16	0	0	0	1	8:13	1	G9 D9, C9, B8,	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	8:31	23	A8, A7	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	9:14	10	D9	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	9:58	8	18, J8, K8, L9	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	10:19	9	J8, I9, H9	None	N/A	N/A	N	N/A	0	
25-May-16	0	1	0	0	11:02	13	H8, I9, J8, K8	Vibratory	Bubble	125.7	Υ	N	1	
Totals	0	9	0	1							Total Take	s	1	



Table 3.3. Other marine mammal observations.

					Other	Marine Mammals	s - All Stations					
Date	Adults (#)	Juveniles/ Pups (#)	Unknown Age Class (#)	First Sighted	Sighting Duration (min)	Grid Cells Occupied	In-Water TPP Activity	Attenuation Method	Received Sound Level (dB re 1 µPa)	Entered Level-B	Shutdown	Takes (#
Harbor Seals												
3-May-16	0	0	1	19:55	1	C8	Impact	Resonance	166.1	Υ	N	1
6-May-16	0	0	1	9:01	1	18	None	N/A		N	N/A	0
25-May-16	0	0	1	8:20	6	D4, E5, G5	None	N/A		N	N/A	0
26-May-16	0	0	1	10:21	2	A5	None	N/A		N	N/A	0
7-Jun-16	0	0	1	10:37	8	16, G5, H7	None	N/A		Υ	N/A	0
7-Jun-16	0	0	1	11:12	43	G8, B8, C8	None	N/A		Υ	N/A	1
7-Jun-16	0	0	1	12:19	1	B9	Impact	None	156	N	N	0
7-Jun-16	0	0	1	12:29	63	C8, C9, C8	Impact	None	162.8	Υ	N	1
7-Jun-16	0	0	1	13:16	2	J8, I9	None	N/A		Υ	N/A	0
10-Jun-16	0	0	2	7:42	75	C8, C9	None	N/A		Υ	N/A	0
10-Jun-16	0	0	1	9:26	3	B8, C8	None	N/A		Υ	N/A	0
10-Jun-16	0	0	1	9:40	35	D8, C8, C9	Impact	None	Not Measured	Υ	N	1
10-Jun-16	0	0	1	10:42	36	C9, C8, C9	None	N/A		Υ	N/A	0
10-Jun-16	0	0	1	11:13	1	Z5	None	N/A		N	N/A	0
10-Jun-16	0	0	1	11:29	18	C9	None	N/A		Υ	N/A	0
10-Jun-16	0	0	1	11:39	6	D8	None	N/A		Υ	N/A	0
10-Jun-16	0	0	1	12:10	68	C9, C7, B7	Impact	None	Not Measured	Υ	N	1
15-Jun-16	0	0	1	10:32	27	C9, B6, A6	None	N/A		N	N/A	0
16-Jun-16	0	0	1	11:32	16	J8, I8, G8	None	N/A		Υ	N/A	0
16-Jun-16	0	0	1	12:20	1	G7	Impact	None	Not Measured	Υ	N	1
21-Jun-16	0	0	1	12:03	38	C9	None	N/A		Υ	N/A	0
21-Jun-16	0	0	1	12:16	12	17, J8	None	N/A		N	N/A	0
21-Jun-16	0	0	1	12:38	1	J8	None	N/A		N	N/A	0
21-Jun-16	0	0	1	12:48	6	J9, J8	None	N/A		N	N/A	0
21-Jun-16	0	0	1	12:56	33	C9, C8	None	N/A		Υ	N/A	0
21-Jun-16	0	0	1	13:24	5	B7	None	N/A		N	N/A	0
21-Jun-16	0	0	1	13:32	2	A5	None	N/A		N	N/A	1
Totals	0	0	28									7
						Steller Sea Lid	ons					
2-May-16	0	0	1	13:52	30	A3, C4, E4, I5, K5	None	N/A		Υ	N/A	0
25-May-16	0	1	0	9:08	2	F9, G8	None	N/A		Υ	N/A	0
25-May-16	0	0	1	9:16	1	18	None	N/A		N	N/A	0
25-May-16	0	1	0	9:38	6	E9	None	N/A		Υ	N/A	1
25-May-16	0	0	1	9:51	1	D8	None	N/A		N	N/A	0
25-May-16	1	0	0	9:58	6	A7, Y5	None	N/A		N	N/A	0
Totals	1	2	3									1



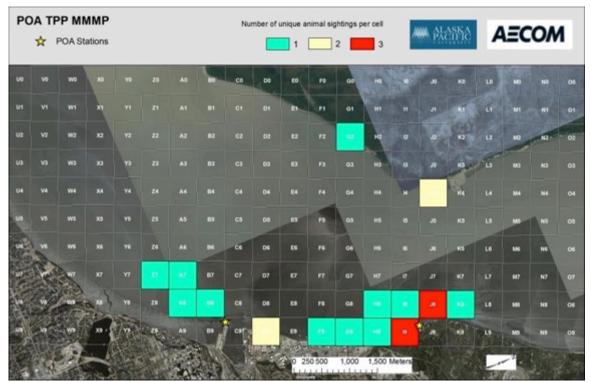



Figure 3.1. Distribution of beluga whale observations. Shaded cells represent all grid cells where animals were observed. Green = one observation in the cell, yellow = two observations in the cell, and red = three observations in the cell. Observations may be of the same or multiple individuals.



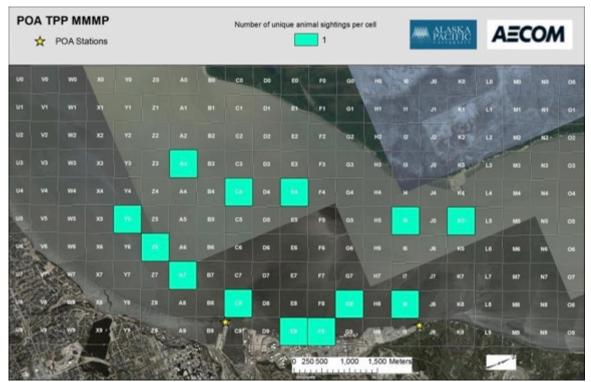



Figure 3.2. Distribution of Steller sea lion observations. Shaded cells represent all grid cells where animals were observed. Green = one observation in the cell. Observations may be of the same or multiple individuals.



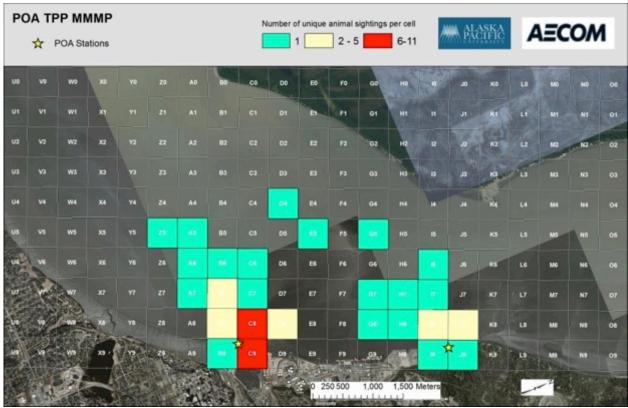



Figure 3.3. Distribution of harbor seal observations. Shaded cells represent all grid cells where animals were observed. Green = one observation in the cell, yellow = 2-5 observations in the cell, and red = 6-11 observations in the cell. Observations may be of the same or multiple individuals.

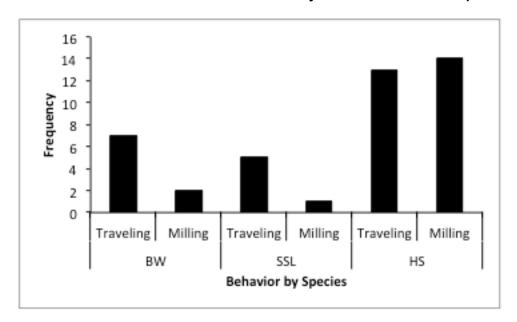



Figure 3.4. Frequency of primary marine mammal behaviors by species. BW = beluga whale, SSL = Steller sea lion, HS = harbor seal.



#### 3.3 Sighting Rates and Detectability

Observations were conducted over 19 field days with a total of 85.3 hours of effort. Daily and cumulative sighting rates for each marine mammal species observed are summarized in Table 3.4. There were insufficient data to perform detectability analyses.

Table 3.4. Daily and cumulative sighting rates. Total effort is calculated as the total hours of active monitoring (total on-site time – stand down periods).

Date	Start	End	Total Effort (hr) excluding breaks	Beluga whale groups observed	Beluga whale sighting rate (groups/hour)	Harbor seals observed	Harbor seal sighting rate (individuals/hour)	Steller sea lions observed	Steller sea lion sighting rate (individuals/hour)
2-May	10:06	15:17	3.7	0	0	0	0.00	1	0.27
3-May	8:45	21:07	7.9	1	0.13	1	0.13	0	0.00
6-May	6:15	11:45	3.0	0	0	1	0.33	0	0.00
7-May	9:10	11:52	1.7	0	0	0	0.00	0	0.00
12-May	10:47	16:51	4.8	1	0.21	0	0.00	0	0.00
13-May	7:13	9:16	2.1	0	0	0	0.00	0	0.00
18-May	7:20	13:04	4.8	0	0	0	0.00	0	0.00
19-May	7:09	12:18	4.7	0	0	0	0.00	0	0.00
25-May	8:05	15:10	6.2	7	1.13	1	0.16	5	0.80
26-May	8:41	16:07	6.7	0	0	1	0.15	0	0.00
1-Jun	4:47	11:09	5.9	0	0	0	0.00	0	0.00
3-Jun	6:30	14:32	7.8	0	0	0	0.00	0	0.00
7-Jun	9:04	13:32	6.2	0	0	5	0.81	0	0.00
8-Jun	12:00	14:02	2.0	0	0	0	0.00	0	0.00
9-Jun	13:50	16:56	4.1	0	0	0	0.00	0	0.00
10-Jun	7:31	13:39	6.4	0	0	9	1.41	0	0.00
15-Jun	10:30	11:30	1.0	0	0	1	1.00	0	0.00
16-Jun	10:05	13:00	2.9	0	0	2	0.69	0	0.00
21-Jun	12:00	15:27	3.5	0	0	7	2.03	0	0.00
Cumulative T	otals		85.3	9	0.11	28	0.33	6	0.07



#### 3.4 Marine Mammal Takes

Marine mammal takes are summarized in Table 3.5. A brief narrative follows for each event including observations noted, a description of sighting conditions, in-water activity, location, behavior, and behavioral changes reported when applicable. There was 1 Level-B beluga whale take, 1 Level-B Steller sea lion take, and 7 Level-B harbor seal takes. Take limits were not reached for any species.

On 3 May 1 unknown age and sex harbor seal surfaced in the Level-B harassment zone in grid cell C8, ~900 m from TPP activity (pile #9; impact with resonance-based attenuation; Figure 3.5). The seal immediately submerged and was not re-sighted. TPP activity was not shut down because the seal did not enter the 100 m shutdown zone for other marine mammals. Sighting conditions at the time of the take were rated as excellent – overcast skies, light wind (2.5 kts), sea state of 1, 5+ km visibility, with no glare.

On 25 May 1 gray beluga whale surfaced in the Level-B harassment zone in grid cell H8, ~1300 m from TPP activity (pile #7; vibratory with air bubble curtain attenuation; Figure 3.6). The closest distance fixed with the theodolite was ~238m. The animal was traveling north and tracked for 13 min alongshore. It left the monitoring zone in grid cell I9 and continued traveling until it was no longer in view. It was last sighted in grid cell K8 at 1115. TPP activity was not shut down because the whale did not enter the 900 m shutdown zone for attenuated vibratory pile driving. There were no abrupt changes in behavior. Sighting conditions at the time of the take were rated as excellent – partly cloudy skies, moderate wind (5 kts), sea state of 1, 5+ km visibility, with no glare.

On 25 May at 0938 a large juvenile (sub-adult) Steller sea lion was observed traveling and milling ~100m to west of POL#2 dock in grid cell E9 during a pre-strike scanning period (Figure 3.6). This individual was moving towards the dock at an oblique angle and dove, resurfacing twice less than a minute later within about 60m away. About this time a small workboat used by the project left the stern of the pile barge and began to travel to the south at approximately 6-7 kts (a small wake was produced). Kiewit estimated the speed at ~4-5 kts (Daily Report CN-SUB-052a). As the workboat approached POL#2, the SSL surfaced off its port beam, roughly 20m away. The SSL swam rapidly alongside the boat and as it dove, it was headed to the front of the bow of the boat. A few seconds later the SSL surfaced just ahead of the bow within 3 m, and at that point both the skipper and the passengers noticed the SSL as it dove beneath the bow within 1m. The workboat then proceeded to the Coast Guard dock. Shortly thereafter the workboat returned to the pile barge. On this return trip, the workboat appeared to travel



somewhat faster than before, approaching planing speed, as the wake was initially large as it left the dock but then diminished slightly as it increased speed. The boat's route crossed with the sea lion's path as it swam off the port side, passing either within 1m or directly over the spot where the sea lion had been surface swimming, and then it dove a few seconds (<3) before course intersection. In both events the sea lion abruptly changed its direction of travel and dove rapidly at vessel approach. This sighting was not initially recorded as a take, but upon further review, due to the abrupt change in behavior during both encounters, the sighting was reclassified as a take. Sighting conditions at the time of the take were rated excellent (6+km visibility) with partly cloudy to sunny skies, no glare, sea state 1, and a south wind at 4-5 kts.

On 07 June a single harbor seal was observed traveling and then milling at the edge of the Level-B Harassment zone (grid cell C8) at 1112 (Figure 3.7). Unattenuated impact pile driving commenced at 1139; at that time the seal was inside the Level-B zone and the take was recorded. The seal left the Level-B zone at 1148 and went out of view at 1155. There were no abrupt changes in behavior. Sighting conditions at the time of the take were rated as excellent – partly cloudy skies, moderate wind (5-6 kts), sea state of 1-2, 5+ km of visibility, with no glare.

On 07 June another single harbor seal was observed in the same general area (grid cell C8) at 1229 during unattenuated impact pile driving, which ended at 1302 (Figure 3.7). It left the Level-B Harassment zone at 1322, and was still in view at 1332 when the 30 min post scan was completed. This may have been the same animal that was described in the previous sighting given the location; however, because there was more than 10 min between observations it was recorded as a separate sighting. There were no abrupt changes in behavior. Sighting conditions at the time of the take were rated as excellent – partly cloudy skies, moderate wind (5-6 kts), sea state of 1-2, 5+ km of visibility, with no glare.

On 10 June a single harbor seal was observed at 0940 inside the Level-B Harassment zone (grid cell D8) during unattenuated impact pile driving (Figure 3.8). It continued to mill inside the Level-B zone until it went out of view at 1015. There were no abrupt changes in behavior. Sighting conditions at the time of the take were rated as excellent – partly cloudy skies, moderate wind (5-6 kts), sea state of 1-2, 5+ km of visibility, with no glare.

On 10 June another single harbor seal was observed milling in the same general area in grid cell C9 at 1210 during unattenuated impact pile driving (Figure 3.8). This animal exhibited an abrupt behavioral change at 1311, moving NW, and then changed direction again at 1315 and moved S away from the Level-B zone. It was not apparent whether the animal was responding to a specific stimulus. It left the Level-B zone at 1311 and went out of view at 1318. This may



have been the same animal that was described in the previous sighting given the location; however, because there was more than 10 min between observations it was recorded as a separate sighting. Sighting conditions at the time of the take were rated as excellent – partly cloudy skies, moderate wind (5-6 kts), sea state of 1-2, 5+ km of visibility, with no glare.

On 16 June a single harbor seal was observed inside the Level-B Harassment zone (grid cell G7) at 1220 during unattenuated impact pile driving (Figure 3.9). It immediately submerged and went out of view, and was not re-sighted. Sighting conditions at the time of the take were rated as excellent – sunny skies, light wind (2.4 kts), sea state of 1, 5+ km of visibility, with no glare.

On 21 June a single harbor seal was observed inside the Level-B Harassment zone (grid cell C8) at 1332, 2 min before the start of unattenuated impact pile driving (Figure 3.10). It immediately submerged and went out of view. Because of the timing of the observation and the MMO's inability to determine if the animal had left the Level-B zone it was recorded as a take. Sighting conditions at the time of the take were rated as excellent – sunny skies, moderate wind (5-7 kts), sea state of 2, 5+ km of visibility, with no glare.



Table 3.5. Summary of marine mammal takes with rationale.

Date	Station reporting observation	Initial sighting time	Final sighting time	Time entered take zone	Time exited take zone	Take location (Grid Cell)	Pile number	Activity type	Rationale for take
			•		Beluga whale		•		
5/25/16	North	11:02	11:15	11:02	11:15	Н8	7 Loc 5	Vibratory, Bubble attenuation	Appeared within Take zone during project activity
				5	Steller sea lion				
5/25/16	Rover	9:38	9:44	9:38	9:44	E9	7 Loc 5	Non-pile driving project activity	Approach by project boat within less than 10 m on two occasions resulting in a dive reaction and a change in direction.
					Harbor seal				
5/3/16	South	19:55	19:55	19:55	-	C8	8 Loc 6	Impact with resonance attenuation	Observed once in take zone during project activity
6/7/16	South	11:12	11:55	11:12	11:48	C8	1 Loc 5	Impact w/no attenuation	Observed 5 times in take zone during project activity Initially seen outside of take
6/7/16	South	12:29	13:32	12:50	13:22	C8	1 Loc 5	Impact w/no attenuation	zone during project activity, moved into take zone where observed 5 times; remained in area during
6/10/16	South	9:40	10:15	9:48	10:15	D8	9 & 8 Loc 6	Restrike: Impact w/no attenuation	post scan period Observed multiple times in take zone continuously for both piles TWO TAKES?
6/10/16	South	12:10	13:18	12:10	13:11	C9	10 Loc 6	Restrike: Impact w/no attenuation	Observed before and after activity in take zone; moved away from sound w/in 2 min of end of pile drive.
6/16/16	South	12:20	12:20	12:20	12:20	G7	3 Loc 1	Restrike: Impact w/no attenuation	Observed once in take zone during project activity
6/21/16	South	13:32	13:32	13:32	13:32	C8	2 Loc 5	Restrike: Impact w/no attenuation	Observed once in take zone 2 min prior to project activity; presumed to be in area at onset of driving.



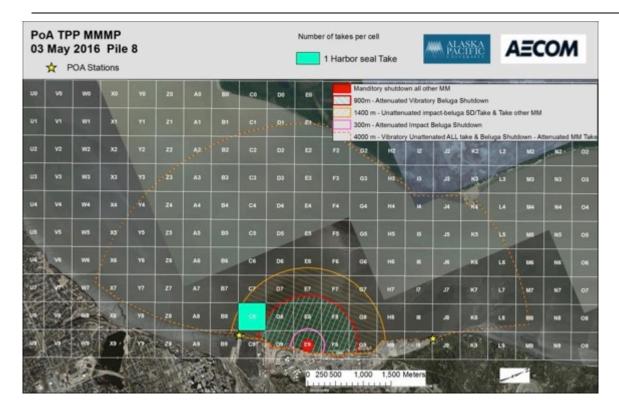



Figure 3.5. Location of marine mammal take 03 May 2016.

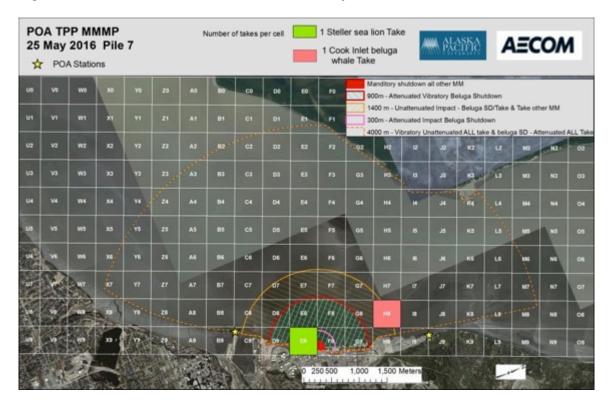



Figure 3.6. Locations of marine mammal takes 25 May, 2016.



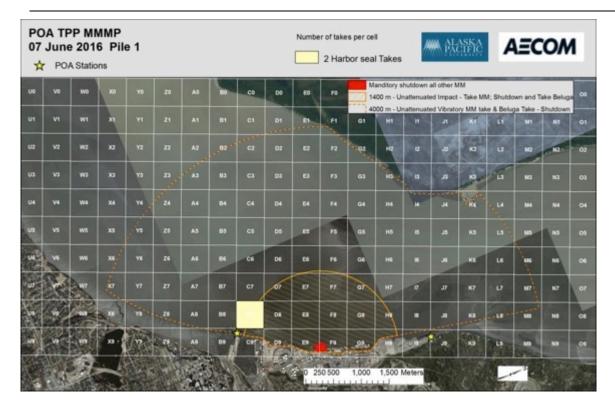



Figure 3.7. Locations of marine mammal takes 07 June, 2016.

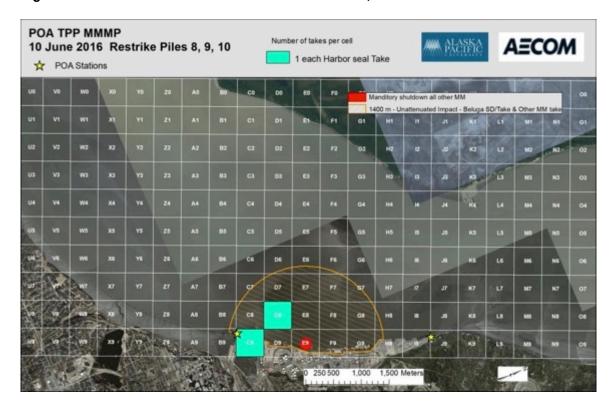



Figure 3.8. Locations of marine mammal takes 10 June, 2016.



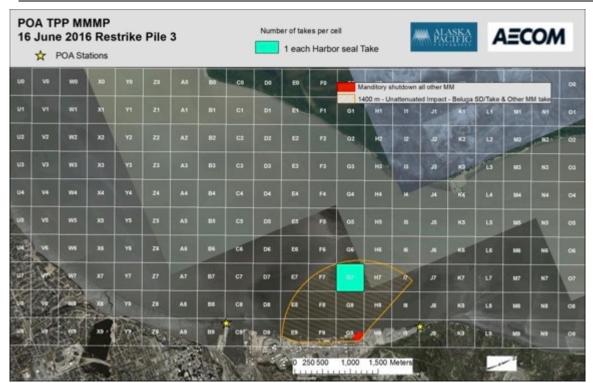



Figure 3.9. Location of marine mammal take 16 June, 2016.

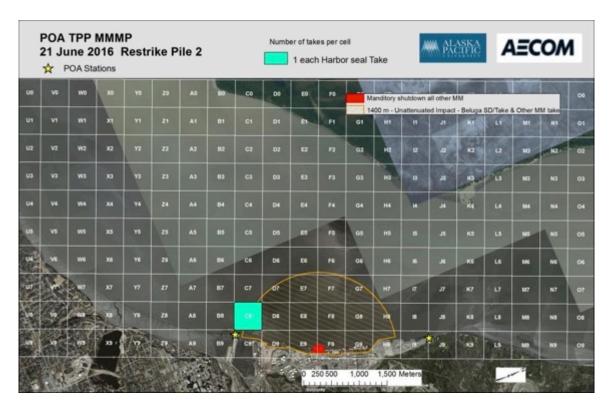



Figure 3.10. Location of marine mammal take 21 June, 2016



#### 4.0 References Cited

- Austin, M., S. Denes, J. MacDonnell, and G. Warner. 2016. Hydroacoustic Monitoring Report: Anchorage Port Modernization Test Pile Program. Version 1.1. Technical report by JASCO Applied Sciences for Kiewit Infrastructure West Co.
- CH2M 2015. Application for a Marine Mammal Protection Act Incidental Harassment Authorization and Marine Mammal Monitoring and Mitigation Plan submitted to NOAA, NMFS, November 2015.
- Cornick, L.A., S. Love, L. Pinney, C. Smith, Z. Zartler. 2011. Scientific marine mammal monitoring plan. Distribution, Habitat Use and Behavior of Cook Inlet Beluga Whales and Other Marine Mammals at the Port of Anchorage, Marine Terminal Redevelopment Project. June November 2011.

#### 5.0 Acknowledgements

The authors acknowledge the following individuals who served as MMOs and *Field Chiefs: Mabel Baldwin-Schaeffer*, Haley Baliles, Jenipher Cate*, Meagan DeBenedetto, Amy Dowling, Martin Erickson, Angela Gravitt*, Freya Hately, Lauren Himmelreich*, Fran Honea, Olivia Kramer, Caitlin Marsteller, Josh Moffi*, Emily Smith, and Jennifer Tennyson. Lauren Himmelreich entered and proofed marine mammal and environmental data and developed Table 3.1.

Our thanks to APU staff member Brenda Fahlsing for budget and invoice processing.

Our thanks to a number of AECOM staff: Jon Isaacs, Laura Young, and Erin Dunable handled contract oversight and budgeting. Courtney Brozovsky unhesitantly produced a shapefile when monitoring zones changed on short notice. Mary Lusk and Noa Lesa assisted with short notice printing of the weatherproof large format observation maps for the field crew. Brian Giese filled in as an MMO.

Tanner Vetsch, Kiewit, provided on-site daily coordination and clear field communications concerning pile driving operations.

Radios were loaned by Mike Hanscam.