Appendix D Supplemental Geotechnical Investigations

Appendix D Supplemental Geotechnical Investigations

Appendix D consists of Appendix D1, As-Built Granular Backfill Investigation, and Appendix D2, Bootlegger Cove Clay Investigation.

Appendix D1

As-Built Granular Backfill Investigation

Evaluation of Backfill Characteristics Port of Anchorage Intermodal Expansion Project

PREPARED FOR:	Port of Anchorage USACE
PREPARED BY:	Michel Bouchedid/CH2M HILI
REVIEWED BY:	Don Anderson/CH2M HILL Douglas Playter/CH2M HILL
COPIES:	Bud Alto/CH2M HILL
DATE:	March 30, 2012

Table of Contents

1. Introduct	tion	2				
1.1	Project Description	2				
1.2	Purpose and Scope	2				
2. Subsurfa	ce Exploration Program	3				
2.1	Selection of New Subsurface Exploration Locations	3				
2.2	Drilling and Sampling Methods	4				
2.3	Soil Classification in the Field	4				
2.4	Piezometer Installation	5				
2.5	Survey of Exploration Locations	5				
3. In Situ T	esting	5				
4. Laborato	ry Testing	5				
5. Subsurfa	ce Characterization	6				
6. Correlati	on Between SPT and LPT	7				
7. Laborato	7. Laboratory Test Results					
8. Limitations						
9. Referenc	9. References					

Attachments

Attachment D1:	Boring Logs
Attachment D2:	Laboratory Results
Attachment D3:	Field Exploration Summary
Attachment D4:	SCPT Report
Attachment D5:	PND Vibracompaction Report

Tables

Table D.2-1:	Exploration Coordinates
Table D.4-1:	Laboratory Index Results
Table D.6-1:	Correlation Between SPT and LPT

Figures

Figure D.1-1: CH2M HILL Exploration in North Extension 1Figure D.5-1: CH2M HILL Borings in Section 2-2Figure D.5-2: CH2M HILL Borings in Section 3-3

1. Introduction

This memorandum presents results from a geotechnical evaluation of the properties of existing soil backfill in the OPEN CELL® sheet pile (OCSP®) bulkhead already constructed for the Port of Anchorage Intermodal Expansion Project. This evaluation supplements the suitability study of the expansion design also conducted by CH2M HILL. The contents of this memorandum include a brief summary of subsurface geotechnical explorations, site characterization information, and the results of the in situ and laboratory testing performed for this evaluation. The geotechnical work summarized in this memorandum was performed in general accordance with USACE Delivery W912PP-09-D-0016 Task Order No. ZJ01-1, authorized on January 28, 2012, as part of the suitability study for the Port of Anchorage Intermodal Expansion Project.

1.1 Project Description

The project site is the Port of Anchorage (POA) North Expansion located north of downtown Anchorage, Alaska. The center for the project site is at a longitude of approximately -149.883 degrees and a latitude of approximately 61.249 degrees.

The explorations performed for the evaluation of the backfill characteristics in North Extension 1 in the vicinity of Section 2-2 and Section 3-3 are shown in Figure D.1-1.

1.2 Purpose and Scope

The purpose of the geotechnical exploration is to evaluate properties of the existing soil backfill in the OCSP[®] wall system to assist in the suitability study of the expansion design. The strength and stiffness characteristics of the OPEN CELL[®] backfill are potentially important to the stability of the cell structures during long-term operation and during design seismic events. Therefore, determination of these backfill properties was required.

A significant amount of high-quality geotechnical work had been done during the original design to characterize soil conditions and then evaluate the likely response of the OCSP® structure during seismic loading. Properties used to characterize the native ground and backfill materials were selected by the designers based on expected conditions after the backfill was placed and compacted. Although procedures for placing and compacting backfill material generally appear to have conformed with requirements, there is considerable uncertainty in the "as-built" conditions of the backfill, and whether these as-built conditions are consistent with assumptions made during design. The uncertainty results from several factors: 1) limited records on the variations in grain size of the backfill material being placed, 2) concern that the use of a conventional standard penetration test (SPT) to evaluate the consistency of backfill material after densification may have been affected by the particle size of the backfill material, and 3) absence of any shear wave

velocity (V_s) measurements in the backfill material, which has required use of empirical methods to estimate V_s for the material. These uncertainties have a direct effect on the stiffness and the strength representation of the backfill properties in the numerical models being used to evaluate response of the OCSP[®] structure, particularly during seismic loading.

The purpose of the field program is to address the uncertainties in the as-built condition by conducting field and laboratory tests on the backfill. The program would also help verify the contact depth between the backfill, estuarine silts, and Bootlegger Cove Formation (BCF) in the sections used for the design. Based on these elements, the scope of geotechnical exploration includes the following:

- Evaluating backfill characteristics by completing 11 borings using SPT and large penetration tests (LPTs) with a 2.4-inch interior diameter (ID) split spoon driven with a 340-pound auto-hammer to obtain representative blowcounts for in situ relative density evaluations in large particle size backfill material. This information is used to obtain an empirical estimate of the consistency and frictional characteristics (\$\phi\$ value\$) of the backfill.
- Performing as many seismic cone penetrometer tests (SCPTs) as soil conditions would allow. This testing would provide an independent estimate of the density and frictional characteristics of the backfill and provide the shear wave velocity (Vs) of the backfill from which values of small-strain shear modulus can be determined for the numerical models.
- Performing laboratory tests to establish the moisture content, grain-size distribution, and compaction characteristics of the backfill. The compaction characteristics include relative density tests.
- Performing laboratory strength tests using a 12x12-inch direct simple shear box.
- Measuring groundwater elevation in the backfill.

2. Subsurface Exploration Program

A subsurface exploration program was conducted for the project to characterize the subsurface soil and groundwater conditions in North Extension 1. Explorations were performed along Section 2-2 and Section 3-3 as shown in Figure D.1-1. The characterization of subsurface conditions used 11 new borings and 3 SCPT attempts to confirm the design soil profiles used in the analysis. The soil profiles include boring log information and the interpretation of subsurface layering of soil deposits based on soil type and the in situ soil condition, as assessed by SPT and LPT N-values (herein referred to as blowcounts). Boring logs are included Attachment D1, and SCPT results are included in Attachment D3.

2.1 Selection of New Subsurface Exploration Locations

The initial step in the subsurface exploration involved selecting 10 boring locations and 10 SCPT locations in the vicinity of Section 2-2 and Section 3-3. The initial exploration locations were distributed near the face of the bulkhead, in the middle of the cell, near the end of the tailwall, and in the backfill east of the cells. For the duration of the exploration program,

conference calls between the field exploration manager and the field crew were arranged at the end of each field day to summarize the accomplishments, address the challenges, and select the next exploration location. Based on this plan, a decision was made each evening on the location that would be explored the following day.

2.2 Drilling and Sampling Methods

Representative samples were collected by conducting a drilling and sampling program. Borings were drilled between February 8 and 22, 2012, at the locations shown in Figure D.1-1. Geotechnical drilling services for this project were provided by Discovery Drilling of Anchorage, Alaska, under the oversight of CH2M HILL. Drilling inspection services and field boring logs were prepared by Tellus, Ltd. of Anchorage, Alaska, under the oversight of CH2M HILL.

Soil drilling was accomplished using a combination of hollow stem auger (HSA) drilling tools with 3.25-inch ID and 7.25-inch outside diameter (OD) and mud rotary drilling systems. A truck-mounted Central Mining Equipment (CME) 75 drill rig was used. Because of time constraints, the borings were required to be completed under a very aggressive schedule so that results from the exploration could potentially be used in the suitability study. Typical Alaska February weather and the tight schedule supported the use of HSA methods for drilling, which is not the best method for advancing soil borings in heaving soils. When heave occurred, the drillers tried to counter the effect by adding water and mud in the HSA, or by shifting to mud rotary drilling.

Soil borings were drilled and sampled to depths ranging from 62 to 97 feet below the ground surface. Representative disturbed soil samples were obtained from the borings using SPT and LPT methods. Disturbed sampling was generally conducted at 5-foot intervals with an automatic-trip hammer and was performed in general accordance with American Society for Testing and Materials (ASTM) D1586, Standard Penetration Test Method for Penetration Test and Split Barrel Sampling of Soils, except that sample liners were not used. Attachment D1 briefly describes the SPT and LPT methods. Soil samples collected from SPTs and LPTs were visually logged and stored in watertight sample bags for laboratory testing. At select locations, relatively undisturbed samples were collected in the estuarine layer and the BCF layer using 3-inch-diameter, thin-walled Shelby tubes.

In addition to the SPT and LPT sampling methods, bulk samples were obtained using 7.25inch OD solid flight auger tools from three locations X, Y, and Z, near Section 3-3, as shown in Figure D.1-1. Large bulk soil samples were visually logged and stored in watertight 5gallon buckets for laboratory testing.

2.3 Soil Classification in the Field

Soil samples were visually classified immediately after recovery in general accordance with ASTM D 2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Details such as large gravels, identification of soil stratigraphy, observation of groundwater, and heave were also noted on the boring logs. The visual field classifications were later revised on the boring logs, as necessary, based on the results of the laboratory testing. Attachment D1 includes the boring logs, and Attachment D2 includes laboratory results.

2.4 Piezometer Installation

Upon completion of drilling, boreholes were either abandoned, or a piezometer was installed in the drilled hole before backfilling it. Piezometers were installed in 10 boreholes for periodic groundwater measurements. Standard piezometer installation consisted of 1-inch polyvinyl chloride (PVC) pipe manually slotted using a hacksaw. Groundwater readings in the installed piezometers are included in the Tellus Report in Attachment D3.

2.5 Survey of Exploration Locations

All exploration and sampling locations were surveyed after completion. The surveying was performed by TWA Surveying of Anchorage, Alaska. The horizontal control used is Alaska State Plane , Zone 4 , NAD 83 in U.S. survey feet. The vertical control for elevations is based on Monument "north end" elevations 41.39'. Horizontal coordinates are included in parenthesis as northing and easting coordinates in the boring logs in Attachment D1. Exploration coordinates are included in Table D.2-1.

3. In Situ Testing

Three SCPT soundings were attempted near Section 3-3 as shown in Figure D.1-1. The soundings were performed by In-Situ Engineering of Snohomish, Washington, using the CME 75 drill rig owned by Discovery Drilling to push the SCPT rods into the ground.

The top 8 feet were generally frozen and were predrilled before the SCPT rods were pushed into the ground. When the SCPT encountered refusal and could not be pushed any further, the rods were pulled out and any obstructions were drilled out before resuming the SCPT soundings. Because of the coarse granular material in the backfill, SCPT could not be advanced continuously through the fill material, which resulted in significantly lowered production rates. Unfortunately, the seismic testing resulted in no interpretable results because the thickness of the frozen layer dampened energy from the surface source. Moreover, the corrected tip resistance for each sounding is also believed to be biased because of the large particle size of the backfill material, and does not provide a good correlation to SPT. The SCPT program was terminated early after the completion of three soundings due to the lack of useful results. Attachment D4 is In-Situ Engineering's report of the SCPT work.

4. Laboratory Testing

Laboratory index and strength tests were conducted on representative soil samples recovered from the field drilling and sampling program. The laboratory index tests were conducted to confirm the field visual classification of soils, and strength tests were performed to provide engineering strength parameters on large bulk samples. Laboratory index tests were performed by DOWL HKM of Anchorage, Alaska, and the strength tests on the bulk samples were performed by GeoTesting Express of Acton, Massachusetts, under subcontracts to CH2M HILL.

Laboratory tests performed by DOWL HKM consisted of the following:

- ASTM D 2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D 4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D 422, Standard Test Method for Particle-Size Analysis of Soils (Sieve Analysis)
- ASTM D 422, Standard Test Method for Particle-Size Analysis of Soils (Hydrometer Test)

Laboratory tests performed by GeoTesting Express consisted of the following:

- ASTM D 2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D 422, Standard Test Method for Particle-Size Analysis of Soils (Sieve Analysis)
- ASTM D 4253, Standard Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibrating Table (Method 1A)
- ASTM D 4254, Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density (Method A)
- ASTM D 3080, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (12x12-inch Shear Box)

Attachment D2 briefly describes the procedures used to perform each laboratory test and presents the complete laboratory test results. Table D.4-1 summarizes the index test results obtained from DOWL HKM. Index test results are also shown in the comments column of the boring logs in Attachment D1.

5. Subsurface Characterization

Three SCPTs and nine borings were completed in the vicinity of Section 3-3 to verify that the soil conditions inside the cells are similar to what was shown in Integrated Concepts & Research Corporation, Inc.'s (ICRC's) construction drawings and assumed in CH2M HILL's evaluation. Two borings were drilled in Cell 54 along Section 2-2. Moreover, more than 40 pre- and post-vibracompaction borings were completed in Cells 40 through 60, whereas only 7 were completed in Cells 12 through 32. A memorandum prepared by PND Engineers, Inc. (PND) to ICRC detailing SPT verification pre- and post-vibracompaction is included in Attachment D5.

The driller had a difficult time controlling heaving soils; therefore, drilling techniques were modified to control the heave during drilling. Changes in drilling techniques are noted in the boring logs in Attachment D1 and Tellus' report in Attachment D3. A combination of SPT and LPT were used to evaluate the density of the backfill material. Typically, when the driller got through the granular backfill material, sampling was performed with an SPT. The soil units were defined on the basis of soil descriptions and anticipated engineering behavior of the materials. Soil descriptions helped in drawing the boundaries between these individual soil units, especially when heaving soils resulted in unreliable N-values and in samples mixed with heaving soils.

In general, the boring logs from the field exploration program performed by CH2M HILL showed consistency with Sections 2-2 and 3-3, which were initially developed from construction drawings. Stick logs summarizing the Unified Soil Classification System (USCS) Group symbol and SPT values from the exploration program are shown in Figures D.5-1 and D.5-2 for Sections 2-2 and 3-3, respectively. Confirming that the profile in the construction drawings represents the as-built condition was critical for the analysis because the explorations performed by Terracon and PND in 2003 and 2008, respectively, were completed before placing the backfill. Thus, there was limited information to verify the thickness of the backfill and how much material was dredged before placing the backfill prior to the exploration program.

Groundwater observations at the time of drilling ranged between about elevation 24 and -2 feet mean lower low water (MLLW) in borings B-4 and B-3, respectively. Boring B-4 was the only boring that had a groundwater elevation higher than elevation 20 feet MLLW at time of drilling. Groundwater measurements performed after the completion of the boring are presented in Table B of the Tellus report in Attachment D3. All borings except B-6 and B-9 had at least one groundwater reading above elevation 20 feet MLLW during the short period they were monitored. Borings B-6 and B-9 are located at the end of the tailwall in Cells 29 and 54, respectively. Groundwater observations between 2/10/2012 and 3/23/2012 in the installed piezometer ranged between about elevation 15 and 28 feet MLLW in borings B-6 and B-15, respectively. For the suitability study, a groundwater elevation of 20 feet MLLW was used in the evaluation, with a sensitivity analysis for groundwater ranging between 17 and 23 feet MLLW.

6. Correlation Between SPT and LPT

SPT was used by PND as the method to estimate density of the compacted granular fill as discussed in the report presented in Attachment D5. However, the PND report recommended that an alternative method to SPT be developed for evaluating deep compaction and improving accuracy in the coarse granular fill because the SPT blowcounts may be artificially high in gravelly soils. For this reason, it was decided to use LPT samplers in the granular fill and SPT in the cohesive soils in the field exploration program conducted by CH2M HILL. The difference in the SPT and LPT sampling methods is presented below:

SPT Sampling Method

Sampler ID = 1-3/8 inch Sampler OD = 2.0 inch Weight of Hammer = 140 lb Height of Free Fall Drop = 30 inches

LPT Sampling Method Sampler ID = 2.4 inch Sampler OD = 3.0 inch Weight of Hammer = 340 lb Height of Free Fall Drop = 30 inches

The SPT sampling method is a nationwide standard and is described in ASTM D 1586. Therefore, there is a great deal of published information on the correlation between SPT and soil relative density. On the other hand, the LPT is not as widely used as the SPT, and is typically correlated to SPT N-values before being correlated to soil density. The SPT and LPT sampling methods are briefly summarized in Attachment D1.

Several LPTs have been in use, each with different drilling rods, sampler dimensions, and hammer energies; therefore, published correlations between LPT and SPT differ for each system. Table D.6-1 summarizes some LPT to SPT correlation methods published by different researchers and the respective ratio of SPT to LPT for each method. Based on the review of available correlation information, a ratio of SPT to LPT equal to 1.5 was used in this report.

7. Laboratory Test Results

Laboratory direct shear test results performed on five bulk backfill samples by GeoTesting resulted in friction angles ranging between about 42 and 48 degrees. The direct shear tests were performed in a 12x12-inch shear box, and the tested material was screened so it was smaller than one-tenth of the 12-inch dimension (smaller than about 1.25 inches). The tests were performed at relative densities of 50, 70, and 90 percent. All samples tested at GeoTesting had less than 12 percent fines content. Laboratory test results are included in Attachment D2.

Laboratory test results performed at DOWL HKM were done to confirm the field visual classifications. In general, most samples recovered from SPT and LPT in the backfill material had less than 12 percent fines. A summary of the laboratory results performed by DOWL HKM are presented in Table D.4-1. The full laboratory results from DOWL HKM are included in Attachment D2.

8. Limitations

This memorandum has been prepared for the exclusive use of the POA and the U.S. Army Corps of Engineers (USACE) for specific application to the Port of Anchorage Expansion Project Suitability Study, in accordance with generally accepted geotechnical engineering practice. No other warranty, express or implied, is made. Conclusions and recommendations provided in this memorandum are based on the explorations and geotechnical studies completed at the time of this memorandum.

The logs of explorations by CH2M HILL and others indicate the subsurface conditions only at the specific locations and times of sampling, and only to the depths penetrated. They do not necessarily reflect strata variations that may exist between exploration locations, nor do they necessarily reflect changes in groundwater conditions with time. If variations in subsurface conditions from those described are noted during construction, this technical memorandum may need to be re-evaluated.

CH2M HILL is not responsible for any claims, damages, or liability associated with the interpretation of subsurface data or reuse of the subsurface data by others without the express written authorization of CH2M HILL.

9. References

Hemstreet, D.A. and Stanley, D. 2008. *Non-Standard SPT Testing*. Internal Power Point Presentation given to Alaska DOT&PF at Northwest Geotech Workshop.

ASTM. Annual Book of ASTM Standards. American Society for Testing and Materials. Section Four: Construction. Volume 04.08: Soil and Rock. (Note: Revisions are issued annually.)

Burmister, D.M. 1948. The Importance and Practical Use of Relative Density in Soil Mechanics: Proceedings ASTM, Vol. 48, p. 1249.

Daniel, C.R., Howie, J.A., and Sy, A. 2003. "*A Method for Correlating Large Penetration Test* (*LPT*) to Standard Penetration Test (*SPT*) Blow Counts." Canadian Geotechnical Journal 40: pp. 66-77.

Lacroix, Y., and Horn, H. 1973. *Direct Determination and Indirect Evaluation of Relative Density and Its Use on Earthwork Construction Projects*: in *Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils*: ASTM Special Technical Publication 523, p. 251-280.

PND Engineers, Inc. (PND). 2010. *Standard Penetration Test* (SPT) Verification of POA North *Extension Vibracompaction*.

Winterkorn, H.F., and Fang, H.Y. 1976. *Foundation Engineering Handbook*. First Edition. Van Nostrand Reinhold.

Tables

Table D.2-1. E	Table D.2-1. Exploration Coordinates						
Boring	Туре	Depth (ft bgs)	Northing	Easting	Elevation (ft MLLW)		
B-2	Boring	97	2648330.8	1660837.1	35*		
B-3	Boring	84	2648304.2	1660899.7	35*		
B-5	Boring	64	2648220.3	1661050.1	35*		
B-6	Boring	87	2648300.9	1660892.1	35*		
B-8	Boring	81	2647669.0	1660547.7	33.5		
B-9	Boring	72	2647643.8	1660607.4	34.2		
B-13	Boring	90	2648366.8	1660808.2	35*		
B-15	Boring	84	2648317.7	1660787.7	35		
B-16	Boring	77	2648289.4	1660819.7	35*		
B-17	Boring	62	2648336.7	1660913.9	35.2		
B-18	Boring	82	2648291.6	1660779.4	35.4		
C-2	SCPT	62	2648333.8	1660837.1	35*		
C-5	SCPT	28	2648221.3	1661047.2	35*		
C-12	SCPT	68	2648310.6	1660850.4	35*		
Pt X	Bulk Sample	NA	2648339.8	1660814.0	35.1		
Pt Y	Bulk Sample	NA	2648329.5	1660839.4	35.3		
Pt Z	Bulk Sample	NA	2648299.0	1660898.9	35		

Notes:

bgs = below ground surface. Northing and Easting based on Alaska State Plane, Zone 4, NAD 83.

Elevations marked with asterisk (*) are estimated.

Table D.4-1. Lab	oratory Inde	ex Results										
						Water	Grain-S	Size Dist	ribution	Atte	erberg Li	mits
Boring	Depth (ft)	Sample ID	USCS Classification	Description	Test	Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL (%)	PL (%)	РІ (%)
B-2	15-17	В	GW-GM	WELL GRADED GRAVEL WITH SILT AND SAND	Gradation	5.0	46.0	41.7	12.3			
B-2	20-22	С			Moisture Content	9.0						
B-2	25-27	D	SP-SM	POORLY GRADED SAND WITH SILT AND GRAVEL	Gradation	7.0	38.0	56.7	5.3			
B-2	35-37	F			Moisture Content	7.0						
B-2	55-57	J	SM	SILTY SAND WITH GRAVEL	Gradation	9.0	21.0	64.1	14.9			
B-2	86-87	М			Atterberg	22.0				37	19	18
B-3	10-12	A	GW-GM	WELL GRADED GRAVEL WITH SILT AND SAND	Gradation	7.0	49.0	39.6	11.4			
B-3	15-17	В			Moisture Content	4.0						
В-3	20-22	D			Moisture Content	5.0						
B-3	30-32	F	SM	SILTY SAND WITH GRAVEL	Gradation	5.0	42.0	44.9	13.1			
В-3	36-37	Н			Moisture Content	27.0						
B-3	40-42	I	ML	SILT WITH SAND	Atterberg and Gradation	27.0	3.0	12.8	84.2	NA	NP	NA
B-3	70-72	L			Moisture Content	20.0						
B-3	75-77	М			Atterberg	27.0				43	21	22
B-5	10-12	А	GM	SILTY GRAVEL WITH SAND	Gradation	5.0	48.0	33.9	18.1			
B-5	15-17	В			Moisture Content	9.0						
B-5	20-25	С			Moisture Content	8.0						

Table D.4-1. Labo	oratory Inde	x Results										
						Water	Grain-S	Size Dist	ribution	Atte	erberg Li	mits
Boring	Depth (ft)	Sample ID	USCS Classification	Description	Test	Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL (%)	PL (%)	PI (%)
B-5	30-32	E	SW-SM	WELL GRADED SAND WITH SILT AND GRAVEL	Gradation	12.0	16.0	73.0	11.0			
B-5	45-47	Н	SM	SILTY SAND WITH GRAVEL	Gradation	10.0	31.0	43.0	26.0			
B-5	50-52				Atterberg	26.0				31	20	11
B-5	55-57	J			Atterberg	25.0				41	20	21
B-6	10-12	A			Moisture Content	6.0						
B-6	15-17	В	GM	SILTY GRAVEL WITH SAND	Gradation	5.0	44.0	42.8	13.2			
B-6	20-22	С	SM	SILTY SAND WITH GRAVEL	Gradation	6.0	38.0	48.2	13.8			
B-6	25-27	D			Moisture Content	7.0						
B-6	35-37	F			Atterberg	33.0				NA	NP	NA
B-6	40-42	G	ML	SILT	Atterberg and Gradation	32.0	1.0	10.3	88.7	NA	NP	NA
B-6	50-52	I	SM	SILTY SAND WITH GRAVEL	Gradation	14.0	22.0	55.3	22.7			
B-6	55-57	J			Moisture Content	17.0						
B-6	60-62	K	SM	SILTY SAND	Gradation	19.0	0.0	75.9	24.1			
B-6	70-72	М			Moisture Content	19.0						
B-6	75-77	N			Atterberg	18.0				19	15	4
B-8	09-11	А	GP-GM	POORLY GRADED GRAVEL WITH SILT AND SAND	Gradation	5.0	49.0	42.2	8.8			
B-8	19-21	С			Moisture Content	8.0						
B-8	24-26	D	GP-GM	POORLY GRADED GRAVEL WITH SILT AND SAND	Gradation	5.0	49.0	40.1	10.9			
B-8	29-31	Е			Moisture Content	7.0						
B-8	44-46	Н	SM	SILTY SAND WITH GRAVEL	Gradation	10.0	33.0	45.4	21.6			

Table D.4-1. Lab	oratory Inde	ex Results					_						
				Gra			Grain-S	Grain-Size Distribution			Atterberg Limits		
Boring	Depth (ft)	Sample ID	USCS Classification	Description	Test	Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL (%)	PL (%)	PI (%)	
B-9	15-17	В			Moisture Content	4.0							
B-9	65-67	L	SP-SM	POORLY GRADED SAND WITH SILT AND GRAVEL	Gradation	9.0	34.0	57.6	8.4				
B-9	70-72	М			Atterberg	20.0				47.0	21.0	26.0	
B-13	10-12	A			Moisture Content	7.0							
B-13	15-17	В	SM	SILTY SAND WITH GRAVEL	Gradation	8.0	27.0	49.3	23.7				
B-13	25-27	D			Moisture Content	6.0							
B-13	40-42	G	GW-GM	GW-GM WELL-GRADED GRAVEL WITH		6.0	54.0	36.3	9.7				
B-13	70-72	М	SM	SILTY SAND	Gradation	16.0	10.0	77.3	12.7				
					Atterberg and								
B-13	80-82	0	ML	SANDY SILT	Gradation	20.0	3.0	28.1	68.9	NA	NP	NA	
D. 4.5	45.47	-	014				10.0	10.0	40.0			-	
B-15	15-17	C	GM	SILTY GRAVEL WITH SAND	Gradation	6.0	43.0	43.8	13.2				
B-15	20-22	D			Moisture Content	6.0							
B-15	25-27	Е	GW-GM	WELL-GRADED GRAVEL WITH SILT AND SAND	Gradation	6.0	47.0	41.1	11.9				
B-15	55-57	К	SP-SM	POORLY GRADED SAND WITH SP-SM SILT AND GRAVEL		7.0	44.0	47.4	8.6				
B-15	75-77	N	SP-SM	POORLY GRADED SAND WITH SILT	Gradation		1.0	88.2	10.8				
B-15	82-84	0			Atterberg	24.0				38	18	20	
B-16	20-22	С	SM	SILTY SAND WITH GRAVEL	Gradation		35.0	49.0	16.0			_	
B-16	25-27	D	GM	SILTY GRAVEL WITH SAND	Gradation	6.0	45.0	42.2	12.8			<u> </u>	
B-16	45-47	H	ML	Gradation		3.0	15.4	81.6					

						Water	Grain-S	Size Dist	ribution	Atte	erberg Li	mits
Boring	Depth (ft)	Sample ID	USCS Classification	Description	Test	Content (%)	Gravel (%)	Sand (%)	Fines (%)	LL (%)	PL (%)	PI (%)
B-16	50- 51.5	I			Moisture Content	24.0						
B-16	55-57	J	SM	SILTY SAND WITH GRAVEL	Gradation	11.0	18.0	55.7	26.3			
B-16	60-62	K	SM	SILTY SAND WITH GRAVEL	Gradation		18.0	60.1	21.9			
B-16	65-67	L			Atterberg	25.0				NA	NP	NA
B-16	70- 71.5	М	SM	SILTY SAND Gradati		24.0	1.0	81.9	17.1			
B-16	75-77	Ν			Atterberg	16.0				30	18	12
B-17	20-22	С	SW- SM	WELL-GRADED SAND WITH SILT AND GRAVEL	Gradation	5.0	44.0	44.3	11.7			
B-17	25-27	D	SP-SM	POORLY GRADED SAND WITH SILT AND GRAVEL	Gradation	9.0	43.0	49.0	8.0			
					Atterberg and							
B-17	40-42	G	ML	SILT WITH SAND AND GRAVEL	Gradation	22.0	20.0	19.2	60.8	NA	NP	NA
B-17	50-52		SM	SILTY SAND	Gradation	22.0	2.0	84.3	13.7			
B-17	60-62	K			Atterberg	21.0				40	19	21
B-18	25-27	С	GW-GM	WELL-GRADED GRAVEL WITH SILT AND SAND	Gradation	6.0	46.0	43.4	10.6			
B-18	55-57	I	SW-SM	WELL-GRADED SAND WITH SILT AND GRAVEL	Gradation		38.0	51.2	10.8			
B-18	65-67	K	SP-SM	POORLY GRADED SAND WITH SILT AND GRAVEL	Gradation	10.0	36.0	53.3	10.7			
B-18	70-72	L			Atterberg	24.0				36	18	18
_ /-					Atterberg and							
B-18	75-77	М	SM	SILTY SAND	Gradation	21.0	1.0	71.9	27.1	NA	NP	NA

Table D.6-1. Correlation Between SPT and LPT							
Reference	Equation	Ratio					
Burmister, 1948	NS := NL· $\left(\frac{WL·HL}{4200}\right)$ · $\left(\frac{2.0^2 - 1.375^2}{DLo^2 - DLi^2}\right)$	NS/NL = 1.581					
Lacroix and Horn, 1973	$NS := NL \frac{2 \cdot WL \cdot HL}{175 \cdot DLo^2 \cdot LL}$	NS/NL = 1.08					
Winterkorn and Fang, 1976	$RSs := \left(\frac{DSo^{3} - DSi^{3}}{144 \text{ WS} \cdot \text{HS}}\right)$ $RLs := \left(\frac{DLo^{3} - DLi^{3}}{144 \text{ WL} \cdot \text{HL}}\right)$	RSs/ RLs = 0.995					
Daniel, Howie, and Sy, 2003	$\frac{\text{N60}_{\text{SPT}}}{\text{N60}_{\text{LPT}}} = \frac{\text{ENTHRU}_{\text{LPT}} \cdot \text{ATE}_{\text{SPT}}}{\text{ENTHRU}_{\text{SPT}} \cdot \text{ATE}_{\text{LPT}}}$	(N ₆₀) _{SPT} /(N ₆₀) _{SPT} = 1.533					
Alaska DOT&PF	Empirical Correlation	2.0					
CH2M HILL Borings, 2012	Correlation between consecutive LPT and SPT blowcounts	1.5					

Notes:

NS= N-value for SPT WS= Weight of Hammer for SPT = 140 lb HS= Height of Drop of Hammer for SPT= 30" DSo= Outside Diameter for SPT = 2.0" DLi= Outside Diameter for LPT= 1.375" RSs = Sampler Hammer Ratio for SPT NL= N-value for LPT WL= Weight of Hammer for LPT= 340 lb HL= Height of Drop of Hammer for LPT= 30" DLo= Outside Diameter for LPT= 3.0" DSi= Outside Diameter for SPT= 2.5" RLs= Sampler Hammer Ratio for LPT ATE= Effective Sampler Bearing Area ENTHRU= Penetration Energy

N60= SPT blowcount corrected for hammer efficiency

Figures

LEGEND

- CPT TERRACON, 2004
- △ SOIL BORING TERRACON, 2004
- SOIL BORING PND, 2008
- EXPLORATION LOCATION SHANNON AND WILSON, INC, 2004 ÷
- CPT GOLDER AND ASSOCIATES, 2004
- TEST PIT ICRC, 2006
- DREDGING BORING COE, 2008
- PND PRE-VIBRACOMPACTION SPT
- ND POST-VIBRACOMPACTION SPT
- CH2M HILL Boring, 2012
- CH2M HILL SCPT, 2012
- BULK SAMPLE LOCATION

SECTIONS F-F, G-G, AND H-H ARE SHOWN IN ICRC'S NORTH EXTENSION DRAWINGS, NOVEMBER 2007.

SECTIONS F, G, H, AND J ARE SHOWN IN PND'S REPORT, MARCH 2008.

Figure D.1-1: CH2M HILL Exploration in North Extension 1

Figure D.5-1: CH2M HILL Borings Along Section 2-2

Attachment D1

Boring Logs

Attachment D1: Boring Logs

This attachment includes a summary of information noted on the borings logs such as the visual soil classification method and abbreviations, the standard penetration test method, tables of the relative density of coarse grained and fine grained soils, and boring logs completed for this phase of the project.

D1.1 Visual Classification Method

Visual classification of soils was performed in the field by a CH2M HILL representative in general accordance with ASTM D 2488, based on the Unified Soil Classification System (USCS). The visual description of soils allows convenient and consistent comparison of soils using a standard method for describing the soil. The use of this method of classification provides a basis for comparison of soils from widespread geographic areas. The USCS soil group symbols are included in parentheses when the classification is based on visual classification alone.

The lines on the boring logs do not define contacts between different soil classifications. The lines are used to separate the descriptions for legibility purposes only.

D1.2 Laboratory Classification System

Laboratory tests were performed on select samples collected during the exploration program in general accordance with ASTM D 2487. The USCS soil classifications reported in laboratory results can be identified from the exploration logs as those not enclosed in parenthesis. A brief description of the procedures to perform each of the tests and complete laboratory results are available in Attachment D2.

D2.3 The Standard Penetration Test (SPT)

The Standard Penetration Test (SPT) is performed by driving a standard split-barrel sampler 18 to 24 inches into undisturbed soil at the bottom of the borehole using a 140-pound guided hammer or ram, falling freely from a height of 30 inches. The SPT inside diameter (ID) is 1.375 inches and has an outside diameter (OD) that is 2 inches. This test is conducted to obtain a measure of the resistance of the soil to penetration of the sampler and to retrieve a disturbed soil sample. The number of blows required to drive the sampler for four, 6-inch intervals, for a total of 18 or 24 inches, are observed and recorded on the soil boring log. The sum of the number of blows required to drive the sampler the second and third 6-inch intervals is considered the Standard Penetration Resistance or the SPT blowcount, "N". When the number of blows required to drive the sampler 6 inches or less exceed 50 blows, the test is terminated and the number of blows and the penetration distance is recorded.

The values of N provide a means for evaluating the relative density of granular (coarse-grained) soils and the consistency of cohesive (fine-grained) soils. Low N-values indicate soft or loose deposits, while high N-values are evidence of hard or dense materials. The criteria used for describing the relative density of coarse-grained soil and the consistency of fine-grained soils based on SPT N-value are presented in Tables D1-1 and D2-2, respectively, of this attachment.

D2.4 The Large Penetration Test (LPT)

Borings for this project phase were completed using a combination of SPT and LPT sampling methods. The LPT sampling method differs from the SPT method in that the split barrel sampler has a 2.4-inch ID, a 3-inch OD, and a 340 lb hammer is used to drive the sampler. Similar to the SPT, the guided hammer is allowed to free fall from a height of 30 inches. N-values obtained from the LPT sampling should be adjusted using a specified factor to correlate to SPT N-values. The factor used for this project phase is discussed in more detail in the report. Sampling obtained via LPT methods are noted with an asterisk (*) next to the blowcounts on the boring logs.

TABLE D1-1

RELATIVE DENSITY OF COARSE-GRAINED SOIL (DEVELOPED FROM SOWERS, 1979)

N (blows/ft)	Relative Density	Field Test
0-4	Very Loose	Easily penetrated with 1/2-in. steel rod pushed by hand
5-10	Loose	Easily penetrated with 1/2-in. steel rod pushed by hand
11-30	Medium Dense	Easily penetrated with 1/2-in. steel rod driven with 5-lb hammer
31-50	Dense	Penetrated a foot with 1/2-in. steel rod driven with 5-lb hammer
50+ Ver	y Dense	Penetrated only a few inches with 1/2-in. steel rod driven with 5-lb hammer

TABLE D2-2

CONSISTENCY OF FINE-GRAINED SOILS (DEVELOPED FROM SOWERS, 1979)

N (blows/ft)	Consistency	Field Test
< 2	Very Soft	Easily penetrated several inches by fist
2-4	Soft	Easily penetrated several inches by thumb
5-8 Firm		Can be penetrated several inches by thumb with moderate effort
9-15 Stiff		Readily indented by thumb, but penetrated only with great effort
16-30	Very Stiff	Readily indented by thumbnail
30+	Hard	Indented with difficulty by thumbnail

D2.4 Groundwater Level Measurements

The water level noted on the boring logs reflect the groundwater depth at the time of drilling.

D2.5 Survey Coordinate Systems

The surveying was performed by TWA Surveying of Anchorage, Alaska. The horizontal control used is Alaska State Plane, Zone 4, NAD 83 in US survey Feet. The vertical control for elevations is based on Monument "north end" elevations 41.39'.

PLASTICITY CHART

FOR CLASSIFICATION OF FINE-GRAINED SOILS AND FINE-GRAINED FRACTION OF COARSE-GRAINED SOILS

PLASTICITY DESCRIPTION				
Plasticity Index (PI)	Description			
<1	Non-plastic			
1-10	Low plasticity			
11-25	Medium plasticity			
26-50	High plasticity			
> 50	Very high plasticity			
PI = LL - PL				

MOISTURE CONDITION

Dry	Absence of moisture.
Moist	Damp, no visible water.
Wet	Visible free water.

RELATIVE DENSITY OF COARSE GRAINED SOIL

$\frac{N}{(hlorws/ft)}$	<u>Relative Density</u>		
<u>(DIOWS/II)</u>			
0-4	Very Loose		
5-10	Loose		
11-30	Medium Dense		
31-50	Dense		
50+	Very Dense		
Developed from Sowers, 1979			

CONSISTENCY OF FINE GRAINED SOIL

<u>N</u>	<u>Consistency</u>			
<u>(blows/ft)</u>				
< 2	Very Soft			
2-4	Soft			
5-8	Firm			
9-15	Stiff			
16-30	Very Stiff			
30+	Hard			
Developed from Sowers, 1979				

GRAIN SIZE TERMINOLOGY				
Sample Component	<u>Size Range</u>			
Boulders	Over 12 in			
Cobbles	12 in to 3 in			
Gravel	3 in to #4 sieve			
Sand	#4 to #200 sieve			
Silt or Clay	Passing #200 sieve			

Key to Boring Logs

UNIFIED SOIL CLASSIFICATION SYSTEM - COARSE GRAINED

MAJOR DIVISION		LETTER SYMBOL	GROUP NAME		
		GRAVEL WITH < 5% FINES	< 15% SAND	GW	Well-graded GRAVEL
			≥15% SAND		Well-graded GRAVEL with sand
			< 15% SAND	CP	Poorly graded GRAVEL
	GRAVEL AND		≥15% SAND	Gr	Poorly graded GRAVEL with sand
			< 15% SAND	GW-GM	Well-graded GRAVEL with silt
			≥15% SAND		Well-graded GRAVEL with silt and sand
	GRAVELLY SOILS	GRAVEL	< 15% SAND	GW CC	Well-graded GRAVEL with clay
	MORE	WITH	≥15% SAND	GW-GC	Well-graded GRAVEL with clay and sand
	OF COARSE	5% AND	< 15% SAND	CPCM	Poorly graded GRAVEL with silt
	FRACTION RETAINED	15% FINES	≥15% SAND	GF-GIVI	Poorly graded GRAVEL with silt and sand
	ON NO. 4		<15% SAND	CPCC	Poorly graded GRAVEL with clay
	SIEVE		≥15% SAND	Gr-GC	Poorly graded GRAVEL with clay and sand
			<15% SAND	CM	Silty GRAVEL
		GRAVEL	≥15% SAND	Givi	Silty GRAVEL with sand
COARSE		WITH ≥ 15% FINES	<15% SAND	GC	Clayey GRAVEL
SOILS			≥15% SAND		Clayey GRAVEL with sand
CONTAINS LESS THAN	SAND AND SANDY SOILS MORE THAN 50%		<15% GRAVEL	CM	Well-graded SAND
50% FINES		SAND	≥15% GRAVEL	311	Well-graded SAND with gravel
		FINES	< 15% GRAVEL	CD	Poorly graded SAND
			≥15% GRAVEL		Poorly graded SAND with gravel
		SAND WITH	< 15% GRAVEL	CWI CM	Well-graded SAND with silt
			≥15% GRAVEL	577-5171	Well-graded SAND with silt and gravel
			< 15% GRAVEL	CIM CC	Well-graded SAND with clay
			≥15% GRAVEL	5W-5C	Well-graded SAND with clay and gravel
	OF COARSE	5% AND	< 15% GRAVEL	CD CM	Poorly graded SAND with silt
	PASSING ON NO. 4 SIEVE	15% FINES	≥15% GRAVEL	5P-5M	Poorly graded SAND with silt and gravel
			< 15% GRAVEL	SP-SC	Poorly graded SAND with clay
			≥15% GRAVEL		Poorly graded SAND with clay and gravel
		SAND WITH ≥ 15% FINES	< 15% GRAVEL	SM	Silty SAND
			≥15% GRAVEL		Silty SAND with gravel
			< 15% GRAVEL	SC	Clayey SAND
			≥15% GRAVEL		Clayey SAND with gravel

Notes: Sample descriptions are based on field and laboratory observations using classification methods of ASTM D2488. Where laboratory data are available, classifications are in accordance with ASTM D2487. Fines are material passing U.S. std #200 Sieve.

UNIFIED SOIL CLASSIFICATION SYSTEM - FINE GRAINED

MAJOR DIVISION						GROUP NAME
			< 15% I	PLUS NO. 200		Lean CLAY
		< 30% PLUS	15- 25% PLUS NO	% SAND ≥ GRAVEL		Lean CLAY with sand
		100. 200	200	% SAND < GRAVEL		Lean CLAY with gravel
			% SAND ≥	< 15% GRAVEL	CL	Sandy lean CLAY
		≥30%	GRAVEL	≥15% GRAVEL		Sandy lean CLAY with gravel
		NO 200	% SAND <	<15% SAND		Gravelly lean CLAY
	LIQUID		GRAVEL	≥15% SAND		Gravelly lean CLAY with sand
	LIMIT LESS		< 15% I	PLUS NO. 200		SILT
	THAN 50	< 30% PLUS	15- 25% PLUS NO	% SAND ≥ GRAVEL		SILT with sand
		NO. 200	200	% SAND < GRAVEL		SILT with gravel
			% SAND ≥	< 15% GRAVEL	ML	Sandy SILT
FINE		≥30% PLUS	GRAVEL	≥15% GRAVEL		Sandy SILT with gravel
		NO 200	% SAND < GRAVEL	< 15% SAND		Gravelly SILT
				≥15% SAND		Gravelly SILT with sand
GRAINED SOILS		ORGANIC SOIL		OL	Organic SILT with low plasticity	
CONTAINS MORE THAN		< 30% PLUS NO. 200	< 15% I	PLUS NO. 200	-	Fat CLAY
50% FINES			15- 25% PLUS NO.	% SAND ≥ GRAVEL		Fat CLAY with sand
			200	% SAND < GRAVEL	СН	Fat CLAY with gravel
		≥ 30% PLUS NO 200	% SAND ≥ GRAVEL	< 15% GRAVEL		Sandy fat CLAY
				≥15% GRAVEL		Sandy fat CLAY with gravel
			% SAND <	<15% SAND		Gravelly fat CLAY
	LIQUID		GRAVEL	≥15% SAND		Gravelly fat CLAY with sand
	LIMIT GREATER	< 200%	< 15% I	PLUS NO. 200		Elastic SILT
	THAN 50	< 30% PLUS	15- 25% PLUS NO	% SAND ≥ GRAVEL		Elastic SILT with sand
		NO. 200	200	% SAND < GRAVEL		Elastic SILT with gravel
			% SAND ≥	< 15% GRAVEL	MH	Sandy elastic SILT
		≥30% PLUS	GRAVEL	≥15% GRAVEL		Sandy elastic SILT with gravel
		NO 200	% SAND <	<15% SAND		Gravelly elastic SILT
			GRAVEL	≥15% SAND		Gravelly elastic SILT with sand
			ORGANIC	SOIL	ОН	Organic SILT or CLAY with moderate to high plasticity

Notes: Sample descriptions are based on field and laboratory observations using classification methods of ASTM D2488. Where laboratory data are available, classifications are in accordance with ASTM D2487. Fines are material passing U.S. std #200 Sieve.

PROJECT	NUMBER:
42923	5

SHEET 1 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~65 feet east of Cell 28 Wall Control Line (2648330.8 N, 1660837.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

Ρ

WATER LEVELS : 20 ft bgs at time of d		of drilling. START : 2/8/2012		END: 2/8/2012 LOGGER: S. Erdmann	_		
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS	
	INTERV	AL (ft)		PENETRATION			
		RECOV/	RY (ft)	IESI RESULIS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE,	
		INECOVE			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6" (N)	CONSISTENCE, SOIL STRUCTURE, MINERALUGY		
				(14)	0 to 8'. Frozen poorly graded brown sand with gravel	Note: Asterisk (*) next to blowcounts means that	-
-	1				Fine to coarse. (SP)	sample was taken using 2.4" ID sampler with 340 lb	່
						hammer. Blowcounts listed without asterisk (*)	
-	-				-	means sample was taken using standard size	
-	-				-		
-					-	Frozen down to 8' bgs.	
]				-		
					-		
5_	-						_
-	-				-		
-					-		
	1				-		
-					-		
-	-				-		
-	1				-		
-	1				-		
10_	10.0				-		
-	-				NO RECOVERY. Cuttings similar to above.	Sampler could be pushing against rock.	
-	-	0.0	А	23-12-10-10*	-		
-	12.0			(22)	-		
-	12.0				-		
					-		
-	-				-		
-	-				-		
15	15.0				-		
					WELL GRADED GRAVEL WITH SILT AND SAND,	B Index Test Results	_
_	-	20	В	5-9-12-13*	GW-GM, gravels 1/4" to 2" in diameter.	Gravel = 46.0% P200 = 12.3%	
-	17.0		-	(21)	-	Sand = 41.7% M.C. = 5.0%	
-	17.0				-		
-					-		
					-		
-	4				-		
20 -	20.0				-		
<u> </u>	20.0				20-21': POORLY GRADED SAND WITH GRAVEL	Groundwater at 20'.	-
]	1	15		17-5-6-7*	(SP), some silt.	C Index Test Results	
-		1.5	Ŭ	(11)	21-22': POORLY GRADED GRAVEL WITH SAND	M.C. = 9.0% Clean sandy gravels at 21' SP/CP	
-	22.0				<u>(OF)</u> . –	Ciedin Sanuy gravers at 21. SP/GP	
-	1				-		
-	1				-		
]					-		
	05.0				-		
25_	25.0				POORLY GRADED SAND WITH SILT AND	Added water to counteract beave	_
-	1		_	5-8-7-7*	GRAVEL, SP-SM, gravels 1/4" to 1.5" diameter.	D Index Test Results	
]	1	1.5	ט	(15)		Gravel = 38.0% P200 = 5.3%	
]	27.0				-	Sand = 56.7% M.C. = 7.0%	
-	4				-		
-	1				-		
-	1				-		
	1				-		
30							
							_

PROJECT	NUMBER:
42923	5

SHEET 2 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~65 feet east of Cell 28 Wall Control Line (2648330.8 N, 1660837.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 20 ft bgs at time of drilling.		of drilling.	START : 2/8/2012	END : 2/8/2012 LOGGER : S. Erdmann		
DEPTH B	DEPTH BELOW GROUND SURFACE (ft) STANDARD		STANDARD	SOIL DESCRIPTION	COMMENTS	
	INTERVAL (ft) PENETRATION		PENETRATION			
		-ι <u>ε</u> (π)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE
		RECOVE	ERY (ft)		COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
	30.0				POORLY GRADED SAND WITH SILT AND	
-	00.0		-	27-10-11-12*	GRAVEL (SP-SM), gravels 1/4" to 2" diameter.	-
	1	2.0	E	(21)		-
	32.0			. ,		-
L _					_	
_					_	_
I -					_	-
35	35.0					
-	-				POORLY GRADED SAND WITH SILT AND	Adding water to counteract heave.
-	-	2.0	F	25-13-14-15*	GRAVEL (SP-SM) , gravels 1/4" to 2" diameter.	F Index Test Results
-	070	_		(27)	-	M.C 7.0%
-	37.0				-	-
-	1				-	-
- 1	1				-	-
-	1				-	-
-	1				-	-
40 -	40.0				-	-
	+0.0				POORLY GRADED SAND WITH SILT AND	3" diameter gravel jammed in shoe
			_	11-8-11-9*	GRAVEL (SP-SM)	
		1.0	G	(19)	<u>()</u>	-
	42.0			()	-	-
-					-	-
-						-
-						-
45	45.0					
_					POORLY GRADED SAND WITH SILT AND	Drilling rate increased. Very little to no
-			н	42-9-7-8*	<u>GRAVEL (SP-SM)</u> .	resistance.
_				(16)	_	
	47.0				_	-
-	-				-	-
-	-				-	-
	-				-	-
	-				-	-
50 -	50.0				-	-
1 ³⁰ –	50.0				POORLY GRADED SAND WITH SILT AND	
I -	1	. –		18-6-4-4*	GRAVEL (SP-SM).	-
-	1	1.5		(10)		-
-	52.0			(10)	-	-
-			1		-	-
-]				-	-
I -					-	-
	1					Drilling appears to stiffen up at approximately 54'.
55_	55.0					
-	4				SILIY SAND WITH GRAVEL, SM, wet.	J Index Test Results
-	-		J	19-16-16-16*	-	Graver = 21.0% P200 = 14.9%
-			-	(32)	-	Sanu – 04.1% IVI.C. – 9.0%
I -	57.0				-	-
-	1				-	-
-	1				-	-
-	1				-	-
-	1				-	-
60	1				-	-

PROJECT NUMBER:	
429235	

SHEET 3 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~65 feet east of Cell 28 Wall Control Line (2648330.8 N, 1660837.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER	LEVELS	: 20 ft bg	s at time	of drilling.	START : 2/8/2012	END : 2/8/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERV	AL (ft) RECOVE	RY (ft) #TYPE	PENETRATION TEST RESULTS 6"-6"-6"-6"	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION
-	60.0 62.0	2.0	к	(N) 47-17-16-16* (33)	WELL GRADED SAND WITH SILT (SW-SM), wet.	Heave.
	70.0				- - - - - - - - - - - - - - - - - - -	3' of heave in augers at 65'. Unable to obtain sample. Drillers adding water to counteract heave.
70 75 	71.5	2.0	L	4-6-6* (12)	WELL GRADED SAND WITH SILT (SW-SM), wet. 	3' of heave in auger at 75'. Drillers adding water to counteract heave.
80_ - - - - - - - - - - - - -						2' of heave in augers. Drillers adding water to counteract heave.
85 	85.0 87.0	2.0	М	4-4-3-4* (7)	85-86': WELL GRADED SAND (SW), wet, fine sand. 86-87': LEAN CLAY, CL, gray, moist.	No heave. <u>M Index Test Results</u> M.C. = 22.0% LL = 37% PL = 19% PI = 18% BCF contact at approximately 86'.

PROJECT	NUMBER:	
	_	

SHEET 4 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~65 feet east of Cell 28 Wall Control Line (2648330.8 N, 1660837.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER	WATER LEVELS : 20 ft bgs at time of drilling.		of drilling.	START : 2/8/2012	END : 2/8/2012 LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
1			PENETRATION			
1	INTERV	⊾ (π)		TEST RESULTS		
1		RECOVE	ERY (ft)		COLOR MOISTURE CONTENT DELATIVE DENETVOR	DEPTH OF CASING, DRILLING RATE,
1			#TVDE	6"-6"-6" 6"	CONSISTENCY, SOIL STRUCTURE MINERALOGY	INSTRUMENTATION
1			#ITPE	ט- ט- ט- ט (N)		
 	00.0				I FAN CLAY (CL) moist (BCF)	
-	90.0			6-6-12-11*		
		2.0	N	(18)	-	-
-	92.0			(10)	-	-
-	02.0				-	-
					-	· · · · · · · · · · · · · · · · · · ·
-					-	-
-					-	-
-					-	
95	95.0				-	
					LEAN CLAY (CL), moist. (BCF)	
		2.0	0	15-10-12-14*		
		2.0	0	(22)	-	
	97.0					
1]					Bottom of hole at 97.0 ft below ground surface.	
					_	1" diameter PVC piezometer installed in boring.
_					-	PVC manually slotted using a hacksaw.
-					-	
100						
					-	
					-	
-					-	
-					-	
-					-	-
					-	
					-	
-					-	
105 -					-	
105_						
-					-	-
-					-	-
					-	-
-					-	· · · ·
					-	· · · · ·
-					-	-
-					-	-
-					=	
110	1				-	· · · · · · · · · · · · · · · · · · ·
I –						
1]					-	
1]					-	
					-	
I -					-	
I -					-	
-					-	
I -					-	
I					-	
115	ł					
-	ł				-	
					-	
-					-	
-					-	
-	1				-	
-					-	
-					-	
-					-	· · ·
120 -					-	
120		1	1			

PROJECT	NUMBER:
42923	5

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~132 feet east of Cell 29 Wall Control Line (2648304.2 N, 1660899.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER	LEVELS	: 37 ft bg	s at time	of drilling.	START : 2/10/2012	END : 2/10/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		\1 (ft)		PENETRATION		
		ν <u>ε</u> (π)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE
		RECOVE	ERY (ft)		COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
					0 to 8': Frozen brown poorly graded gravel with sand.	Note: Asterisk (*) next to blowcounts means that
					(GP)	sample was taken using 2.4" ID sampler with 340 lb
_					-	hammer. Blowcounts listed without asterisk (*)
_					-	means sample was taken using standard size
-					-	
-					-	Frozen down to 8' bas.
-					-	
-					-	-
5 -					-	-
					-	
					_	_
_					-	-
-					-	-
-					-	-
-					-	-
-					-	-
10 -	10.0				-	-
					WELL GRADED GRAVEL WITH SILT AND SAND,	A Index Test Results
-		2.0	^	9-9-9-10*	GW-GM, brown, dry, gravels 1/4" to 2.5" in	Gravel = 49.0% P200 = 11.4%
		2.0	A	(18)	diameter.	Sand = 39.6% M.C. = 7.0%
_	12.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
15	15.0				-	-
···					WELL GRADED GRAVEL WITH SILT AND SAND	Broken rock fragments in sampler.
		2.0	Б	13-8-9-9*	(GW-GM), brown, gravels 1/4" to 2" in diameter.	B Index Test Results
		2.0	Б	(17)	_	M.C. = 4.0%
_	17.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
20	20.0				-	-
					POORLY GRADED SAND WITH GRAVEL (SP).	
]		20	С	4-7-7-7*	brown, dry.	-
-		2.0	Ĭ	(14)	-	-
-	22.0					D Index Test Deputs
-				7 10 12 15	POURLI GRADED GRAVEL WITH SAND (GP),	$\frac{D \text{ muex Test Results}}{MC} = 5.0\%$
-		1.0	D	(23)		
-	24.0			(20)	-	-
-					-	-
25_	25.0				-	-
					POORLY GRADED GRAVEL WITH SAND (GP),	
-		20	F	4-8-9-10*	brown, dry.	
-	07.0	2.0		(17)	-	-
-	27.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
30						

PROJECT	NUMBER:
42923	5

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~132 feet east of Cell 29 Wall Control Line (2648304.2 N, 1660899.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 37 ft bgs at time of			s at time	of drilling.	START : 2/10/2012	END : 2/10/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
1		AL (#)		PENETRATION		
		∿∟ (II)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL)	
		RECOVE	ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OF	DEPTH OF GASING, DRILLING RATE, DRILLING FLUID LOSS TESTS AND
			#T)/DE		CONSISTENCY SOIL STRUCTURE MINERALOGY	INSTRUMENTATION
I I			#IYPE	ט-ט-ט"-ט" (NI)		
┣───	00.0			(19)		E Index Test Results
-	30.0			2 10 11 11*	Gravels 1/4" to 1" diameter	$\frac{\Gamma \Pi U E X \Pi E S I R E S U I S}{\Gamma 2 0 0 - 12 10}$
-	4	2.0	F	3-10-11-11" (21)	gravers 1/4 10 1 ulameter.	Sand = 44.9% M.C. = 5.0%
-	22.0			(21)	-	Gand - ++.370 W.G 3.070
-	32.0					
-	-			14 10 01 17	Sill I SAND WITH GRAVEL (SW), Same as above.	
-	-	2.0	G	(30)	-	
-	34.0			(33)	-	
-	34.0				-	
25 -	25.0				-	
35_	35.0					H (36 37') Index Test Peculte
-	-			2107*	(SD)	MC = 27.0%
-	-	1.0	Н	(12)	36-37': SILT (ML) grav moist	10.0 21.070
-	37.0			(12)	<u></u> gray, molet.	
-	57.0				-	Groundwater at 37'
I -	1				-	
-	1				-	
-	1				-	
-	1				-	
40 -	40.0				-	
40	40.0				SILT WITH SAND ML grav wet pop-plastic	Lindex Test Results
-				2317*	SILT WITT SAID, ML, gray, wei, non-plastic.	$\frac{111000}{1000} = 3.0\%$ P200 = 84.2%
-		2.0	I	(7)	-	Sand = 12.8% M C = 27.0%
	12.0			(7)	-	Cana 12.070 W.C. 21.070
-	42.0				SILT (ML) gray wet non-plastic brown sand at 44'	
-	-			10 17 42 27	<u>SILI (ML),</u> gray, wet, non-plastic, brown sand at 44.	
-		2.0	J	(50)	-	
	110			(59)	-	
-	44.0				-	Hard drilling at 44'
45 -	15.0				-	
	40.0				SILTY SAND WITH GRAVEL (SM) grav wet	-
	1			24-33-44-24*	<u>OILIT OARD WITT OILVEL (OM),</u> gray, wet.	
		2.0	K	(77)	-	
	47.0			(11)	-	
	17.0				-	
	1				-	
-	1				-	
-	1				-	
-	1				-	
50	1				-	
~~	1					Heavy heave encountered from 50 to 70'. Up to
I -	1				-	6' of heave inside augers.
I -	1				-	Ŭ
I -	1				-	
I -	1				-	
-	1				-	
I -	1				-	
I -	1				-	
I -	1				-	
55	1				-	
1 ~~-	1					-
I -	1				-	
-	1				-	
I -	1				-	
I -	1				-	
I -	1				-	
I -	1				-	
-	1				-	
-	1				-	
60 -	1				-	
		I				

DUR

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~132 feet east of Cell 29 Wall Control Line (2648304.2 N, 1660899.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER	WATER LEVELS : 37 ft bgs at tim		s at time	of drilling.	START : 2/10/2012	END : 2/10/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)		SOIL DESCRIPTION	COMMENTS
I I				PENETRATION		
I I	INTERVAL (ft)			TEST RESULTS		
		RECOVERY (ft)			SOIL NAME (USCS GROUP STMBOL).	DEPTH OF CASING, DRILLING RATE,
				01 01 01 01	CONSISTENCY SOIL STRUCTURE MINERALOGY	INSTRUMENTATION
			#TYPE	6"-6"-6"-6" (NI)	CONSISTENCE, SOIL STRUCTURE, MINERALOGE	INSTROMENTATION
				(IN)		
-					-	
-					-	
-	-				-	
-	-				-	
-	-				-	
-	-				-	
-	-				-	
-	-				-	
65 -	-				-	
05-	-					-
-	-				-	
-					-	
I -	1				-	
-	1				-	
- 1	1				-	
-	1				-	
-	1				-	
I -	1				-	
70	70.0				-	
l · · · –					70-71': SILTY SAND (SM), grav. wet. fine sand.	Drilling rate moderate with heave and silt.
				5-10-11-9*	71-72': LEAN CLAY (CL), gray, moist, (BCF)	L Index Test Results
		2.0	L	(21)	<u></u> g ,	M.C. = 20.0%
	72.0			()	-	BCF contact at 71'.
					-	
	1				-	
	1				-	
	1				-	
-	1				-	
75	75.0				-	
					LEAN CLAY, CL. grav. moist, (BCF)	M Index Test Results
	1			3-5-8-9*		M.C. = 27.0%
		2.0	M	(13)	=	LL = 43% PL = 21% PI = 22%
	77.0			, , ,	=	
					-	
I -					-	
I -					-	
]						
]]				-	
80	80.0					_
Ι -	1				LEAN CLAY (CL), gray, moist. (BCF)	
Ι	1	20	N	5-7-6-7*	-	
-		2.0		(13)		
I -	82.0				-	
I -					_	Pushed shelby tube 24" using greater than 1,500
I -	-		0	PUSH	-	psi.
I -			-		-	
I -	84.0					
	4				Detterm of hole of 04.0 ft holess many dissectors	
85	4				BOILOTH OF HOLE AT 84.0 IT DELOW GROUND SUITACE.	
-	4				-	The diameter PVC plezometer installed in boring.
-	4				-	to 94'
I -	4				-	10 04 .
I -	4				-	
I -					-	
I -	-				-	
I -	-				-	
-	-				-	
	-				-	
90_						

PROJECT	NUMBER
42923	5

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~300 feet east of Cell 30 Wall Control Line (2648220.3 N, 1661050.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 15 ft bgs at time		s at time	of drilling.	START : 2/9/2012	END : 2/9/2012 LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		AL (ft)		PENETRATION		
		~= (ii)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE
		RECOVE	RY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS. TESTS. AND
			#TYPF	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
			-	(N)		
					0 to 8': Frozen poorly graded gravel with sand. (GP)	Note: Asterisk (*) next to blowcounts means that
						sample was taken using 2.4" ID sampler with 340 lb
-						hammer. Blowcounts listed without asterisk (*)
						means sample was taken using standard size
						SPT sampler with 140 lb hammer.
-					-	Frozon down to 9' bas
_					-	Flozen down to o bgs.
_					-	-
					-	-
5_						
-					-	-
-					-	-
-					-	-
-					-	-
-					-	Cuttings appear to have more sand than gravel
-					-	
-	1				-	-
-	1				-	-
10	10.0				-	
					SILTY GRAVEL WITH SAND, GM, brown, gravels	A Index Test Results
_		2.0	Δ	8-15-11-11*	1/4" to 2" in diameter.	Gravel = 48.0% P200 = 18.1%
_		2.0	~	(26)	-	Sand = 33.9% M.C. = 5.0%
_	12.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
15 -	15.0				-	-
¹³	15.0				POORLY GRADED SAND WITH GRAVEL (SP)	Groundwater at approximately 15'
-			_	3-5-7-5*	brown, wet.	B Index Test Results
-			В	(12)		M.C. = 9.0%
-	17.0			()	=	-
_					-	_
_					-	_
_					-	-
					_	-
20	20.0					D Index Test Desults
-				2514*	GRAVEL (SP-SM) brown wet 1/4" to 1/2" diameter	$\frac{D \text{ muex rest results}}{MC} = 8.0\%$
-		1.0	С	3-5-4-1 (Q)	gravels	
-	22.0			(3)		-
-	22.0				-	-
-					-	-
-	1				-	-
-	1				-	-
-	1				-	1
25_	25.0				-]
					POORLY GRADED GRAVEL (GP), wet, 1/4" to 3"	Blows probably indicate pushing rock, blows are
		20	п	3-27*	diameter gravels.	questionable.
_		2.0		(27)	-	Lieuve in unner perties ofi-
-	27.0				-	neave in upper portion of sample.
-					-	-
-					-	-
-					-	-
-					-	-
30 -					-	-

PROJECT	NUMBER:
42923	5

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~300 feet east of Cell 30 Wall Control Line (2648220.3 N, 1661050.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

Ρ

WATER LEVELS : 15 ft bgs at time of drilling.			s at time	of drilling.	START : 2/9/2012	END : 2/9/2012 LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS	
		\1 (ft)		PENETRATION			
		∿∟ (it)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).		
		RECOVE	ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS. TESTS. AND	
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION	
				(N)			
	30.0				WELL GRADED SAND WITH SILT AND GRAVEL,	Upper part of sample probably heave.	
		10		5-20-7-6*	SW-SM, brown, wet, well-graded fine to coarse	E Index Test Results	
L _		1.0		(27)	sand.	Gravel = 16.0% P200 = 11.0%	
	32.0				-	Sand = 73.0% M.C. = 12.0%	
-					-	-	
-	-				-	Vory ooft drilling	
-	-				-	very sont drinning.	
-	-				-		
35	35.0				-	-	
					WELL GRADED SAND WITH SILT AND GRAVEL		
]	20	F	2-4-5-3*	(SW-SM), brown, wet, well-graded fine to coarse		
1]	1	2.0		(9)	sand.		
-	37.0				-		
-	-				-		
-	-				-	-	
-	-				-	-	
I -	1				-	-	
40	40.0				-	-	
1°	10.0				WELL-GRADED SAND (SW), grav, wet, fine to	Blows probably associated with fractured rock.	
-	1	4 5	~	5-67-8-6*	medium sand.		
		1.5	G	(75)	-	Fractured rock in sampler.	
	42.0				-		
	_				-		
-					-	-	
	-				-	-	
-	-				-	-	
45	45.0				-	-	
+0	+0.0				SILTY SAND WITH GRAVEL. SM. wet. fine to	H Index Test Results	
-		4 5		4-18-16-18*	medium sand.	Gravel = 31.0% P200 = 26.0%	
		1.5	н	(34)	-	Sand = 43.0% M.C. = 10.0%	
I _	47.0				-		
					-		
-	-				-	-	
	-				-	-	
-	-				-	-	
50	50.0				-	-	
~~-			1		SANDY CLAY, CL, gray, moist, fine sand.	I Index Test Results	
]	20		4-5-6-7*		M.C. = 26.0%	
	1	2.0	'	(11)		LL = 31% PL = 20% PI = 11%	
-	52.0				-		
-	-				-	-	
-	1				-	-	
-	1				-	-	
	1				-	-	
55	55.0				-]	
					LEAN CLAY, CL, gray, moist. (BCF)	J Index Test Results	
	1	20	<u>і</u> д	3-6-6-6*		M.C. = 25.0%	
-		2.0		(12)	-	LL = 41% PL = 20% PI = 21%	
-	57.0				-		
-	-				-	-	
-	1				-	-	
-	-				-	-	
- 1	1				-	-	
60	1				-	1	

BORING NUMBER:
B-5

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~300 feet east of Cell 30 Wall Control Line (2648220.3 N, 1661050.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 15 ft bgs at time of drilling.			s at time	of drilling.	START : 2/9/2012	END : 2/9/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	RFACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVAL (ff) PENETRATION			PENETRATION		
	RECOVERY (ft)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE	
				COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
	60.0				LEAN CLAY (CL), gray, moist. (BCF)	
		20	к	4-5-7-7*		
_		2.0		(12)	-	
	62.0					
	-				LEAN CLAY (CL), gray, moist. (BCF)	Shelby Tube pushed at 1,000 psi.
	-			PUSH	-	-
-	64.0				-	-
-	04.0					
65	1				Bottom of hole at 64.0 ft below ground surface.	1
						1" diameter PVC piezometer installed in boring.
						PVC manually slotted using a hacksaw from 14
_					-	to 64'.
-	4				-	
-	-				-	4 .
-	1				-	-
-	-				-	-
-					-	-
70					-	· · · ·
	1					
L _					-	
					_	
	-				-	-
	-				-	-
	-				-	-
					-	-
75	•				-	-
	1					1 -
]
					_	
	-				-	
					-	
	-				-	-
-	-				-	-
-	-				-	-
80					-	· · ·
]] –
1]						1
-					-	4
-	4				-	4 -
-	4				-	
-	1				-	1 .
-	1				-	1 -
I -	1				-	1
85	1				-]
						1
-					-	4 .
-	4				-	4 .
-	-				-	4 -
-	1				-	
-	1				-	1 -
-	1				-	1 -
-	1				-	1
90	<u> </u>					

DDO IDOT		
PROJECT	NUMBER.	
	-	

SHEET 1 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~127 feet east of Cell 29 Wall Control Line (2648300.9 N, 1660892.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : 36 ft bgs at time			s at time	of drilling.	START : 2/11/2012	END: 2/11/2012 LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS	
	INTERVA	AL (ft)		PENETRATION			_
		()		LEST RESULTS	SOIL NAME (USCS GROUP SYMBOL),	DEPTH OF CASING. DRILLING RATE	
		RECOVERY (ft)			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
	#TYPE		6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
				(N)			
					0 to 8': Frozen poorly graded sand with gravel. Fine to	Note: Asterisk (*) next to blowcounts means that	_
					coarse. (SP)	sample was taken using 2.4" ID sampler with 340 I	ຼ່
_					-	hammer. Blowcounts listed without asterisk (*)	_
_					-	means sample was taken using standard size	_
_					-	SPT sampler with 140 lb hammer.	_
_					-	Frozen down to 8' bas	_
_					_	1 lozen down to o bgs.	-
-					-		-
					-		-
5_							
-					-		-
-					-		-
-					-		-
					-		-
-					-	1	-
-					-		-
I -					-		-
-					-	1	-
10	10.0				-	1	-
					SILTY GRAVEL WITH SAND (GM), brown, gravels	Broken rock fragments.	
-		2.0		11-12-16-13*	1/4" to 2.5" in diameter.	A Index Test Results	
		2.0	A	(28)		M.C. = 6.0%	-
	12.0				-		_
							_
					_		_
I _					-		_
I _					-		_
-							_
15	15.0						
-					SILTY GRAVEL WITH SAND, GM, brown, gravels	Broken rock fragments.	_
-		2.0	В	6-9-6-8*		$\frac{B \text{ Index Test Results}}{Cravel = 44.0\%}$	-
	17.0			(15)	-	Sand = 42.8% M C = 5.0%	-
-	17.0				-	Gana - 42.070 W.O 3.070	-
-					-		-
-					-		-
-					-		-
-					-		-
20	20.0				-	1	-
I					SILTY SAND WITH GRAVEL, SM, brown.	Broken rock fragments.	
I ⁻		20		8-7-8-8*		C Index Test Results	-
I -		2.0		(15)	-	Gravel = 38.0% P200 = 13.8%	
]	22.0					Sand = 48.2% M.C. = 6.0%	_
_							_
-					-	1	_
-					-		-
I -					-	4	-
	05.0				-		-
25_	25.0					Maist zono	
-				6 0 10 0*	<u>SILIT SAND WITH GRAVEL (SM),</u> Drown, moist.	NUISL 2011E. D Index Test Results	-
-		2.0	D	0-0-10-0" (19)	-	$M_{\rm C} = 7.0\%$	-
I -	27.0			(10)	-	1.070	-
-	21.0				-	1	-
-					-	1	-
-					-		-
-					-	1	-
-					-	1	-
30					-	1	-
		•					

PROJECT NUMBER:	
429235	

SHEET 2 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~127 feet east of Cell 29 Wall Control Line (2648300.9 N, 1660892.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 36 ft bgs at time of drilling.			s at time	of drilling.	START : 2/11/2012	END : 2/11/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		AL (ft)		PENETRATION		
	TEST RESULTS		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE	
		RECOVE	OVERY (ft)		COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
	30.0				POORLY GRADED GRAVEL WITH SAND (GP).	Rock fragments present.
		2.0	F	5-11-9-10*	brown, gravels 1/4" to 1.5" in diameter.	
		2.0		(20)	-	
	32.0				-	
-					-	
-					-	Coffee drilling at 22 El inte condumetarial
-					-	Soller drilling at 33.5 into sandy material.
					-	
35	35.0				-	
	00.0				35-36': POORLY GRADED SAND (SP), brown,	F (36-37') Index Test Results
		2.0	-	3-2-3-4*	moist.	M.C. = 33.0%
		2.0	F	(5)	36-37': SANDY SILT, ML, gray, wet, non-plastic,	LL = NA PL = NP PI = NA
	37.0				fine sand.	
					_	
					-	
					-	
-					-	
40 -	10.0				-	
*	+0.0				SILT. ML. wet_fine sand	Heave encountered at 40' Rods dropped 3'
			0	1-2-2-3*		through soil from own weight. Very soft material.
		2.0	G	(4)	-	<u>G Index Test Results</u>
	42.0				-	Gravel = 1.0% P200 = 88.7%
						Sand = 10.3% M.C. = 32.0%
_					-	LL = NA PL = NP PI = NA
-					-	
					-	
45 -	45.0				-	
40	45.0				45-46 5': SILT (ML) grav wet	Drillers adding water to counteract heave
				4-24-34*	46.5-47': SILTY SAND (SM), grav.	
		2.0	н	(58)	<u></u> 3*)	
	47.0			. ,	-	
					-	
					-	
					-	
-					-	
50	50.0				-	
- ³⁰	50.0				SILTY SAND WITH GRAVEL. SM. grav moist 1/4"	I Index Test Results
				1-4-38-34	to 1/2" diameter gravel.	Gravel = 22.0% P200 = 22.7%
		2.0		(42)		Sand = 55.3% M.C. = 14.0%
	52.0				-	
					-	
					-	
					-	
55 ⁻	55.0				-	
55_	35.0				SILTY SAND (SM), gray moist fine sand	J Index Test Results
				8-24-38-43	<u>ore risking (own</u> gray, molet, me sand.	$M_{\rm M}C_{\rm M} = 17.0\%$
		2.0	J	(62)	-	
	57.0			()	-	
	-				-]
]					-	
					_	4
					-	
60						-

PROJECT	NUMBER:	
	-	

SHEET 3 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~127 feet east of Cell 29 Wall Control Line (2648300.9 N, 1660892.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : 36 ft bgs at time			s at time	of drilling.	START : 2/11/2012	END : 2/11/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVA	AL (ft)		PENETRATION		
		DE001		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL),	DEPTH OF CASING, DRILLING RATE,
	RECOVERY (ft)			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
L				(N)		
-	60.0			10.06.00.45	SILIY SAND, SM, gray, moist, fine sand.	K Index Test Results
-		2.0	К	12-20-33-45	-	Graver = 0.0% P200 = 24.1% Sand = 75.9% M.C. = 19.0%
-	62.0			(59)	-	
-	02.0				-	-
					-	-
-					-	-
65 -	65.0				-	-
C0	05.0				65-66 5': SILTY SAND (SM) grav wet fine sand	BCE at 66 5'
-				10-27-18-28	66.5-67': LEAN CLAY (CL), gray, wet, me sand.	
		2.0	L	(45)	<u> </u>	-
]	67.0			. ,	-	
-					-	-
-					-	-
-					-	-
-					-	-
70	70.0				-	-
l					SILTY SAND (SM). gray, wet, fine sand.	M Index Test Results
]		20	N4	8-35-28-50		M.C. = 19.0%
-		2.0	171	(63)	-	-
-	72.0				-	-
-					-	-
-					-	-
-					-	-
1]					-	-
75_	75.0					
-				0 40 00 50	75-76.5': SANDY SILTY CLAY, CL-ML, gray, wet,	Silt possibly moved into auger from 75-85'.
-		2.0	N	0-40-28-50 (68)	76.5.5-77': LEAN CLAY (CL). grav moist (BCF)	M.C. = 18.0%
-	77.0			(00)	gray, molet (Der)	LL = 19% PL = 15% PI = 4%
-					-	-
]					-	
-					-	-
-					-	-
80 -	80.0				-	-
00	00.0				SANDY SILT (ML), gray moist fine sand gray clay	
-	1			10-14-18-17	in tip.	-
]	1	∠.0	0	(32)	-	-
-	82.0				-	-
-					-	-
-					-	-
-					-	-
-	1				-	-
85_	85.0				-]
_					SANDY SILT (ML), gray, moist, fine sand, gray clay	
-		2.0	Р	4-8-12-19	in tip.	-
-	87.0			(∠∪)	-	-
-	01.0					
-	1				Bottom of hole at 87.0 ft below ground surface.	-
]						
-					-	-
					-	-
90_						

SHEET 4 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~127 feet east of Cell 29 Wall Control Line (2648300.9 N, 1660892.1 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 36 ft bgs at time of drilling.					START : 2/11/2012	END : 2/11/2012 LOGGER : S. Erdmann
DEPTH E	BELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		AL (61)		PENETRATION		
1	INTERV	⊷∟ (π)		TEST RESULTS		
	RECOVERY (ft)		RECOVERY (ft)			DEPTH OF CASING, DRILLING RATE,
			#TVDE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
			#1166	(N)	,	
<u> </u>						1" diameter PVC piezometer installed in boring.
-					-	PVC manually slotted using a hacksaw from 20
-						to 87'.
Ι.					-	Approximately 20' of clay on outside of augers
					_	
-					-	-
-	-				-	-
95 -	-				-	-
00_						
-					-	-
					-	
I -	-				_	-
-	-				-	-
-	-				-	-
-	-				-	-
100	-				-	-
100_						
					-	-
-						-
I .					-	_
I -	_				_	-
-	-				-	-
-	-				-	-
105	-				-	-
105_					—	
					-	-
					-	
	_				_	-
-					-	-
-	-				-	-
	-				-	-
110	-				-	-
	1					
I .]				-]
]	1					
-	-				_	-
-	-				-	-
-	1				-	-
- 1	1				-	-
-	1				-	-
115	1				-	-
· · ·]				—	
]					-	
]						-
-	-				-	-
-	-				-	-
-	1				-	-
-	1				-	-
-	1				-	-
120	1				-	-

PROJECT	NUMBER:
	-

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~5 feet east of Cell 50 Wall Control Line (2647669.0 N, 1660547.7 E)

ELEVATION: 33.5 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : 32 ft bgs at time of drilling.				of drilling.	START : 2/21/2012	END : 2/21/2012 LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS	
	INTERVAL (ft) PENETRATION						
	intrent,	RECOVERY (ft)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL),	DEPTH OF CASING DRILLING RATE	
					COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION	
				(N)			
-					0 to 7': Frozen soil.	Note: Asterisk (*) next to blowcounts means that	
					-	sample was taken using 2.4" ID sampler with 340 lb	
-					-	means sample was taken using standard size	
-					-	SPT sampler with 140 lb hammer.	
-					-	- · · · · · · · · · · · · · · · · · · ·	
					-		
					-		
					-	-	
5_							
-					-	-	
					-	-	
					-	-	
					-		
_					-	-	
-					-	-	
-	9.0				POORLY GRADED GRAVEL WITH SILT AND	Bock fragments	
10 -		4 -		7-12-16-10*	SAND, GP-GM, brown.	<u>A Index Test Results</u>	
		1.5	A	(28)		Gravel = 49.0% P200 = 8.8%	
	11.0				-	Sand = 42.2% M.C. = 5.0%	
-					-	-	
-					-	-	
					-	-	
-					-	-	
	14.0				-		
					POORLY GRADED GRAVEL WITH SILT AND	Rock fragments.	
15_			В	16-7-8-8*	SAND (GP-GM), brown.		
	16.0			(15)	-	-	
-	10.0				-	-	
-					-	-	
					-		
_					-	-	
-	10.0				-	-	
-	19.0				POORLY GRADED SAND WITH GRAVEL (SP)	C Index Test Results	
20 -		4.0		7-6-13-13*	brown, moist.	M.C. = 8.0%	
		1.0	C	(19)			
-	21.0				-	-	
-					-	-	
-					-	-	
-	1				-	-	
					-		
-	24.0						
				E 4 0 0*	POURLY GRADED GRAVEL WITH SILT AND	$\frac{D \text{ index 1 est Results}}{Cravel = 40.0\%}$	
2 ⁵ —		2.0	D	จ-4-๖-๖^ (10)	GAND, GE-GIN, DIOWII, MOISL	Sand = 40.1% M C = 5.0%	
-	26.0			(10)	-	-	
-					-	1 -	
]]				-		
-					-	-	
-					-	-	
-	20.0				-		
-	23.0				POORLY GRADED SAND WITH GRAVEL (SP).	C Index Test Results	
30_				1-5-5-5*	brown, moist.	M.C. = 7.0%	

BORING NUMBER:
B-8

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~5 feet east of Cell 50 Wall Control Line (2647669.0 N, 1660547.7 E)

ELEVATION: 33.5 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 32 ft bgs at time of drilling.				of drilling.	START : 2/21/2012	END : 2/21/2012	LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS	
	INTERV	AL (ft)		PENETRATION				
		RECOVERY (ff)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE.		
		RECOVE	ERT (TT)		COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	IN	ISTRUMENTATION	
<u> </u>		15	F	(N) (10)				
	31.0	1.5		(10)	-			
-	51.0				-			
					-			
					-	Groundwater at 32	2'.	
					-			
-	34.0				-			
	34.0				SILTY SAND WITH GRAVEL (SM), wet			
35 -			-	10-6-4-4*	<u></u>			
			Г	(10)				
	36.0				-			
-					-			
					-			
					-			
]					-			
_	39.0							
40 -				0.0.11.10*	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), brown, wet			
40		2.0	G	2-8-11-12 (19)	SAND (GF-Sin), brown, wet.			
-	41.0			(10)	-			
					-			
					-			
-					-			
-					-			
	44 0				-			
-					SILTY SAND WITH GRAVEL, SM, brown, wet.	H Index Test Resu	ults	
45_		15	н	5-11-20-14		Gravel = 33.0%	P200 = 21.6%	
		1.0		(31)	-	Sand = 45.4%	M.C. = 10.0%	-
-	46.0				-			
-					-			
					-			
					-			
-					-			
-	49.0				SILTY SAND WITH GRAVEL (SM) wet			
50				12-23-19-27				
	1	1.0		(42)				
	51.0							
-					-			
-					-			
-					-			
	1				-			
-	54.0							
				E0 E7 44 04	SILTY SAND WITH GRAVEL (SM), brown, wet.			
⁵⁵ —		1.5	J	ວບ-ວ7-41-64 (98)				_
-	56.0			(00)	-			
					-			•
-					-			
-					-			
-					-			-
-	59.0				-			-
					WELL GRADED SAND WITH GRAVEL (SW), wet.			•
60				15-27-22-31				

BORING NUMBER:
B-8

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~5 feet east of Cell 50 Wall Control Line (2647669.0 N, 1660547.7 E)

ELEVATION: 33.5 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 32 ft bgs at time of drilling.					START: 2/21/2012	END: 2/21/2012 LOGGER: S. Erdmann		
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS		
		\1 (ft)		PENETRATION				
				TEST RESULTS		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE
		RECOVE	ERY (ft)		COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
				(N)				
		2.0	К	(49)	_			
	61.0				_			
					-			
					-			
					-	-		
					-	· · · ·		
	64.0				-	-		
					POORLY GRADED SAND WITH GRAVEL (SP),			
65		15	1	21-59-33-39	gray, wet.	_		
		1.0	-	(92)	_			
	66.0				-			
					-			
					-	-		
-					-			
					-	· · · ·		
	69.0				-	-		
					WELL GRADED SAND (SW), gray, wet.			
70		10	м	12-16-14-33		-		
		1.0		(30)	_			
	71.0				-			
					-	-		
					-	-		
					-	· · · · · ·		
					-	-		
	74.0				-			
					POORLY GRADED SAND WITH GRAVEL (SP).	Heave in upper portion of sampler.		
75		0.5	Ν	13-21-23-34	gray, wet.	_		
	70.0			(44)	-	-		
-	76.0				-	-		
-					-	-		
					-	-		
	79.0							
					<u>SILT (ML),</u> gray.			
80		1.0	0	5-4-5-9				
-	81.0			(3)	-			
+	01.0							
1]				Bottom of hole at 81.0 ft below ground surface.	-		
						1" diameter PVC piezometer installed in boring.		
					_	PVC manually slotted using a hacksaw from 10		
					-	to 80°.		
					-			
85 -					-	-		
- ³³								
	1				-	· · · ·		
	1				-			
					_			
					-			
-					-			
-					-	-		
90	1				-	· · ·		

PROJECT NUMBER:	
40000	

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~85 feet east of Cell 50 Wall Control Line (2647643.8 N, 1660607.4 E)

ELEVATION: 34.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : 25.5 ft bgs at time of drilling. START : 2/22/2012					END: 2/22/2012 LOGGER: S. Erdmann	
DEPTH BELOW GROUND SURFACE (ft) STANDARD				STANDARD	SOIL DESCRIPTION	COMMENTS
		(1 /#)		PENETRATION		
		∿⊑ (IL)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL)	
		RECOVE	ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS TESTS AND
	#TYPE 6"-6"-6		6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION	
			#1176	(N)	,,	
				()	0 to 7': Frozen soil	Note: Asterisk (*) next to blowcounts means that
-						sample was taken using 2.4" ID sampler with 340 lb
-					-	hammer. Blowcounts listed without asterisk (*)
-					-	means sample was taken using standard size
-					-	SPT sampler with 140 lb hammer.
-					-	-
-						Frozen down to 7' bgs.
					-	-
5						
l _					_	-
_					_	-
l _					_	-
_					-	-
-					_	-
-					_	-
_					_	-
-					-	-
40 -	10.0				-	-
10	10.0					
-				10.0.0.0*	POORLY GRADED SAND WITH GRAVEL (SP),	-
-		2.0	Α	(10)	DIOWII.	-
-	12.0			(10)	-	-
-	12.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
15 -	15.0				-	-
^{''}	10.0				SILTY SAND WITH GRAVEL (SM), brown.	B Index Test Results
-			_	27-11-11-13*	<u></u>	M.C. = 4.0%
-		2.0	В	(22)	-	-
-	17.0			、 <i>,</i>		-
						-
						_
20	20.0					
_					SILTY SAND WITH GRAVEL (SM), brown.	-
-		2.0	С	7-7-4-6*	_	-
-	a			(11)	-	-
-	22.0				-	-
-					-	-
-					-	-
-					-	-
-					-	-
25 -	25.0				-	-
I [∠] "—	20.0	<u> </u>			SILTY SAND WITH GRAVEL (SM) brown wet	Groundwater at 25.5'
-				7-6-6-11*		
-		2.0	D	(12)	-	-
-	27 0			()	-	-
-			1		-	-
-					-	-
-					-	-
-					-	-
-					-	-
30					-	-

BORING NUMBER:
B-9

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~85 feet east of Cell 50 Wall Control Line (2647643.8 N, 1660607.4 E)

ELEVATION: 34.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER: 429235

WATER LEVELS : 25.5 ft bgs at time of drilling.					START : 2/22/2012	END : 2/22/2012	LOGGER : S. Erdmann
DEPTH E	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS
1		AL (61)		PENETRATION			
1	INTERVAL (ff) TEST RESULTS					DEDTU OF	
	RECOVERY (ft)		ERY (ft)		SUL NAME (USCS GROUP STMBOL).		CASING, DRILLING RATE,
					CONSISTENCY SOIL STRUCTURE MINERALOCY	DRILLING	FLUID LUSS, TESTS, AND ISTRUMENITATION
			#TYPE	6"-6"-6"-6"	CONSISTENCE, SOIL STRUCTURE, MINERALOGT		ISTROMENTATION
L				(11)			
-	30.0			40.4.0.0*	SILTY SAND WITH GRAVEL (SM), brown, wet.		-
-	-	2.0	E	16-4-3-3^	-		-
-				(7)	-		-
-	32.0				-		-
	-				-		-
-					-		-
-	-				-		-
-	-				-		-
	25.0				-		-
35_	35.0						
	-				SILTT GRAVEL WITH SAND (GM), brown, wet.		-
	-	2.0	F	0-0-0-0 (10)	-		-
	27.0			(10)	-		-
	37.0				-		-
	-				-		-
					-		-
	-				-		-
					-		-
40 -	10.0				-		-
40_	40.0				SILTY SAND WITH GRAVEL (SM) brown moist		
				7-7-6-6*	SILT I SAND WITT GRAVEL (SM), DIOWII, MOISI.		-
	1	1.5	G	(13)	-		-
	120			(10)	-		-
	42.0				-		-
					-		-
					-		-
					-		-
					-		-
45	45.0				-		-
¹⁰	10.0				SILTY SAND WITH GRAVEL (SM), wet		
				6-8-4-7*	<u></u>		-
		2.0	н	(12)	-		-
-	47.0			· · ·			-
-							-
	1						-
-							-
-							-
I ⁻					-		-
50_	50.0						
					POORLY GRADED SAND WITH SILT AND		
		20	1	2-2-3-4*	GRAVEL (SP-SM), wet.		-
Ι.	1	2.0	'	(5)	-		-
Ι.	52.0				-		-
-	-				_		-
I -	-				_		-
-					_		-
Ι.					-		-
I	1				_		-
55	55.0						
I -	-				POORLY GRADED GRAVEL WITH SAND (GP).		-
-	-	10		6-9-8-9*	wet.		-
Ι.	1	1.0	5	(17)	_		-
Ι.	57.0				_		-
Ι.	1				_		-
-	-				_		-
I -	-				_		-
Ι.	1				_		-
Ι	1				_		-
60							

PROJECT NUMBER:	
40000	

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~85 feet east of Cell 50 Wall Control Line (2647643.8 N, 1660607.4 E)

ELEVATION: 34.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : 25.5 ft bgs at time of drilling. START : 2/22/2012						END : 2/22/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		AL (ft)		PENETRATION		
		·- (ii)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE
	RECOVERY (ft)				COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
	60.0				POORLY GRADED SAND WITH SILT AND	
		17	ĸ	18-14-10-11*	GRAVEL (SP-SM), wet.	
I _		1.7	I. I.	(24)	-	
-	62.0				-	
-					-	
-					-	
-					-	
-					-	· · · · · · · · · · · · · · · · · · ·
65	65.0				-	
					POORLY GRADED SAND WITH SILT AND	L Index Test Results
		15		20-9-9-10*	GRAVEL, SP-SM, wet, rock fragments in bottom.	Gravel = 34.0% P200 = 8.4%
_		1.5	L .	(18)	-	Sand = 57.6% M.C. = 9.0%
-	67.0				_	
-					-	
-					-	
-					-	
-					-	
70	70.0				-	· · · ·
l			l		<u>70-70.5': SILT (ML),</u> gray, wet.	M Index Test Results
		20	м	13-10-8-9*	70.5-72': LEAN CLAY, CL, gray. (BCF)	M.C. = 20.0%
		2.0	IVI	(18)	_	LL = 47% PL = 21% PI = 26%
I _	72.0					
-					Dettern of hole of 70.0 ft hole warrend surfaces	
-					Bottom of noie at 72.0 ft below ground surface.	1" diameter DVC piezemeter installed in bering
-					-	PVC manually slotted using a backsaw from 10
-					-	to 72'.
75					-	·
						-
I _					-	
-					_	
-					-	
-					-	
-					-	
-					-	· · · · · · · · · · · · · · · · · · ·
80	1				-	
_						
1 -	ļ					
-					-	
-					-	
-					-	
-					-	
-	1				-	· · ·
	1				-	
85_					-	
_						
-					_	
-					-	
-					-	
-					-	
-					-	
-	1				-	· · · · · · · · · · · · · · · · · · ·
-	1				-	
90_	1				-	

PROJECT	NUMBER
42923	5

SHEET 1 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~25 feet east of Cell 27 Wall Control Line (2648366.8 N, 1660808.2 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 11 ft bgs at time			s at time	of drilling.	START: 2/12/2012	END: 2/13/2012 LOGGER: S. Erdmann
DEPTH B	ELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
		AI (#)		PENETRATION		
		(IL)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	
	RECOVERY (ft)		ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS TESTS AND
			#TVPF	6"-6"-6"-6"	CONSISTENCY. SOIL STRUCTURE. MINERALOGY	INSTRUMENTATION
			#1176	(N)		
┣────				()	0 to 7': Frozen brown poorly graded gravel with sand	Note: Asterisk (*) pext to blowcounts means that
-					(GP)	sample was taken using 2.4" ID sampler with 340 lb
-					(0) /	hammer. Blowcounts listed without asterisk (*)
-					-	means sample was taken using standard size
-					-	SPT sampler with 140 lb hammer.
-					-	
-					-	Frozen down to 7' bgs.
-					-	
-					-	
5					-	
·						-
-					-	
-					=	
-					=	
-					=	
-					-	
-					-	
-					-	
-					-	
10	10.0					
					SILTY SAND WITH GRAVEL (SM), brown, wet, 1/4"	A Index Test Results
-		20	^	6-8-7-5*	to 2.5" diameter gravel.	M.C. = 7.0%
-		2.0	A	(15)		Groundwater at 11'.
	12.0					
I _					_	
_					_	
15	15.0					_
_					SILTY SAND WITH GRAVEL, SM, brown, wet.	Softer drilling.
_		0.5	в	3-8-8-7*	-	B Index Test Results
-		0.0		(16)		Gravel = 27.0% P200 = 23.7%
_	17.0				-	Sand = 49.3% M.C. = 8.0%
_					-	
_					_	
-					-	
-					-	
	00.0				-	
20	20.0					-
-				2000	SILIT SAND WITH GRAVEL (SM), brown, wet.	
-		2.0	С	3-9-8-9° (17)	-	
-	22.0			(17)	-	
-	22.0				-	
-					-	
-	1				-	
-	1				-	
-					-	
25	25.0				-	
I [∠] ³ −−	20.0				POORLY GRADED SAND WITH GRAVEL (SP)	Rock fragments in shoe
-				6_7_9_8*	brown moist	D Index Test Results
-		1.5	D	(16)		M.C. = 6.0%
-	27.0			(10)	-	
-	21.0				-	
-					-	
-					-	
-					-	
-					-	
30					-	
			I			-

PROJECT	NUMBER:
42923	5

SHEET 2 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~25 feet east of Cell 27 Wall Control Line (2648366.8 N, 1660808.2 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER	LEVELS	: 11 ft bg	s at time	of drilling.	START : 2/12/2012	END : 2/13/2012	LOGGER : S. Erdmann	
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)		SOIL DESCRIPTION		COMMENTS	
		(ft)		PENETRATION				
		∿∟ (IL)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL)			
		RECOVE	ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DEPTHOF	FLUID LOSS TESTS AND	
			#TVDE	6"_6" 6" 6"	CONSISTENCY, SOIL STRUCTURE MINERALOGY	IN	ISTRUMENTATION	
I I			#ITPE	0-0-0-0 (N)				
 	20.0			(17)		Pock fragmonto in	shoe	
-	30.0			7878*	FOORLI GRADED SAIND WITH GRAVEL (SF).	ROCK IT agriterits in	i shoe.	-
-		1.0	E	(15)				-
-	32.0			(13)	-			-
-	32.0				-			-
-					-			-
-					-			-
-					-			-
-					-			-
35	35.0				-			-
	00.0				POORLY GRADED GRAVEL WITH SAND (GP).	Rock fragments		
			_	5-9-12-16*	brown, wet.	,		-
		2.0	F	(21)				-
	37.0			()	-			-
					-			-
-	1				-			-
					-			-
-	1				-			-
-	1				-			-
40	40.0				-			-
					WELL GRADED GRAVEL WITH SILT AND SAND.	Rock fragments.		
				9-12-12-12*	GW-GM, brown, wet.	G Index Test Resu	ults	-
		2.0	G	(24)		Gravel = 54.0%	P200 = 9.7%	-
	42.0			()	-	Sand = 36.3%	M.C. = 6.0%	-
					-			-
					-			-
					-			-
					-			-
					-			-
45	45.0							-
					WELL GRADED GRAVEL WITH SILT AND SAND	Rock fragments.		
		~ ~		18-13-12-8*	(GW-GM), brown, wet.	Ŭ		-
		2.0	н	(25)				-
-	47.0			. ,				-
-								-
]								-
								-
50	50.0							_
-					WELL GRADED GRAVEL WITH SILT AND SAND			
Ι		20	1	4-7-10-13*	(GW-GM), brown, wet.			
I -		2.0	'	(17)	_			-
-	52.0				_			-
I -					_			-
I -					_			-
I -					_			
I -					_			
					_			
55	55.0							
-					WELL GRADED GRAVEL WITH SILT AND SAND			-
-		20	L.	16-14-10-10*	(GW-GM), brown, wet.			-
-			Ĭ	(24)	_			-
I -	57.0				_			
I -					_			
-					_			-
-					_			-
-					_			-
-					-			-
60								

PROJECT NUMBER:	
429235	

SHEET 3 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~25 feet east of Cell 27 Wall Control Line (2648366.8 N, 1660808.2 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 11 ft bgs at time			s at time	of drilling.	START : 2/12/2012	END : 2/13/2012	LOGGER : S. Erdmann
DEPTH B	ELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	CC	MMENTS
	INTERV	AL (ft)		PENETRATION			
		RECOVE	-RY (ft)	IESI RESULIS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CAS	SING, DRILLING RATE,
					COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUI	D LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6" (N)	CONSISTENCE, SOIL STRUCTURE, MINERALUGY	11101 RU	
	60.0			(14)	WELL GRADED GRAVEL WITH SILT AND SAND		
-	00.0	20	K	9-12-10-11*	(GW-GM), brown, wet.		
		2.0	n n	(22)			
-	62.0				_		
-	-				-		
-	1				-		
					-		
					_		
65_	65.0						_
-	-			29-20-21-10*	(GW-GM), brown wet		
-		2.0	L	(41)	<u></u>		
	67.0			. ,			
-	-				_		
-	-				-		
-	1				-		
-	1				-		
70_	70.0						
-	-			10.0.0.11*	SILTY SAND, SM, brown, wet.	M Index Test Results	0 - 40 - 70
-	-	2.0	М	12-8-9-11 [*] (17)	-	Graver = 10.0% P20 Sand = 77.3% M.C.	U = 12.7%
-	72.0			(17)	-		
-							
-	-				-		
-	-				-		
75	75.0				-		
				5-3-4*	75-76': WELL GRADED SAND (SW), gray, wet, fine	BCF at 76'.	
-		1.5	N	(7)	to coarse sand.		
-	76.5			. ,	<u>76-76.3 : LEAN CLAT (CL).</u> gray, wel. (BCP)		
-	1				-		
	-						
	_				_		
-	-				-		
80 -	80.0				-		
~~					SANDY SILT, ML, gray, moist, non-plastic, gray fine	Silt and sand heaving u	ip to 10' into augers from
	-	2.0	0	6-17-22-24*	sand in bottom 2".	80-90'. Shelby tube atte	empts failed.
-	000		_	(39)	-	O index rest Results Gravel = 3.0% P200	0 = 68.9%
-	02.0				-	Sand = 28.1% M.C	5. = 20.0%
-	1				-	LL = NA PL = NP	PI = NA
]						
-	-				-		
85 -	-				-		
	1						_
	1				-		
	-				-		
-	-				-		
-	1				-		
-	1				-		
]]				-		
	-				_		
90_							_

BORIN

B-13

SHEET 4 OF 4

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~25 feet east of Cell 27 Wall Control Line (2648366.8 N, 1660808.2 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 11 ft bgs at time of drilling.				of drilling.	START : 2/12/2012	END : 2/13/2012	LOGGER : S. Erdmann
DEPTH E	DEPTH BELOW GROUND SURFACE (ft) STANDARD			STANDARD	SOIL DESCRIPTION		COMMENTS
	INTERV	AL (ft)		PENETRATION			
				TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).		CASING, DRILLING RATE
		RECOVERY (ft)			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING F	FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INS	STRUMENTATION
				(N)			
.							-
	-				Bottom of hole at 90.0 ft below ground surface.	4"	-
-	-				-	63' PVC manually	slotted using a backsaw from
	-				-	0 to 63'.	
	-				-		-
-					-		-
					-		-
	_				-		-
95_	-					-	
	-				-		-
-					-		-
					-		-
.	-				-		-
-	-				-		-
-	1				-		-
	-				-		-
100					-		-
l .	_				-		-
	-				-		-
	-				-		-
					-		-
-					-		-
					-		-
-	-				-	-	-
105 -					-	-	-
105_	-						
-					-		-
					-		-
.	_				-		-
	-				-		-
					-		-
					-		-
					-		-
110							
	-				-		-
	-				-		-
-	1				-		-
.	_				-		-
	-				-		-
	-				-		-
115					-		-
	1					1	
]	1				-		-
-	-				-		-
-	-				-		-
-	1				-		-
l -	1				-	1	-
]					-		-
-	-				-	1	-
120							

PROJECT NUMBER:	
400005	

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 28 Wall Control Line (2648317.7 N, 1660787.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

WATER	LEVELS	: 30 ft bg	s at time	of drilling.	START: 2/14/2012	END: 2/15/2012	LOGGER : S. Erdmann
DEPTH B	ELOW GR	OUND SUR	FACE (ft)		SOIL DESCRIPTION		COMMENTS
			. ,				
	INTERV	AL (ft)		TEST RESULTS			
		RECOVE			<u>SOIL NAME (USCS GROUP SYMBOL).</u>	DEPTH OF	CASING, DRILLING RATE,
					COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING	FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	IN	STRUMENTATION
				(N)			
					0 to 6': Frozen soil.	Note: Asterisk (*)	next to blowcounts means that
-	1					sample was taken	using 2.4" ID sampler with 340 lb
-	1				-	hammer Blowcou	nts listed without asterisk (*)
-					-	means sample wa	s taken using standard size
-					-	SPT sampler with	140 lb hammer.
-	-				-		
-	-				-	Frozen down to 6'	bas.
-	-				-		-9
-					-		
					_		-
5_	5.0						
-					SILTY SAND WITH GRAVEL (GM), brown, frozen		-
l _		20	Δ	12-39-62-42*	to 6'.		-
_		2.0	^	(101)			_
	7.0						
-					-		
-	1				=		-
I -	1				-	1	-
-	1				-		-
-	1				-		-
10 -	10.0				-		-
1º	10.0				SILTY CRAVEL WITH SAND (CM) brown moist		
-	-			0 1 1 1*	SILT GRAVEL WITH SAND (GWI), DOWII, MOISI.		-
-	-	2.0	В	8-4-4-4	-		-
-				(8)	-		-
-	12.0				-		-
_	-				_		
_							
I _					_		_
_							_
-	1						
15	15.0				-		-
					SILTY GRAVEL WITH SAND, GM, brown, moist.	C Index Test Resu	llts
-	1			8-6-7-5*		Gravel = 43.0%	P200 = 13.2%
-		2.0	С	(13)	-	Sand = 43.8%	M.C. = 6.0%
-	17.0			(10)	-		
-	11.0				-		-
-					-		-
-	-				-		-
-	-				-		-
-	4				-		-
	00.0				-		-
20 <u>-</u>	20.0						
I -					SILTY SAND WITH GRAVEL (SM), brown, moist.	ROCK tragments.	
_	1	20	р	9-6-6-9*	-	U Index Test Resu	<u>IITS</u> .
Ι_				(12)		M.C. = 6.0%	-
Ι_	22.0				-		-
					-		-
I [–]							-
-	1				-		-
-	1				-	1	-
25	25.0				-		-
l -~-	20.0				WELL GRADED GRAVEL WITH SILT AND SAND	F Index Test Result	lts —
-				0 0 0 5*	GW-GM moist	Cravel = 47.0%	$P_{200} = 11.0\%$
-	1	2.0	E	9-9-9-0 (10)		Sand = 41.0%	MC = 6.0%
-	07.0			(10)	-		
-	27.0				-		-
-	4				-		
_					-		-
_	1						-
_	1				-		-
I _]				_		_
30					-		-

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 28 Wall Control Line (2648317.7 N, 1660787.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

WATER LEVELS : 30 ft bgs at time of drilling.				of drilling.	START : 2/14/2012	END : 2/15/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERV	AL (ft)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	
	RECOVERY (ft)			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
_	30.0				WELL-GRADED GRAVEL WITH SILT AND SAND	
-	-	2.0	F	5-7-8-8* (15)	(GW-GM), brown, wet.	
-	32.0			(-)		
-	-				-	
_					-	
-	-				-	
35_	35.0					_
-	-			13-7-10-11*	GRAVEL (SP-SM), brown, wet.	
_	1	2.0	G	(17)		
-	37.0				-	
	-				1	
-	-				-	
					-	
40	40.0				POORLY GRADED GRAVEL WITH SAND (GP)	
-	-	20	н	3-8-10-11*	brown, wet, 2" diameter gravels.	
-	120	2.0		(18)	-	
-	42.0				-	
-					-	
					-	
45 -	45.0				-	
	40.0				SILTY GRAVEL WITH SAND (GM). brown, wet,	-
-	-	2.0	I	20-9-8-13* (17)	poorly graded, 2" diameter gravel in bottom.	
_	47.0			(17)	-	
-	-				-	
-					_	
-	-				-	
50_	50.0					
-	-			4_8_10_10*	POORLY GRADED GRAVEL WITH SAND (GP), brown_wet	Rock fragments in shoe.
		1.0	J	(18)		
-	52.0				-	
					-	
-	-				-	
-					-	
55_	55.0					K Index Test Results
-		1 5	Ľ	14-7-7-7*	GRAVEL, SP-SM, brown, wet.	Gravel = 44.0% P200 = 8.6%
-	E7 0	1.5	_ ^	(14)		Sand = 47.4% M.C. = 7.0%
-	57.0				-	
-]				-	
-	-				-	· · · · · · · · · · · · · · · · · · ·
	1				-	
60_						

		B

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 28 Wall Control Line (2648317.7 N, 1660787.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

DEPTH BELOW GROUND SURFACE (ft) STANDARD PENETRATION TEST RESULTS SOIL DESCRIPTION COMM INTERVAL (ft) PENETRATION TEST RESULTS SOIL NAME (USCS GROUP SYMBOL), COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DEPTH OF CASING DRILLING FLUID L INSTRUME #TYPE 6"-6"-6"-6" (N) Encountered fine grained s heave at 60'. Begin mud regioned s heave at 60'.	IENTS G, DRILLING RATE, OSS, TESTS, AND ENTATION silty sand / sandy silt otary.
INTERVAL (ft) PENETRATION TEST RESULTS SOIL NAME (USCS GROUP SYMBOL). DEPTH OF CASING DRILLING FLUID L INSTRUME #TYPE 6"-6"-6"-6" (N) 6"-6"-6"-6" COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DEPTH OF CASING DRILLING FLUID L INSTRUME - - 6"-6"-6" 6" 6" 6"	G, DRILLING RATE, OSS, TESTS, AND ENTATION silty sand / sandy silt otary.
Interview TEST RESULTS SOIL NAME (USCS GROUP SYMBOL). DEPTH OF CASING RECOVERY (ft) #TYPE 6"-6"-6" COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DEPTH OF CASING DRILLING FLUID L INSTRUME - - - - - - -	G, DRILLING RATE, OSS, TESTS, AND ENTATION silty sand / sandy silt otary.
RECOVERY (ft) COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DEFTH OF CASING DRILLING FLUID L INSTRUME - 6"-6"-6"-6" (N) COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DRILLING FLUID L INSTRUME - - Encountered fine grained s heave at 60°. Begin mud re	silty sand / sandy silt
#TYPE 6"-6"-6" CONSISTENCY, SOIL STRUCTURE, MINERALOGY INSTRUMI	ENTÁTION silty sand / sandy silt otary.
(N) Encountered fine grained g	silty sand / sandy silt otary.
Encountered fine grained s	silty sand / sandy silt otary.
heave at 60'. Begin mud ro	otary.
62.0	
Gray silt with drilling mud.	
$ - 1.0 L \frac{6-6-6-4}{4} $	
8' of heave in casing at 65	·
	-
	_
36.40.28.25 (SP) wet fine to coarse sand	
2.0 M (68) 71.8-72': SILT (ML), gray, wet.	
	-
	-
C 40 46 42 12 CERVEL TROCKLY GRADED SAND WITH SILL, SP-SM,	10.9%
- 2.0 N 0-10-10-12 9/ay, wet, the salid. Grave - 1.0 // - 200 - Sand = 88.2%	10.8 %
Drilling change at 78'. BCF	- at 78'.
1 12-12-34-32	
2.0 0 (46) 1 LL = 38% PL = 18%	PI = 20%
84.0	
85Bottom of hole at 84.0 ft below ground surface.	–
1 th diameter PVC piezomet	ter installed in boring.
	ig a nacksaw from 10
1 1 1 1 1 1	
90	

DURIN

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~63 feet east of Cell 30 Wall Control Line (2648289.4 N, 1660819.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER: 429235

WATER LEVELS : 25 ft bgs at time of drilling.			s at time	of drilling.	START : 2/16/2012	END : 2/17/2012	LOGGER : S. Erdmann
DEPTH B	ELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS
	INTERV	AL (ft) RECOVE	RY (ft) #TYPE	6"-6"-6"-6"	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF DRILLING I INS	CASING, DRILLING RATE, FLUID LOSS, TESTS, AND STRUMENTATION
				(N)	0 to 7': Frozen soil.	Note: Asterisk (*) n sample was taken hammer. Blowcour means sample was SPT sampler with Frozen down to 7' h	lext to blowcounts means that using 2.4" ID sampler with 340 lb its listed without asterisk (*) s taken using standard size 140 lb hammer. bgs.
	10.0	2.0	A	9-7-7-5* (14)	SILTY SAND WITH GRAVEL (SM), brown, 1/4" to 1.5" diameter gravels.		-
- - - 15 -	15.0			9-8-8-9*	SILTY SAND WITH GRAVEL (SM), brown, 1/4" to		
- - - - 20	<u>17.0</u> 20.0	2.0		(16)			
	22.0	2.0	C	9-9-6-7* (15)	SILTY SAND WITH GRAVEL, SM, brown, 1/4" to 1" diameter gravels.	<u>C Index Test Resu</u> Gravel = 35.0% Sand = 49.0%	l <u>ts</u> P200 = 16.0%
25 - - - - -	25.0 27.0	2.0	D	7-5-10-27* (15)	SILTY GRAVEL WITH SAND, GM, brown, wet.	Groundwater at 25' <u>D Index Test Resul</u> Gravel = 45.0% Sand = 42.2%	<u>Its</u> P200 = 12.8% M.C. = 6.0%

		BORIN

ING NUMBER: B-16

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~63 feet east of Cell 30 Wall Control Line (2648289.4 N, 1660819.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

InffERMent PTANABOD TEST RESULTS SOLL DESCRIPTION COMMENTS INFERMAL INFERMAL SOLL AME (USCS GROUP SYMBOL). DEPTH OF CASIND, DRILLING RATE, DRILLING FUEL (SM, DRIVER) DRILLING FUEL (SM, DRIVER) DRIVER (SM, DRIVER) DRIVER (SM, DRIVER) DRILLING FUEL (SM, DRIVER) DRIVER (SM, DRIVER)	WATER	LEVELS	: 25 ft bg	s at time	of drilling.	START : 2/16/2012	END : 2/17/2012 LOGGER : S. Erdmann	
INTERVAL (n) PERFORM TO TRECOVENT OF EXPLOSE PERFORM TO TRECOVENT OF EXPLOSE TEXT, SUBJURGED SYMBOLL COLOR, MOSTURE: CONTENT, FLATTVE DENSITY OF 200 DEPTH OF CASING, DRILLING RATE, DRILING RULD LOSS, TESTS, AND MISTRUMENTATION 300 2.0 E 111-11-0.0° (2) SULTY SAND WITH GRAVEL (SM), brown, wet. DEPTH OF CASING, DRILLING RATE, DRILING RULD LOSS, TESTS, AND MISTRUMENTATION 35 36.0 E 111-11-0.0° (2) SULTY SAND WITH GRAVEL (SM), brown, wet. - 40 2.0 F 11-11-16-0° (2) SULTY SAND WITH GRAVEL (SM), brown, wet. - 40 2.0 G 19-11-8-0° (19) SULTY SAND WITH GRAVEL (SM), brown, wet. - 41 2.0 G 19-11-8-0° (19) SULTY SAND WITH GRAVEL (SM), brown, wet. - 42 0 - - - - 45 45.0 - - - 47.0 - - - - 47.0 - - - - 50 - - - - - 50.0 - - -	DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS	
Introduction TEST RESULTS SOL MARE (JSSS GROUP 2 MRGL) (CORRECTOR MISTING CONTRING RELATING CONSISTENCY. SOLUTION CONSI			\1 (ft)		PENETRATION			_
Image: Second and the second			ν <u>ε</u> (π)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING DRILLING RATE	
Image: Image: <thimage:< th=""> <thimage:< th=""> <thimage:< td="" th<=""><td></td><td></td><td>RECOVE</td><td>ERY (ft)</td><td></td><td>COLOR MOISTURE CONTENT RELATIVE DENSITY OR</td><td>DRILLING FLUID LOSS. TESTS. AND</td><td></td></thimage:<></thimage:<></thimage:<>			RECOVE	ERY (ft)		COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING FLUID LOSS. TESTS. AND	
300 20 E 11-11-10-0* (21) SLTY SAND WITH GRAVEL (SM), brown, wet. 35 350 - - - 35 350 - - - 40 40 - - - 40 400 - - - 40 400 - - - 40 400 - - - 40 400 - - - 40 400 - - - 41 2.0 G 19-11-8-5* - 420 1 - - - 420 2.0 G 19-11-8-5* - 41.5 SILT WITH SAND, ML, gray, molst, non-plastic. - 420 1 5-8-15-15 - 50 2.0 1 5-8-15-15 - 51.5 51.5 - - - 52 2.0 1 5-8-15-15				#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION	
30.0 2.0 E 11.11.10.87 (21) SILTY SAND WITH GRAVEL (SM), brown, wet 35 350 - <td></td> <td></td> <td></td> <td></td> <td>(N)</td> <td></td> <td></td> <td></td>					(N)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30.0				SILTY SAND WITH GRAVEL (SM), brown, wet.		_
2.0 L.0 C (21) 35 350 35 350 40 40 40 40 40 40 40 40 40 41 42.0 45 45 50 50 51 52.0			2.0	_	11-11-10-8*			
36 30 20 F 11-11-14-14* 37 2.0 F 11-11-14-14* 14* 40 <td></td> <td></td> <td>2.0</td> <td></td> <td>(21)</td> <td></td> <td></td> <td></td>			2.0		(21)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	32.0						
35 35.0 2.0 F 11-11-14-14" 3LTY SAND WITH GRAVEL (SM), brown, wet. - 40 40.0 -	-					-		
35 35.0 .	-	-				-		
35 35.0	-					-		
35 35.0	-					-		
State State <th< td=""><td>35</td><td>35.0</td><td></td><td></td><td></td><td>-</td><td></td><td></td></th<>	35	35.0				-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00_	00.0				SILTY SAND WITH GRAVEL (SM), brown, wet.		_
37.0 2.0 F (25) 40 40.0 40.0 40.0 40.0 40 40.0 40.0 40.0 40.0 40 40.0 40.0 40.0 40.0 40 40.0 40.0 40.0 40.0 41 2.0 G 19-11-8-5° 19-41.5° SILTY SAND WITH GRAVEL (SM), brown, wet. 45 45.0 42.0 H 7.7.3-5° 115-22° SANDY SILT (ML), gray, wet. 45 45.0 - - - - 47 2.0 H 7.7.3-5° - - 50 50.0 - - - - 50 50.0 - - - - 51.5 SILT WITH SAND (ML), gray, wet. SIL52° LOORLY GRADED SAND WITH GRAVEL - - 52.0 2.0 I 5-8-15-15 SILT WITH SAND (ML), gray, wet. - 52.0 2.0 J 6-13-14-18 - - - 55.5 56.0 - - - - -				-	11-11-14-14*			
37.0 40 40.0 40 40.0 40.0 40 40.0 40.0 40 40.0 40.0 41 2.0 G 19-11-8-5* 42 2.0 G 19-11-8-5* 45 45.0 45.0 45.0 45 45.0 45.0 45.0 45 45.0 45.0 45.0 47.0 1.0 7.7.3.5* SULT WITH SAND, ML, gray, moist, non-plastic. 50 50.0 50.0 50.51.5*: SULT WITH SAND (ML), gray, wet. 51.5*.25: POORLY GRADED SAND WITH GRAVEL Different layer at 51.5*. 52.0 1 5-8-15-15 52.0 2.0 1 55 55.0 56.0 55.0 57.0 0.1 58.55': SULTY SAND WITH GRAVEL, SM, gray, moist, mon-plastic. 59.56': SULT Y SAND WITH GRAVEL, SM, gray, moist, mon-plastic. 56.57.0 1.0 57.0 0.0 58.57': POORLY GRADED SAND WITH GRAVEL, SM, gray, moist, mon-plastic. 56.50.0 1.0 57.0 <t< td=""><td>- </td><td></td><td>2.0</td><td>F</td><td>(25)</td><td>-</td><td></td><td></td></t<>	-		2.0	F	(25)	-		
40 40.0 <		37.0			. ,	-		
40 40.0 40.0 40.1.5: SILTY SAND WITH GRAVEL (SM), brown, wet. 41 42.0 19-11-8-5° 40-41.5: SILTY SAND WITH GRAVEL (SM), brown, wet. 45 45.0 41.5-42: SANDY SILT (ML), gray, wet. 11.6-42: Test Results 45 45.0 50 50 50 47.0 1 7.7.3.5° SILT WITH SAND_ML, gray, moist, non-plastic. Hindex Test Results 50 50.0 51.5 SILT WITH SAND_ML, gray, wet. Silf Silf Silf Silf Silf With GRAVEL Different layer at 51.5° 50 50.0 51.5 SILT WITH SAND_ML, gray, wet. Silf Silf Silf Silf Silf Silf Silf Silf						-		
40 40.0 40.0 40.41.5: SILTY SAND WITH GRAVEL (SM), brown, wet. 42.0 41.5.42: SANDY SILT (ML), gray, wet. 41.5.42: SANDY SILT (ML), gray, wet. 45 45.0 45.0 45 45.0 50.50.0 50 50.0 50.50.0 50 50.0 50.51.51: SILT WITH SAND (ML), gray, wet. 50 50.0 51.5.52.11 WITH SAND (ML), gray, wet. 51.5.52.0 1 51.5.52: SILT WITH SAND (ML), gray, wet. 51.5.52.0 1 51.5.52: SILT WITH SAND (ML), gray, wet. 52.0 1 5-8-15-15 52.0 1 5-8-15-15 52.0 1 5-8-15-15 52.0 1 5-8-15-15 52.0 1 5-8-15-15 52.0 1 5-8-15-15 52.0 1 6-8-13-14-18 55.55: SILTY SAND WITH GRAVEL, SM, gray, moist. Different layer at 51.5'. 110.02.1 1 5-55: SILTY SAND WITH GRAVEL, SM, gray, moist. 57.0 J 8-13-14-18 57.0 J 1 60 J 1	-	-				-		
40 40.0 <	-	-				-		
40 40.0	-	-				-		
10.0 10.0 19-11-8-5' 42.0 G 19-11-8-5' 45 45.0 G 45 45.0 G 47.0 H 7-7-3-5'' 47.0 H 7-7-3-5'' 47.0 H 7-7-3-5'' 50 50.0 Solo 50 50.0 Solo 52.0 I 5-8-15-15' 52.0 I 5-8-15-15' 52.0 J 8-13-14-18' 55- 55.0 Solo 57.0 J 8-13-14-18' 57.0 J 8-13-14-18' 60 J 8-13-14-18' 60 J Solo Sing Sing Sing Sing Sing Sing Sing Sing	40 -	40.0				-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0	40.0				40-41 5': SILTY SAND WITH GRAVEL (SM) brown		_
42.0 G X (19) 415.42: SANDY SILT (ML), gray, wet. 45 45.0	-			-	19-11-8-5*	wet.		
420 420 420 45 45.0 45.0 2.0 H 7.7.3.5* (10) 47.0 1 47.0 1 47.0 1 47.0 1 50 50.0 50.0 1 50 50.0 52.0 1 52.0 1 55 55.0 52.0 1 55 55.0 52.0 1 55 55.0 55.0 55.0 57.0 2.0 57.0 3.13-14-18 (27) 3.13-14-18 (27) 5.56?; SULTY SAND WITH GRAVEL, SM, gray, moist. 56.0 1 57.0 1 57.0 1 57.0 1 57.7 1 57.0 1 57.0 1 57.0 1 57.0 1 57.0 1 57.0 1	-		2.0	G	(19)	41.5-42': SANDY SILT (ML), gray, wet.		
45 45.0		42.0			(-)			
45 45.0						-		
45 45.0								
45 45.0	-					-		
45 45.0 - <td> -</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-					-		
45. 45.0 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
50 2.0 H 7.7.3.5* (10) Sole 1 WITH SAND, ME, gray, model, non-plastic. Indica, Test Results Gravel = 3.0*Cestuls Gravel = 15.4% 50 50.0 50.5 50.0 51.5*Cestul WITH SAND (ML), gray, wet. (SP), brown, dry. 55.5*Cestul Y SAND WITH GRAVEL, SM, gray, moist. Different layer at 51.5*Cestuls M.C. = 24.0% 50 50.0 55.0 55.0 55.0 55.5*Cestul Y SAND WITH GRAVEL, SM, gray, moist. Gravel = 18.0% P200 = 26.3% Sand = 55.7% 60 57.0 0 55.5*Cestul Y Graped SAND WITH GRAVEL (SP), brown, moist. 55.5*% Material change at 56* 10.0*%	45	45.0				SILT WITH SAND ML grov moist non plastic	H Index Test Results	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-			7735*	SILT WITH SAND, ML, gray, moist, non-plastic.	$\frac{\Pi \Pi \det X \ Test \ Results}{Gravel = 3.0\%}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		2.0	н	(10)	-	Sand = 15.4%	
$50 - 50.0$ 50.0 50.0 50.0 50.0 50.0 50.0 $50.51.5^{\circ}$ $51.5-52^{\circ}$ 51	-	47.0			(10)	-		
50 50.0 50.0 50.0 50.0 50.0 50.0 50.0 51.5: SILT WITH SAND (ML), gray, wet. 51.5: SILT WITH GRAVEL Different layer at 51.5: 1(50.51) Index Test Results 51 52.0 52.0 55.0 55.0 55.0 55.0 1.5: SILT Y SAND WITH GRAVEL, SM, gray, moist. Different layer at 56'. 1(50.51) Index Test Results 55 55.0 55.0 55.0 55.0 55.56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 1(50.57) Index Test Results 60 55.50 55.7: POORLY GRADED SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 1(50.57) Index Test Results 60 55.60 55.7: POORLY GRADED SAND WITH GRAVEL, SM, gray, moist. Sand = 55.7% M.C. = 11.0%						=		
50 50.0 50.0 I 50-51.5': SILT WITH SAND (ML), gray, wet. Different layer at 51.5'. 50 52.0 I 5-8-15-15 (23) S0-51.5': SILT WITH SAND (ML), gray, wet. Different layer at 51.5'. 51 52.0 I 5-8-15-15 (SP), brown, dry. Different layer at 51.5'. 55 55.0 Image: Solid structure S5-56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 55 55.0 Image: Solid structure S5-56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 57.0 J 8-13-14-18 S6-57': POORLY GRADED SAND WITH GRAVEL, SM, gray, moist. Gravel = 18.0% P200 = 26.3% Sand = 55.7% M.C. = 11.0% 60 Image: Solid structure Image: Solid structure Solid structure Image: Solid structure								
50 50.0 I 50-51.5': SILT WITH SAND (ML), gray, wet. Ifferent layer at 51.5': 52.0 I 5-8-15-15 (23) 55 52.0 Image: Sinter Sint	_					-		
50 50.0 - <td> -</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-	-				-		
50 50.0 50.0 50.0 50.0 50.51.5': SILT WITH SAND (ML), gray, wet. 50.51.5': Index Test Results 52.0 52.0 55.0 55.0 55.0 55.0 55.0 55.0 55 55.0 55.0 55.0 55.50 55.50': SILTY SAND WITH GRAVEL, SM, gray, moist. Miterial change at 56'. 57.0 J 8-13-14-18 55.55': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 60 J J 8-13-14-18 S5-56': SILTY GRADED SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 60 J J 8-13-14-18 S5-56': SILTY GRADED SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 60 J J 8-13-14-18 S6-57': POORLY GRADED SAND WITH GRAVEL, SM, gray, moist. Jindex Test Results 60 J J 8-13-14-18 S6-57': POORLY GRADED SAND WITH GRAVEL, SM, gray, moist. Jindex Test Results		500				-		
52.0 1 5-8-15-15 (23) 51.5-52: POORLY GRADED SAND WITH GRAVEL (SP), brown, dry. 51.5-56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. JIndex Test Results Gravel = 18.0% P200 = 26.3% Sand = 55.7% M.C. = 11.0%	50	50.0				50.51 5': SILT WITH SAND (ML), grow wot	Different laver at 51 5'	_
2.0 1 0001010 (23) (SP), brown, dry. 55 55.0	-	1			5-8-15-15	51.5-52': POORLY GRADED SAND WITH GRAVEI	L (50-51 5') Index Test Results	
55 55.0 55 55.0 57.0 J 60 State 60 State 57.0 State 56.57; POORLY GRADED SAND WITH GRAVEL State 57.0 State	-	1	2.0		(23)	(SP), brown, dry.	M.C. = 24.0%	
55 55.0 55.0 55.0 55.0 55.0 55.0 Since the second seco	-	52.0			(=•)	<u>_</u>		
55 55.0 55.0 55.0 55.0 Signature 57.0 Signature 57.0 Signature 57.0 Signature 57.0 Signature 57.0 Signature 60 Signature 60 Signature 60 Signature	-					-		
55 55.0 55.0 Material change at 56'. 55.0 55.0 55.56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 57.0 57.0 56.57': POORLY GRADED SAND WITH GRAVEL (SP), brown, moist. Material change at 56'. 60 60 60 60 60 60								
55 55.0	_	-				-		
55 55.0 - <td>- </td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	-	-				-		
50 55.0 55.0 Material change at 56'. - 2.0 J 8-13-14-18 (27) 55-56': SILTY SAND WITH GRAVEL, SM, gray, moist. Material change at 56'. 57.0 - - - - - 60 - - - -						-		
60 2.0 J 8-13-14-18 (27) 30-30 : SiLT F SAVE WITH GRAVEL, SW, gray, moist. Index Test Results Gravel = 18.0% P200 = 26.3% Sand = 55.7% M.C. = 11.0%	⁵⁵ —	55.0					Material change at 56'	_
60 2.0 J 0.1314410 1000000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000	-	1			8-13 1/ 10	moist	Naterial Change at 50 . I Index Test Results	
57.0 (SP), brown, moist. 60 Sand = 55.7%	-	1	2.0	J	(27)	56-57': POORLY GRADED SAND WITH GRAVEL	Gravel = 18.0% P200 = 26.3%	
	-	57.0			(21)	(SP), brown, moist.	Sand = 55.7% M.C. = 11.0%	
	-			1				
	-	1				-		
60	-]				-		
60]	1						
60		-				-		
	60							_

PROJECT NUMBER	:
429235	

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~63 feet east of Cell 30 Wall Control Line (2648289.4 N, 1660819.7 E)

ELEVATION: 35 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 25 ft bgs at time of drilling.					START : 2/16/2012	END : 2/17/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVAL (ft) RECOVERY (ft) #TYPE		PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
-	60.0 62.0	2.0	к	5-21-17-17 (38)	<u>SILTY SAND WITH GRAVEL, SM,</u> brown, fine gravel.	<u>K Index Test Results</u> Gravel = 18.0% P200 = 21.9% Sand = 60.1%
					-	
65 - - -	65.0 67.0	2.0	L	21-29-38-39 (67)	SANDY SILT. ML, gray, wet, fine sand.	Up to 8' of heave at 65'. Switch to mud rotary. No heave after switch. Lindex Test Results M.C. = 25.0%
-						LL = NA PL = NP PI = NA
70	70.0	1.8	м	60-80-90-62/4" (170)	SILTY SAND. SM, gray, wet, fine sand.	<u>M Index Test Results</u> Gravel = 1.0% P200 = 17.1% Sand = 81.9% M.C. = 24.0%
					-	Drilling change at 73'.
75	75.0	2.0	N	PUSH	LEAN CLAY, CL, gray. (BCF)	<u>N Index Test Results</u> M.C. = 16.0% LL = 30% PL = 18% PI = 12%
-					Bottom of hole at 77.0 ft below ground surface.	1" diameter PVC piezometer installed in boring. PVC manually slotted using a hacksaw from 0.5 to 67'.
- 80 						
					-	
0 						
90						

PROJECT	NUMBER:
42923	5

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~135 feet east of Cell 27 Wall Control Line (2648336.7 N, 1660913.9 E)

ELEVATION: 35.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

INTERVA. (II) STANDARD TEST REJULTS STANDARD TEST REJULTS SOL DESCRIPTION COMMENTS INTERVA. (II) INTERVA. (III) INTERVA. (III) INTERVA. (III) DEPTH OF CASING, DRILLING RATE, COLOR. MOST INTERVATIVE DENSITY OR UNDERVEMENTATION DEPTH OF CASING, DRILLING RATE, COLOR. MOST INTERVATIVE DENSITY OR UNDERVEMENTATION DEPTH OF CASING, DRILLING RATE, COLOR. MOST INTERVATIVE DENSITY OR UNDERVEMENTATION DEPTH OF CASING, DRILLING RATE, COLOR. MOST INTERVATIVE DENSITY OR UNDERVEMENTATION 10 Interval 0 to 7". Frozen brown poorly graded gravel with sand. (GP) Note: Astronk in the biowcounte means that mammer. Biowcounts there using 2.4" D sampler with 1400 b harmine. 5 10.0 0 to 7". Frozen brown poorly graded gravel with sand. (GP) Note: Astronk ing 2.4" D sampler with 1400 b harmine. 10 10.0	WATER LEVELS : 25 ft bgs at time			s at time	of drilling.	START: 2/19/2012	END. 2/19/2012 LOGGER : S. Erdmann
INTERVAL III PERTINATION SOIL NAME LUSCS GROUP SYMBOLI. COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTERCY, SOIL STRUCTURE, MERCAUCEY CONSISTERCY, SOIL STRUCTURE, MERCAUCEY DEPTH of CASING, DRILLING RATE, DEPTH of CASING, DRILLING RATE, DRILLING FUID LOSS, TESTS, AND UIST, Frizen brown poorly graded gravel with said. DepTH of CASING, DRILLING RATE, DRILLING FUID LOSS, TESTS, AND UIST, STRUCTURE, MERCAUCEY 10 100 01b 7: Frizen brown poorly graded gravel with said. Net Address Hat means sample was taken using standard size SPT sampler with 140 lb hammer. Net Address Hat means sample was taken using standard size SPT sampler with 140 lb hammer. 10 100 WELL GRADED SAND WITH SILT AND GRAVEL TO 20 Net Address Hat SWSM, brown. 1/4" to 2.5" diameter gravels. Frozen down to 7 bgs. 15 15.0 WELL GRADED SAND WITH SILT AND GRAVEL TO 20 Rock fragments. Rock fragments. 20 20 C 4-77.6" (1(4) WELL GRADED SAND WITH SILT AND GRAVEL TO 20 Clintex Test Results Gravel = 44.0%, MC = 5.0% 20 20 C 4-77.6" (1(4) POORLY GRADED SAND WITH SILT AND GRAVEL TO 20 Clintex Test Results Gravel = 44.0%, MC = 5.0% 20 20 D 5-9-12.10" (21) POORLY GRADED SAND WITH SILT AND G	DEPTH B	ELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
Iss in Read. is incover (m) Iss in Read. is incover (m) Iss in Read. is incover (m) Solit. NAME (Jusce Storue SYMBOL). CORSISTENCY. SOL. STRUCTURE, MINERALOGY DEPTH of CASING, PATE, DICLING PATE, AND INSTRUMENTION 10 Incover (m) Incover (m) 0 to 7: Frozen brown poorly graded gravel with said. (CP) Note: Asterisk (1) next to blowcounts means that sample was taken using 24: ID sample with 340 the means taken using action to goe SPT sampler with 140 the harmer. 5 Incover (m) 0 to 7: Frozen brown poorly graded gravel with said. (CP) Note: Asterisk (1) next to blowcounts means that sample was taken using action to goe SPT sampler with 140 the harmer. 10 100 Incover (m) Veli L GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, 1/4" to 2.5" dummeter gravels. Note: Asterisk (1) next to blowcounts means that sample was taken using branchersk (1) 10 100 Incover (m) Veli L GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, 1/4" to 2.5" dummeter gravels. Rock fragments. 115 1150 Incover (m) Veli L GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown. Clinica: Test Results Gravel = 44.0% Clinica: Test Results Gravel = 44.0% Clinica: Test Results Gravel = 44.0% Gravel = 41.0% Sand = 44.0% Sand = 44.0% Sand = 44.0% Conde Sand with Silt AND Gravel = 40.0% Sand = 40.0% Sand = 40.0% Sand		INTERV	AL (ft)		PENETRATION		
PELOPENT (II) OCOUCH V(III) COUCH V(III) COUCH V(III) DRELLING FLUID LOSS TESTS AND INISTRUCE CONTENT VCR ONDISTURE CONTENT, RELATIVE DENSITY OR UNDERMEMTATION CONSISTENCY, SUIS STRUCTURE, MEREAUCCY DRELLING FLUID LOSS, TESTS, AND INISTRUMENTATION INISTRUMENT INISTRUMENTATION INISTRUMENTATION INISTRUMENT INISTRUMENTATION INISTRUMENT INISTRUMENT INISTRUMENTINI INISTRUMENTINI INISTRUMENTING INISTRUMENTINI INISTRUMENTING INI					IEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE.
Image: style			RECOVERY (ft) #TYPE			COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
Image: constraint of the second sec				#TYPE	6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
0 0.5 7: Frozen brown poorly graded gravel with sand. Note, Alerisk (*) mext to blowcourts means that sample was taken using 24 °D sample with sand. (SP) 10 100					(N)		
10 10.0 Image: Series and series (*) 110 10.0 Image: Series and series (*) 1110 1110 Image: Series and series (*)						0 to 7': Frozen brown poorly graded gravel with sand.	Note: Asterisk (*) next to blowcounts means that
Image: state without address (1) means state without address (2) means (2) means (2) means state without address (2) means (2) means st	_					(GP)	sample was taken using 2.4" ID sampler with 340 lb
10 10.0 10.0 10.0 Frozen down to 7' bgs. 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0 10.0 15.0 10.0 10.0 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 20 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	_					-	nammer. Blowcounts listed without asterisk (*)
5 10 100 100 Fozen down to 7' bgs. 10 100	_					-	SPT sampler with 140 lb hammer
5 -						-	
5 10 100 100 100 10 100 100 100 100 10 100 100 100 100 10 100 100 100 100 10 100 100 100 100 10 100 100 100 100 120 20 A 225-55' 100 15 150 100 100 100 15 150 100 100 100 10 2.0 B 6-13-9-8'' 100 17.0 2.0 B 6-13-9-8'' 100 17.0 2.0 C 4-7.7.6'' 100 100 200 200 100 100 200 200 100 100 100 22.0 C 4-7.7.6'' 100 100 22.0 C 4-7.7.6'' 100 100 22.0 2.0 C 4-7.7.6'' 100 22.0 2.0 0						-	Frozen down to 7' bgs.
5 -						-	, and the second s
5 -	-					-	
10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 10.0 12.0 A 2.5.5.5° WELL GRADED SAND WITH SILT AND GRAVEL Rock fragments. 15 15.0 15 15.0 17.0 2.0 B 6-13.9-8° WELL GRADED SAND WITH SILT AND GRAVEL Rock fragments. 20 20.0 20 20.0 C 4-7.7-6° 21 2.0 C 4-7.7-6° 22.0 C 4-7.7-6° 22.0 C 4-7.7-6° 22.0 C 4-7.7-6° 22.0 C 0	5					-	
Indext Indext<							-
10 10.0 10.0 WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, 1/4" to 2.5" diameter gravels. 15 12.0 A 2-5-5-5" (10) WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, 1/4" to 2.5" diameter gravels. Rock fragments. 15 15.0 - - - - 15 15.0 - - - 17.0 B 6-13-9-8" (22) WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown. Rock fragments. 20 20.0 C 4-7.7-6" (14) WELL GRADED SAND WITH SILT AND GRAVEL SW-SM, brown. C.Index Test Results Gravel = 44.0% C.Index Test Results Gravel = 44.0% 22.0 C 4-7.7-6" (14) - - - 22.0 C - - - - - 22.0 C - - - - - - 22.0 C - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
10 10.0 <	_					-	
10 10.0 10.0 Image: constraint of the second						_	
10 10.0 .	-					-	
10 10.0 10.0 10.0 10.0 10.0 10 10.0 2.0 A 2.5-5-5* WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown, 1/4* to 2.5* diameter gravels. 15 15 15.0 15.0 15.0 15.0 15.0 15.0 17.0 B 6-13-9-8* (22) WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown. Rook fragments. 20 20.0 C 4-7-7-6* (14) WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), brown. Rook fragments. 20 20.0 C 4-7-7-6* (14) WELL GRADED SAND WITH SILT AND GRAVEL SW-SM, brown. C index Test Results Gravel = 44.0% P200 = 11.7% Sand = 44.3% M.C. = 5.0% 25 25.0 - - - - - 25 25.0 - - - - - 25 25.0 - - - - - 27.0 D 5-9-12-10* (21) POORLY GRADED SAND WITH SILT AND GRAVEL SP-SM, brown, wet. Groundwater at 25'. Dindex Test Results Groundwater at 25.0% -	-					-	
10 10.0						-	
$\begin{bmatrix} 10 & 10.0 & \\ 12.0 & A & 2-5-5-5^{*} \\ 15.0 & & & & & & & \\ 15 & 15.0 & & & & & & \\ 15 & 15.0 & & & & & & \\ 16 & 2.0 & B & 6-13-9-8^{*} \\ 17.0 & & & & & & & & \\ 17.0 & & & & & & & \\ 17.0 & & & & & & & \\ 17.0 & & $						-	
Image: style	10	10.0				-	
15 2.0 A 2-5-5-5* (10) (SW-SM), brown, 1/4" to 2.5" diameter gravels. 15 12.0 A 2-5-5-5* (10) (SW-SM), brown, 1/4" to 2.5" diameter gravels. 15 15.0 - - - 15 15.0 - - - 17.0 - - - - 17.0 - - - - 17.0 - - - - 17.0 - - - - 20 20.0 - - - 20 20.0 - - - 20 20.0 C 4-7.7-6* (14) - - 22.0 20.0 - - - - 22.0 - - - - - 22.0 - - - - - 25 25.0 - - - - 25 25.0 - - - - 27.0 - - -	···					WELL GRADED SAND WITH SILT AND GRAVEL	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.0	^	2-5-5-5*	(SW-SM), brown, 1/4" to 2.5" diameter gravels.	
15 15.0 15.0 Rock fragments. 16 15.0 15.0 Rock fragments. 17.0 2.0 B 6-13-9.8° (22) SW-SM, brown. 17.0 2.0 C 4-7.7.6° (14) WELL GRADED SAND WITH SILT AND GRAVEL. Rock fragments. 20 20.0 20 20.0 20 20.0 20 2.0 C 4-7.7.6° (14) 25 25.0 25 25.0 25 25.0 25 25.0 25 25.0 27.0 D 5-9-12-10° (21) 27.0 D 0 5-9-12-10° (21) </td <td></td> <td></td> <td>2.0</td> <td>A</td> <td>(10)</td> <td></td> <td></td>			2.0	A	(10)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12.0				-	
$15 15.0 \qquad \qquad$	_					_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	
15 15.0 B 6-13-9-8* (22) B 6-13-9-8* (22) B 6-13-9-8* (22) B Generation of the second of						-	
15 15.0 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	15.0				-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1°	10.0				WELL GRADED SAND WITH SILT AND GRAVEL	Rock fragments.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				6-13-9-8*	(SW-SM), brown.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2.0	в	(22)		
$20 \underbrace{20.0}_{20.0}$ $20 \underbrace{20.0}_{20.0}$ $20 \underbrace{20.0}_{20.0}$ $20 \underbrace{20.0}_{20.0}$ $20 \underbrace{20.0}_{20.0}$ $20 \underbrace{100}_{20.0}$ $20 1$		17.0					
$20 \begin{array}{c c c c c c c c c c c c c c c c c c c $						-	
$20 \underbrace{20.0}_{20.0} \underbrace{20.0}_{20.0} \underbrace{C}_{20.0} \underbrace{4.7-7-6^{*}}_{(14)} \underbrace{Well GRADED SAND WITH SILT AND GRAVel.}_{SW-SM, brown.} \underbrace{C Index Test Results}_{Gravel = 44.0\% P200 = 11.7\%}_{Sand = 44.3\% M.C. = 5.0\%}$						-	
20 - 20.0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +						-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-					-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	20.0				-	
25 - 25.0 + 2.0	<u> </u>	20.0				WELL GRADED SAND WITH SILT AND GRAVEL	C Index Test Results
25 - 25.0 + 2.0 + 0 + (14) = 3 + (14) + (1			2.0	6	4-7-7-6*	<u>SW-SM,</u> brown.	Gravel = 44.0% P200 = 11.7%
$25 - 25.0$ $25 - 25.0$ $25 - 25.0$ $25 - 25.0$ $25 - 25.0$ 27.0 $D - 5 - 9 - 12 - 10^{*}$ $GRAVEL, SP-SM, brown, wet.$ $Gravel = 43.0\% P200 = 8.0\%$ $Sand = 49.0\% M.C. = 9.0\%$			2.0	C	(14)		Sand = 44.3% M.C. = 5.0%
$25 - 25.0$ $25.0 = 25.0$ $25.0 = 25.0$ $2.0 D 5-9-12-10^{*}$ $37.0 D 5-9-10^{*}$ $37.0 D 5-9-10^{$		22.0				-	
$25 - 25.0$ $25.0 = 25.0$ $25.0 = 25.0$ $2.0 D 5-9-12-10^{*}$ $(21) C = 27.0$ $C = 27.0 D 5-9-12-10^{*}$ $C = 27.0 D 5-9-12-10^{*}$ $C = 27.0 D C = 8.0\%$ $S = 49.0\% M.C. = 9.0\%$						_	
$25 - 25.0$ $25.0 = 25.0$ $25.0 = 25.0$ $2.0 D 5-9-12-10^{*}$ $(21) C = 27.0$ $C = 27.0 D 5-9-12-10^{*}$ $C = 27.0 D 5-9-12-10^{*}$ $C = 27.0 D C = 8.0\%$ $S = 49.0\% M.C. = 9.0\%$						-	
$25 - 25.0$ $25 - 25.0$ 2.0 D $5-9-12-10^{*}$ (21) $C = 27.0$ $C = 27.0$ D $C = 27.0$ $C =$						-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-					-	
20.0 D 5-9-12-10* (21) POORLY GRADED SAND WITH SILT AND GRAVEL, SP-SM, brown, wet. Groundwater at 25'. D Index Test Results Gravel = 43.0% D 0 Sand = 49.0% M.C. = 9.0%	25	25.0				-	
2.0 D 5-9-12-10* (21) GRAVEL, SP-SM, brown, wet. D Index Test Results Gravel = 43.0% D Index Test Results Gravel = 43.0% 27.0 Sand = 49.0% M.C. = 9.0%		20.0				POORLY GRADED SAND WITH SILT AND	Groundwater at 25'.
2.0 D (21) 27.0 Gravel = 43.0% P200 = 8.0% Sand = 49.0% M.C. = 9.0%					5-9-12-10*	GRAVEL, SP-SM, brown, wet.	D Index Test Results
27.0 Sand = 49.0% M.C. = 9.0%			2.0	טן	(21)		Gravel = 43.0% P200 = 8.0%
		27.0			. ,	-	Sand = 49.0% M.C. = 9.0%
						_	
						-	
						-	
	30					-	
	- 30						

PROJECT	NUMBER:
42923	5

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~135 feet east of Cell 27 Wall Control Line (2648336.7 N, 1660913.9 E)

ELEVATION: 35.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : 25 ft bgs at time			is at time	of drilling.	START : 2/19/2012	END: 2/19/2012	LOGGER : S. Erdmann	
DEPTH B	ELOW GR	OUND SUR	RFACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS	
	INTERV	AL (ft)		PENETRATION TEST RESULTS				
	RECOVERY (ft)		LETTLEGGETG	SOIL NAME (USCS GROUP SYMBOL),	DEPTH OF	CASING, DRILLING RATE,		
			#TVPF	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE. MINERALOGY	DRILLING	STRUMENTATION	
			#ITPE	(N)				
<u> </u>	30.0				POORLY GRADED SAND WITH SILT AND	Some rock fragme	ents.	
-	-	2.0	E	7-9-8-4*	GRAVEL (SP-SM). brown, wet.			
-	32.0	_		(17)	-			-
-	52.0				-			
					-			
-	-				-			
-	-				-			
35 -	35.0				-			
_	_				35-36': POORLY GRADED SAND (SP), brown, wet.	Switch to mud rota	ıry.	
-	-	2.0	F	13-5-8-3*	<u>36-37": SILT (ML),</u> gray, wet, slightly plastic.			-
-	37.0			(13)	-			
					-			
-	-				-			
-	1				-			
-]				-			
40	40.0							
-	-			14 14 7 6	SILT WITH SAND AND GRAVEL, ML, gray, wet.	<u>G Index Test Resu</u>	<u>ilts</u> B200 - 60 8%	
-	-	2.0	G	(21)	-	Sand = 19.2%	M.C. = 22.0%	
-	42.0			(= ·)	-	LL = NA PL =	NP PI = NA	-
	_							
-	-				-			
-					-			-
	-				-			
45	45.0							
-	1			28-23-6-11	45-46: SILTY SAND WITH GRAVEL (SM), gray, wet			-
-	1	2.0	н	(29)	46-47': LEAN CLAY (CL), gray, wet, low plasticity.			-
	47.0							
-	-				-			
-	1				-			-
]	1				-			
F0 -	50.0				-			-
⁵⁰	0.00				SILTY SAND. SM. grav. wet_fine sand	I Index Test Result	ts	
	1	20	1	24-33-36-32	<u></u>	Gravel = 2.0%	P200 = 13.7%	
-		2.0		(69)	-	Sand = 84.3%	M.C. = 22.0%	
-	52.0				-	-		-
-]				-	1		-
]				-			
-	-				-	-		
55 -	55.0				-	1		-
		1			55-56.5': LEAN CLAY (CL). gray, wet.	1		
-	-	2.0	J	5-17-32-36	56.5-57': POORLY GRADED SAND (SP), gray,	1		-
-	57.0		-	(49)				
-	57.0				-			
	1				-			
-	-				-			-
-	1				-	1		-
60	1				-			
								-

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~135 feet east of Cell 27 Wall Control Line (2648336.7 N, 1660913.9 E)

ELEVATION: 35.2 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

PROJECT NUMBER:

CEXTINE LOW GROUPS SUPPORT STANDARD INTERVAL STANDARD INTERVAL </th <th>WATER</th> <th>LEVELS</th> <th>: 25 ft bg</th> <th>js at time</th> <th>of drilling.</th> <th>START: 2/19/2012</th> <th>END : 2/19/2012</th> <th>LOGGER : S. Erdmann</th> <th></th>	WATER	LEVELS	: 25 ft bg	js at time	of drilling.	START: 2/19/2012	END : 2/19/2012	LOGGER : S. Erdmann	
INTERVALUT PRETRATION RECOVENTY # SOLL NAME (JJSC3 GROUP SYMBOL), OLICOR, MOISTURE CONTENT, FLATTINE DENSITY OF NONSTRUCTURE, INNERALOGY DEPTH OF CASING, DRILLING RATE, DRILLING RATE, DRILLING RATE, AND MILTERVALUE, INNERALOGY 600 2.0 K 74-0-10 (18) LEAN CLAY, CL gray, moist, (BCF) K.Index, Yatu Baskin M.C21.0%, M.L40%, PL = 19%, PI = 21%, 65 64 I I I Bottom of hole at 62.0 /t below ground surface. Image: Clay in the same interval interval Image: Clay interval interval 70 I I I Image: Clay interval Image: Clay interval Image: Clay interval 80 I I Image: Clay interval Image: Clay interval Image: Clay interval Image: Clay interval 65 I I Image: Clay interval Image: Clay interval Image: Clay interval Image: Clay interval 70 I Image: Clay interval 76 I Image: Clay interval Image: Clay interval Image: Clay interval Image: Clay interval 76 <t< td=""><td>DEPTH B</td><td>ELOW GRO</td><td>OUND SUR</td><td>RFACE (ft)</td><td>STANDARD</td><td>SOIL DESCRIPTION</td><td></td><td>COMMENTS</td><td></td></t<>	DEPTH B	ELOW GRO	OUND SUR	RFACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS	
Image: Solution of the second secon		INTED	ΔI (ft)		PENETRATION				_
Image: Percovery in the original content field field operating content field field field operating content field fi			(IL)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).		CASING DRILLING PATE	
arres arres arres arres consistency, solution, solution			RECOVERY (ft)			COLOR MOISTURE CONTENT RELATIVE DENSITY OR	DRILLING F	LUID LOSS. TESTS. AND	
000 2.0 K 7.8-10-10 Kindex Test Results M.C. = 21/0% 62.0 K 7.8-10-10 (18) Bottom of hele at 62.0 ft below ground surface. Image: Pit = 19%				#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INS	TRUMENTATION	
000 2.0 K 7/8-10-10 (18) LEAN GLAY. CL. gray, moist. (BCF) K Index Test Basula M.C. = 21.0% K LL = 40% PL = 19% PI = 21% 65_				#111 L	(N)				
000 2.0 K 7-8-10-10 (18) MC = 21.0% L = 40% MC = 21.0% L = 40% PI = 21% 65 65 65 F <td><u> </u></td> <td>60.0</td> <td></td> <td></td> <td>. ,</td> <td>I FAN CI AY CI gray moist (BCE)</td> <td>K Index Test Result</td> <td>is a second s</td> <td>-</td>	<u> </u>	60.0			. ,	I FAN CI AY CI gray moist (BCE)	K Index Test Result	is a second s	-
2.0 K V (16) III = 40% PL = 19% Pl = 21% 65 III = 40% PL = 19% Pl = 21% 70 III = 40% PL = 19% Pl = 21% 70 III = 40% PL = 19% Pl = 21% 70 III = 40% III = 19% Pl = 21% 70 III = 40% III = 19% Pl = 21% 70 III = 40% III = 19% Pl = 21% 70 III = 40% III = 19% Pl = 21% 70 III = 40% IIII = 19% Pl = 21% 70 IIII = 40% IIII = 19% Pl = 21% 71 IIII = 40% IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-	00.0			7-8-10-10		MC = 21.0%		-
62.0 0 0.000 65 1 1 1 1 70 1 1 1 1 70 1 1 1 1 70 1 1 1 1 80 1 1 1 1 80 1 1 1 1 80 1 1 1 1 80 1 1 1 1 81 1 1 1 1 1 82 1 1 1 1 1 83 1 1 1 1 1 84 1 1 1 1 1 85 1 1 1 1 1 1 85 1 1 1 1 1 1 1 86 1 1 1 1 1 1 1 1 85 1 1 1 1 1 1 1 1 <td></td> <td></td> <td>2.0</td> <td>K</td> <td>(18)</td> <td>-</td> <td>LL = 40% PL =</td> <td>= 19% PI = 21%</td> <td>-</td>			2.0	K	(18)	-	LL = 40% PL =	= 19% PI = 21%	-
max max bottom of hole at 62.0 ft below ground surface. 66 a b bottom of hole at 62.0 ft below ground surface. 70 a b b b 71 a b b b 72 a b b b 73 a b b b 74 a b b b 75 a b b b 76 a b b b 76 a b b b 76 a b b b 77 a b b b b 76 a b b b b 76 a b b b b 80 a b b b b 10		62.0			()	-			-
66 Bottom of hole at 62.0 ft below ground surface. 70 - 70 - 71 - 72 - 73 - 75 - 80 - 80 - 81 - 82 - 83 - 84 - 85 - 80 - 81 - 82 - 83 - 84 - 85 - 84 -		02.0							
	-	1				Bottom of hole at 62.0 ft below ground surface.			-
	-	1				0 <u>-</u>			-
	-	1				-			-
						-			
	65	1							-
		1							
	Ι_					-			_
	I _					-			_
	_								_
	-					_			_
	I -	-				-			-
	-	4				-			-
		-				-			-
	/0	-							
	-	-				-			-
	-	-				-			-
	-	-				-			-
	-	-				-			-
	-	-				-			-
		-				-			-
		-				-			-
		1				-			-
	75					-			-
	···								
	-	1				-			-
						-			-
	-	1				-			-
	_					-			_
	_					-			_
	I					-			_
	80	-							
	-	4				-			-
	-	-				-			-
	-	4				-			-
- - <td> -</td> <td>4</td> <td></td> <td></td> <td> </td> <td>-</td> <td></td> <td></td> <td>-</td>	-	4				-			-
	-	1				-			-
85	-	1				-			-
85_ 	I -	1				-			-
85_ 						-			-
	85					-			-
	-	1				-	1		-
	I -	1				-	1		-
	-	1				-	1		-
90	1 -]				-			-
90						-			
90	I -					-			
90						-			_
90]					-			_
	90								

PROJECT	NUMBER:
42923	5

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 30 Wall Control Line (2648291.6 N, 1660779.4 E)

ELEVATION: 35.4 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER	WATER LEVELS : Not noted.				START : 2/17/2012	END : 2/19/2012 LOGGER : S. Erdmann
DEPTH B	ELOW GR	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERV	AI (ft)		PENETRATION		
		TERVAL (ft) TES		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE
		RECOVE	ERY (ft)		COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
					0 to 6': Frozen soil.	Note: Asterisk (*) next to blowcounts means that
					-	sample was taken using 2.4" ID sampler with 340 lb
_					-	hammer. Blowcounts listed without asterisk (*)
-	-				-	SPT sampler with 140 lb hammer
-	-				-	
-	-				-	Frozen down to 6' bgs.
-	-				-	- -
-					-	-
5	1				-	-
					-	
_					-	-
-	-				-	-
-	-				-	-
-	-				-	-
-					-	-
-					-	-
10	10.0				-	-
					POORLY GRADED GRAVEL WITH SAND (GP).	
_		10	Δ	4-3-4-5*	brown, wet, 1/4" to 2" diameter gravels.	-
-		1.0		(7)	-	-
-	12.0				-	Encountered large diameter rehar at 12' Mayod
-	1				-	boring 1.5' and redrilled to 15'
-					-	
-	1				-	-
-	1				-	-
15_	15.0				-	-
					POORLY GRADED GRAVEL WITH SAND (GP),	-
-		2.0	в	43-45-34-43*	brown, wet, 1/4" to 2.5" diameter gravels.	
-	470			(79)	-	-
-	17.0				-	-
-	-				-	-
-					-	-
-					-	-
						-
20	20.0					
-	-			0.0.0.0*	NO RECOVERY.	Loose material indicated by fast drilling rate.
-	-	0.0		9-9-8-6*	-	-
-	22.0			(17)	-	-
-	22.0				-	-
-	1				-	-
]				-	
-	1					
					-	-
25_	25.0					C Index Test Posults
-	1			3-5-1 1*	GW-GM brown wet 1/4" to 1.5" diameter gravels	$\frac{O \text{ muck results}}{\text{Gravel} = 46.0\% \text{ P200} = 10.6\%}$
-	1	2.0	С	(9)		Sand = 43.4% M.C. = 6.0%
-	27.0			(0)	-	
-					-	-
]				-	
]	1					
-	4				-	-
	-				-	-

PROJECT NUMBER: 429235

BORING NUMBER: B-18

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 30 Wall Control Line (2648291.6 N, 1660779.4 E)

ELEVATION: 35.4 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

WATER LEVELS : Not noted.					START : 2/17/2012	END : 2/19/2012 LOGGER : S. Erdmann		
DEPTH BELOW GROUND SURFACE (ft) STANDARD					SOIL DESCRIPTION	COMMENTS		
	INTERV	AI (ft)		PENETRATION				
		· (iii)		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL),	DEPTH OF CASING DRILLING RATE		
		RECOV	ERY (ft)		COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
				(N)				
	30.0				POORLY GRADED SAND WITH GRAVEL (SP).	Fast drilling rate.		
		15	П	3-4-5-4*	brown, moist.			
I _		1.5	U	(9)	-			
	32.0				-			
-	-				-			
	-				-			
-	-				-			
	1				-			
35	35.0				-			
	00.0				POORLY GRADED GRAVEL WITH SAND (GP),		_	
	1	0.7	-	5-7-7-5*	brown.			
		0.7		(14)				
I _	37.0				-			
-	4				_			
-	4				-	4		
-	-				-			
-	-				-			
40 -	40.0				-			
40	40.0						_	
-	-			5-3-0-0*	brown wet			
	1	1.5	F	(3)				
	42.0			(-)	-			
I -					-			
l					_			
45	45.0					Lange material indicated by fast deiling sate		
	-			1 0 0 1*	Same as above	Loose material indicated by fast drilling rate.		
-	-	0.8	G	(5)	same as above.			
	47.0			(3)	-			
					-			
-	1							
					-			
	1							
					_	4		
50	50.0							
-	-			0.0.0.*	POUKLY GRADED GRAVEL WITH SAND (GP),			
-	-	1.0	н	2-3-3-3^ (6)				
-	52.0			(0)	-	1		
-	52.0	<u> </u>	1		-	1		
	1				-	1		
	1				-	1		
1 7					-]		
55	55.0						_	
- 1	4				WELL GRADED SAND WITH SILT AND GRAVEL,	Switch to mud rotary.		
-	4	0.8	1	1-2-1-2*	<u>SVV-SIVI,</u> Drown, wet.	$\frac{1 \text{ Index 1 est Results}}{2 \text{ Gravel = 38.0\%}}$		
-		-		(3)	-	Sand = 51.2%		
-	57.0				-	Gung - 01.270		
-	1				-	1		
-	1				-			
	1				-	1		
-	1				-	1		
60	1				-]		
			1					

PROJECT NUMBER: 429235

BORING NUMBER: B-18

SHEET 3 OF 3

SOIL BORING LOG

PROJECT : Port of Anchorage Expansion Project

LOCATION : ~30 feet east of Cell 30 Wall Control Line (2648291.6 N, 1660779.4 E)

ELEVATION: 35.4 ft MLLW

DRILLING CONTRACTOR : Discovery Drilling

DRILLING METHOD AND EQUIPMENT : 7-1/4" OD Diameter Hollow Stem Auger, Mud Rotary, CME 75 Truck-Mounted Drill Rig

WATER LEVELS : Not noted.					START : 2/17/2012	END : 2/19/2012	LOGGER : S. Erdmann
DEPTH E	BELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION COMMENTS		COMMENTS
	INTERVAL (ft) PENETRATION TEST RESULTS RECOVERY (ft) #TYPE 6"-6"-6"			PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF DRILLING F INS	CASING, DRILLING RATE, FLUID LOSS, TESTS, AND STRUMENTATION
				(N)			
-	60.0 62.0	0.5	J	20-15-19-18 (34)	SILTY GRAVEL WITH SAND (GM), wet.		-
							-
65 - -	65.0 67.0	1.5	к	23-65-53-69 (118)	POORLY GRADED SAND WITH SILT AND GRAVEL, SP-SM, wet.	<u>K Index Test Resul</u> Gravel = 36.0% I Sand = 53.3%	ts P200 = 10.7% M.C. = 10.0%
	-					Driller reports clay a	-
70	70.0	1.5	L	12-15-15-30 (30)	LEAN CLAY, CL, gray, moist, low plasticity.	Lindex Test Result M.C. = 24.0% LL = 36% PL =	is - = 18% PI = 18% -
- - - 75_	75.0						-
-	77.0	1.7	м	35-63-51-47 (114)	<u>SILTY SAND, SM,</u> gray, moist, tine sand. - - -	M Index Test Resul Gravel = 1.0% I Sand = 71.9% LL = NA PL =	IS P200 = 27.1% M.C. = 21.0% NP PI = NA
	80.0						-
-	82.0	1.7	N	3-4-7-10 (11)	LEAN CLAY (CL), gray, dry, low plasticity.		
- - - 85	-				Bottom of hole at 82.0 ft below ground surface.	1" diameter PVC pi PVC manually slott 82'.	ezometer installed in boring. ed using a hacksaw from 7 to
90							-

Attachment D2

Laboratory Results

.

.

Attachment D2: Introduction to Laboratory Test Results

This attachment includes the laboratory test results performed on select samples collected during the exploration program. DOWL HKM in Anchorage, Alaska and GeoTesting Express in Boston MA provided the laboratory testing services for this project. Tests were performed in general accordance with the American Society for Testing and Materials (ASTM) standards. The samples that were selected for laboratory testing are noted in the comments column of the soil boring logs in Attachment D1 of this report. The USCS soil classifications reported in laboratory results can be identified from the exploration logs as those not enclosed in parenthesis. The laboratory results are organized by type of test. Brief descriptions of the various laboratory tests follow.

D2.1 Visual Description

Visual classification of soils was performed in the field by a CH2M HILL representative in general accordance with ASTM D 2488. The visual description of soils allows convenient and consistent comparison of soils using a standard method for describing the soil. The use of this method of classification provides a basis for comparison of soils from widespread geographic areas.

D2.2 Natural Moisture Content Test

The natural moisture content test determines the weight of water contained in a given weight of soil. The results are usually presented as the weight of water divided by the weight of dry solids, expressed as a percentage. Moisture content (along with unit weight and specific gravity of solids) provides the basis for determining the phase relationships of a soil and may be useful in estimating soil consistency, compressibility, and strength. Natural moisture content was determined in general accordance with ASTM D 2216.

D2.3 Grain size (sieve) analyses

Grain size, or sieve, analyses were conducted in general accordance with ASTM D 422. The lab procedure includes (a) mechanical sieve analysis for samples estimated to contain less than 50 percent fines (material passing the No. 200 sieve), and (b) combined (sieve and hydrometer) analysis for samples estimated to have at least 50 percent fines content. The sieve analysis consists of shaking soil through a stack of progressively smaller opening screens, each with known opening size and determining the portion (by weight) of particles retained on each sieve. The hydrometer analysis is based on Stoke's law for the velocity of a freely falling sphere. The method involves determining the settling rate of soil particles by measuring the density of the soil water solution and calculating the particle size in suspension at particular time intervals.

D2.4 Atterberg Limits

Atterberg Limits test were determined in accordance with ASTM D 4318. The test includes liquid limit (LL), plastic limit (PL), and plasticity index (PI). Liquid limit is the moisture content at which a soil behaves as liquid and flows to close a standard groove when subjected to 25 blows of a standard device. Plastic limit is the moisture content at which the soils becomes plastic as demonstrated by causing incipient crumbling to occur in the soil when it is rolled into one-eighth-inch threads. Plasticity index represents the range of water

content at which the soil behaves like plastic and is obtained as the difference between the liquid limit and plastic limit.

D2.5 Soil Classification Systems

Soil classification systems attempt to group soil with similar engineering behavior based on index tests. A number of classification systems have been developed, usually for a specific application. The system most generally accepted for a wide range of engineering application is the ASTM soil classification system, based on the Unified Soil Classification System (USCS). Soil classification systems generally use index test methods (particle size analysis and Atterberg limits) to permit rational grouping of the soil for engineering purposes. Laboratory classification of soil was performed in general accordance with ASTM D 2487. The corrected soil classifications can be identified from the exploration logs as those not enclosed in parenthesis.

D2.6 Relative Density Test

The relative density tests were performed in accordance with ASTM D 4253 - Method 1A and ASTM D 4254 – Method A which determine the maximum and minimum index density of a free-draining soil, respectively. The maximum density of a given free-draining soil is determined by placing an oven-dried soil in a mold and then applying a dead weight to the surface of the soil. The mold, soil, and surcharge are then vertically vibrated using a vibrating table. The maximum index density is calculated by dividing the oven-dried mass/weight of the densified soil by its volume. The minimum index density represents the loosest condition of a free-draining soil that can be attained in a standard laboratory procedure. The procedure consists of determining the weight of an oven-dried soil placed into a container of a known volume in such a manner that prevents bulking and particle segregation and minimizes compaction.

D2.7 Direct Shear

The direct shear tests were performed in general accordance with ASTM D 3080 using a 12inch shear box. This test determines the consolidated drained shear strength of soil under direct shear boundary conditions. The test is performed by deforming a specimen at a controlled strain rate on or near a single shear plane determined by the configuration of the apparatus. Three or more specimens were tested, each under a different normal load, to determine the effects upon shear resistance and displacement, and strength properties such as Mohr strength envelopes.

Test materials were screened at 1-inch size to maintain a 10:1 ratio between test container size and maximum particle size. Typically, 70 to 80 percent of the bulk samples were less than 1 inch. The test method differed from requirements in ASTM D 3080 by using a 0.25-inch gap rather than the maximum particle size (that is, 1 inch). The smaller gap avoided loss of specimen during testing. GeoTesting Express had found that using a large (that is, 1-inch) gap with coarse, non-plastic material results in sample loss, which reduces the effective area at the shear plane, changes the actual normal stress, and leads to scattered results. The potential for larger particles getting wedged in the leading edge of the shear plane and creating falsely high strength values is identified by a dramatic spike in the shear stress that is seen on the stress-strain plots. In this case, the test is aborted and run again.

Moisture Content

.

	Date Sample Re	cv'd	2/24/2012
Client	CH2M HILL	W.O.	A33329
Project	POA	Lab #	See Below
Location	See Below		

All results will be posted to the website for your access and convenience. Samples will be kept for 30 days before being disposed. Please contact us if you would like the remaining material returned.

Sample ID	Test Performed	Test Method	Moisture Content (%)
190 B2-M 86-87			22
197 B3-I 40-42			27
200 B3-M 75-77			27
206 B5-I 50-52			26
207 B5-J 55-57			25
212 B6-F 36-37			33
213 B6-G 40-42			32
218 B6-N 75-77			18
231 B9-M 70-72	Moisture Content	ASTM D2216	20
238 B13-O 80-82			20
247 B15-O 82-84			24
254 B16-L 65-67			25
256 B16-N 75-77			16
259 B17-G 40-42			22
261 B17-K 60-62			21
265 B18-L 70-72			24
266 B18-M 75-77			21

If you have questions regarding this summary report or the test procedures, please contact us.

Maria E. Kampsen, P.E. Laboratory Supervisor

.

.

	Date Sample Recv	v'd	2/24/2012
Client	CH2M HILL V	N.O.	A33329
Project	POA L	ab #	See Below
Location	See Below		

All results will be posted to the website for your access and convenience. Samples will be kept for 30 days before being disposed. Please contact us if you would like the remaining material returned.

Sample ID	Test Performed	Test Method	Moisture Content (%)
186 B2-C 20-22			9
188 B2-F 35-37			7
192 B3-B 15-17			4
193 B3-D 20-22			5
196 B3-H 36-37			27
199 B3-L 70-72			20
202 B5-B 15-17			9
203 B5-C 20-25			8
208 B6-A 10-12			6
211 B6-D 25-27	Moisture Content	ASTM D2216	7
215 B6-J 55-57			17
217 B6-M 70-72			19
221 B8-C 19-21			8
223 B8-E 29-31			7
227 B9-B 15-17			4
232 B13-A 10-12			7
234 B13-D 25-27]		6
241 B15-D 20-22]		6
251 B16-I 50-51.5			24

If you have questions regarding this summary report or the test procedures, please contact us.

Maria E. Kampsen, P.E. Laboratory Supervisor

.

.

Atterberg Limits

Testing Report Summary

	C	ate Sample Recv'd	11/22/2011
Client	Municipality of Anchorage	W.O.	D60556O
Project	Margaret Circle	Lab #	See Below
Location	See Below		

All results will be posted to the website for your access and convenience. Samples will be kept for 30 days before being disposed. Please contact us if you would like the remaining material returned.

Sample ID	Test Performed	Test Method	Results
			Liquid Limit 37
190 B2-M 86-87	Plasticity Index	ASTM D4318	Plastic Limit 19
			Plasticity Index 18
197 B3-I 40-42	Plasticity Index	ASTM D4318	Non Plastic
			Liquid Limit 43
200 B3-M 75-77	Plasticity Index	ASTM D4318	Plastic Limit 21
			Plasticity Index 22
			Liquid Limit 31
206 B5-I 50-52	Plasticity Index	ASTM D4318	Plastic Limit 20
			Plasticity Index 11
			Liquid Limit 41
207 B5-J 55-57	Plasticity Index	ASTM D4318	Plastic Limit 20
			Plasticity Index 21
212 B6-F 36-37	Plasticity Index	ASTM D4318	Non Plastic
213 B6-G 40-42	Plasticity Index	ASTM D4318	Non Plastic
			Liquid Limit 19
218 B6-N 75-77	Plasticity Index	ASTM D4318	Plastic Limit 15
			Plasticity Index 4
			Liquid Limit 47
231 B9-M 70-72	Plasticity Index	ASTM D4318	Plastic Limit 21
			Plasticity Index 26
238 B13-O 80-82	Plasticity Index	ASTM D4318	Non Plastic
			Liquid Limit 38
247 B15-O 82-84	Plasticity Index	ASTM D4318	Plastic Limit 18
			Plasticity Index 20
254 B16-L 65-67	Plasticity Index	ASTM D4318	Non Plastic

			Liquid Limit	30
256 B16-N 75-77	Plasticity Index	ASTM D4318	Plastic Limit	18
			Plasticity Index	12
259 B17-G 40-42	Plasticity Index	ASTM D4318	Non Plastic	
			Liquid Limit	40
261 B17-K 60-62	Plasticity Index	ASTM D4318	Plastic Limit	19
			Plasticity Index	21
			Liquid Limit	36
265 B18-L 70-72	Plasticity Index	ASTM D4318	Plastic Limit	18
			Plasticity Index	18
266 B18-M 75-77	Plasticity Index	ASTM D4318	Non Plastic	

If you have questions regarding this summary report or the test procedures, please contact us.

Maria E. Kampsen, P.E. Laboratory Supervisor

Gradation

.

.

Location: B2-B 15-17 Moisture as Received = 5% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-185
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM

Frost Classification:

Not Measured

Location: B2-D 25-27 Moisture as Received = 7% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-187
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Location: B2-J 55-57 Moisture as Received = 9%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-189
Received	2/24/2012
Reported	3/1/2012

Specification

Passing

100%

100%

100%

100%

97%

94%

89%

79%

67%

56%

45%

31%

22%

14.9%

Engineering Classification: Silty Sand with Gravel, SM

Location: B3-A 10-12 Moisture as Received = 7% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-191
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM

Frost Classification:

Not Measured

Location: B3-F 30-32 Moisture as Received = 5%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-194
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B3-I 40-42 Moisture as Received = 27.3%

Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-197
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silt with Sand, ML

Location: B5-A 10-12 Moisture as Received = 5% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-201
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Gravel with Sand, GM

Frost Classification:

Not Measured

Location: B5-E 30-32 Moisture as Received = 12% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-204
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Sand with Silt and Gravel, SW-SM

Not Measured

Location: B5-H 45-47 Moisture as Received = 10% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-205
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B6-B 15-17 Moisture as Received = 5%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-209
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Gravel with Sand, GM

Frost Classification:

Not Measured

Location: B6-C 20-22 Moisture as Received = 6%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-210
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B6-G 40-42

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-213
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silt, ML

Location: B6-I 50-52 Moisture as Received = 14%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-214
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B6-K 60-62 Moisture as Received = 19% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-216
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand, SM

Location: B8-A 9-11 Moisture as Received = 5% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-220
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Gravel with Silt and Sand, GP-GM

Not Measured

Location: B8-D 24-26 Moisture as Received = 5% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-222
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Gravel with Silt and Sand, GP-GM

Not Measured

Location: B8-H 44-46 Moisture as Received = 10%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-224
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B9-L 65-67 Moisture as Received = 9% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-230
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Location: B13-B 15-17 Moisture as Received = 8%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-233
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Location: B13-G 40-42 Moisture as Received = 6% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-236
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM

Location: B13-M 70-72 Moisture as Received = 16% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-237
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand, SM

Not Measured

Location: B13-O 80-82

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-238
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Sandy Silt, ML

Location: B15-C 15-17 Moisture as Received = 6% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-240
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Gravel with Sand, GM

Frost Classification:

Not Measured

Location: B15-E 25-27 Moisture as Received = 6% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-242
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM

Not Measured

Location: B15-K 55-57 Moisture as Received = 7% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-243
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Location: B15-N 75-77

Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-246
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Poorly Graded Sand with Silt, SP-SM

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-248
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Location: B16-C 20-22

Not Measured

Location: B16-D 25-27 Moisture as Received = 6%

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-249
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Gravel with Sand, GM

Frost Classification:

Not Measured

Location: B16-H 45-47

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-250
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silt with Sand, ML

Location: B16-J 55-57 Moisture as Received = 11% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-252
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

Not Measured

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-253
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silty Sand with Gravel, SM

Location: B16-K 60-62

Not Measured

Location: B16-M 70-71.5 Moisture as Received = 24% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-255
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand, SM

Location: B17-C 20-22 Moisture as Received = 5% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-257
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Sand with Silt and Gravel, SW-SM

Not Measured

Location: B17-D 25-27 Moisture as Received = 9 Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-258
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Not Measured

Location: B17-G 40-42

Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-259
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Gravelly Silt with Sand, ML

Location: B17-I 50-52 Moisture as Received = 22% Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-260
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Silty Sand, SM

Location: B18-C 25-27 Moisture as Received = 6% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-262
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Gravel with Silt and Sand, GW-GM

Not Measured

Location: B18-I 55-57 Moisture as Received = Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-263
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Well Graded Sand with Silt and Gravel, SW-SM

Not Measured

Location: B18-K 65-67 Moisture as Received = 10% Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-264
Received	2/24/2012
Reported	3/1/2012

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Location: B18-M 75-77

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-266
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silty Sand, SM

Location: B6-G 40-42

Client: CH2M Hill Project: POA USACE ZJ01, MOD 01 Work Order: A33329 Particle Size Distribution

ASTM D422

Lab Number	2012-213
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silt, ML

Location: B3-I 40-42 Moisture as Received = 27.3%

Client:CH2M HillProject:POA USACE ZJ01, MOD 01Work Order:A33329

Particle Size Distribution

ASTM D422

Lab Number	2012-197
Received	2/24/2012
Reported	3/6/2012

Engineering Classification: Silt with Sand, ML

125 Nagog Park Acton, MA 01720 978 635 0424 Tel 978 635 0266 Fax

Transmittal

TO:

Michel Bouchedid, P.E.

CH2M Hill

1100 112th Avenue NE, Suite 400

Bellevue, WA 98004

DATE: 3/19/2012	GTX NO: 11559

RE: Port of Anchorage Expansion

DATE	DESCRIPTION
3/19/2012	March 2012 Laboratory Test Report
	DATE 3/19/2012

REMARKS:

SIGNED: Joe Tomei, Laboratory Manager CC: APPROVED BY: Nancy Hubbard, Project Manager

www.geotesting.com

March 19, 2012

Michel Bouchedid, P.E. CH2M Hill 1100 112th Avenue NE Bellevue, WA 98004

RE: Port of Anchorage Expansion, Anchorage, AK (GTX-11559)

Dear Michel:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received five samples from you on 2/21/2012. These samples were labeled as follows:

Boring	Sample	Depth
X	S-1, 2, 3, 4	10-20 ft
X	S-1, 2, 3, 4	20-30 ft
Y	S-1, 2, 3, 4	10-20 ft
Z	S-1, 2, 3, 4	10-20 ft
Z	S-1, 2, 3, 4	20-25 ft

GTX performed the following tests on these samples:

5 ASTM D 2216 - Moisture Content
5 ASTM D 422 - Sieve Analysis
5 ASTM D 4253/D 4254 - Relative Density
11 ASTM D 3080 - Direct Shear Test Points (12-inch shear box)

As requested, the direct shear test specimens were compacted to the specified percent relative density at the asreceived moisture content and tested at the requested series of normal loads. See the direct shear test reports for sample specific parameters.

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

Joe Tomei Laboratory Manager

125 Nagog Park Acton, MA 01720 978 635 0424 Tel 978 635 0266 Fax

Geotechnical Test Report

3/19/2012

GTX-11559 Port of Anchorage Expansion

Anchorage, AK Client Project No.: 429235

Prepared for:

CH2M Hill

Client: CH2M Hill Project: Port of Anchorage Expansion Location: Anchorage, AK

Project No: GTX-11559

Tested By: Test Date: 03/14/12 Checked By: jdt

jek

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
x	S-1, 2, 3, 4	10-20 ft	Moist, brown gravel with silt and sand	4.7
х	S-1, 2, 3, 4	20-30 ft	Moist, brown sand with silt and gravel	6.1
Y	S-1, 2, 3, 4	10-20 ft	Moist, brown gravel with sand	4.4
Z	S-1, 2, 3, 4	10-20 ft	0-20 ft Moist, brown gravel with silt and sand	
Z	S-1, 2, 3, 4	20-25 ft	Moist, brown gravel with silt and sand	6.5

Client:	CH2M Hill					
Project:	Port of An	chorage Expan	sion			
Location:	Anchorage	e, AK			Project No:	GTX-11559
Boring ID: >	<		Sample Type:	bucket	Tested By:	jbr
Sample ID:S	5-1, 2, 3, 4	4	Test Date:	02/29/12	Checked By:	jdt
Depth : 1	10-20 ft		Test Id:	230861		
Test Comme	ent:					
Sample Des	cription:	Moist, brown	gravel with silt	and sand		
Sample Con	nment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3 in	75.00	100		
2 in	50.00	99	-	
1.5 in	37.50	94		
1 in	25.00	83		
0.75 in	19.00	68		
0.5 in	12.50	59		
0.375 in	9.50	55		
#4	4.75	46		
#10	2.00	37		
#20	0.85	29		
#40	0.42	22		
#60	0.25	17		
#100	0.15	13		
#200	0.075	11		

	Coe	fficients
D ₈₅ =27.2347 mm		D ₃₀ = 0.9403 mm
D60 = 13.3	1867 mm	D ₁₅ = 0.1876 mm
D50 = 6.33	379 mm	D ₁₀ =0.0637 mm
Cu =207	.013	Cc =1.053
ASTM	N/A Class	sification
<u>ASTM</u> AASHTO	N/A Stone Fragr (A-1-a (0))	sification ments, Gravel and Sand

Client:	CH2M Hill	1				
Project:	Port of An	chorage Expan	ision			
Location:	Anchorage	e, AK			Project No:	GTX-11559
Boring ID:	Х		Sample Type	: bucket	Tested By:	jbr
Sample ID	:S-1, 2, 3, 4	4	Test Date:	03/02/12	Checked By:	jdt
Depth :	20-30 ft		Test Id:	230862		
Test Comn	nent:		energi orti			
Sample De	escription:	Moist, brown	sand with silt	and gravel		
Sample Co	mment:			Chiefe and and		

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3 in	75.00	100		
2 in	50.00	99		
1.5 in	37.50	95		
1 in	25.00	87		
0.75 in	19.00	84		
0.5 in	12.50	75		
0.375 in	9.50	69		
#4	4.75	56		
#10	2.00	43		
#20	0.85	34		
#40	0.42	25		
#60	0.25	19		
#100	0.15	15		
#200	0.075	12		

	Coe	fficients
D ₈₅ =20.8	3726 mm	D ₃₀ =0.6312 mm
D60 = 5.87	713 mm	D ₁₅ = 0.1519 mm
D50 = 3.15	508 mm	D ₁₀ =0.0539 mm
Cu =108	.929	C _c =1.259
<u>ASTM</u>	N/A	sification
<u>ASTM</u> <u>AASHTO</u>	N/A Stone Fragr (A-1-a (0))	sincation ments, Gravel and Sanc
ASTM AASHTO Sand/Gra	Clas: N/A Stone Fragr (A-1-a (0)) Sample/To ovel Particle S	ments, Gravel and Sand ments, Gravel and Sand est Description Shape : ROUNDED

Client:	CH2M Hill					
Project:	Port of An	chorage Expan	nsion			
Location:	Anchorage	e, AK			Project No:	GTX-11559
Boring ID:	Y		Sample Type	e: bucket	Tested By:	jbr
Sample ID:	S-1, 2, 3, 4	4	Test Date:	03/02/12	Checked By:	jdt
Depth :	10-20 ft		Test Id:	230863		
Test Comm	nent:					
Sample De	scription:	Moist, brown	gravel with sa	ind		
Sample Co	mment:					

1.5 in	37.50	95	
1 in	25.00	86	
0.75 in	19.00	64	
0.5 in	12.50	53	
0.375 in	9.50	48	
#4	4.75	38	
#10	2.00	28	
#20	0.85	21	
#40	0.42	15	
#60	0.25	10	
#100	0.15	6	
#200	0.075	4	

	Coe	fficients
$D_{85} = 24.6$	686 mm	D ₃₀ = 2.3349 mm
D60=16.4	672 mm	D ₁₅ = 0.4392 mm
D50 = 10.7	257 mm	D ₁₀ =0.2569 mm
Cu =64.1	.00	Cc =1.289
	Class	sification
<u>ASTM</u> AASHTO	<u>Clase</u> Well-graded Stone Fragr (A-1-a (0))	<u>sification</u> I gravel with sand (GW) ments, Gravel and Sand

Client:	CH2M Hill	1				
Project:	Port of An	chorage Expan	ision			
Location:	Anchorage	e, AK			Project No:	GTX-11559
Boring ID:	Z		Sample Type	: bucket	Tested By:	jbr
Sample ID	:S-1, 2, 3,	4	Test Date:	03/02/12	Checked By:	jdt
Depth :	10-20 ft		Test Id:	230864		
Test Comn	nent:					
Sample De	escription:	Moist, brown	gravel with silf	t and sand		
Sample Co	mment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3 in	75.00	100		
2 in	50.00	99		
1.5 in	37.50	95	-	
1 in	25.00	86		
0.75 in	19.00	75		
0.5 in	12.50	64		
0.375 in	9.50	58		
#4	4.75	48		
#10	2.00	38		
#20	0.85	29		
#40	0.42	22		
#60	0.25	17		
#100	0.15	13		
#200	0.075	10		

	Coe	fficients
D ₈₅ =24.4	625 mm	D ₃₀ = 0.9225 mm
D60 = 10.4	185 mm	D ₁₅ = 0,1999 mm
D50 = 5.39	952 mm	D ₁₀ = 0.0696 mm
Cu =149	.691	Cc =1.174
ASTM	N/A	
<u>AASHTO</u>	Stone Fragr (A-1-a (0))	ments, Gravel and Sand

Client:	CH2M Hill					
Project:	Port of An	chorage Expan	sion			
Location:	Anchorage	е, АК			Project No:	GTX-11559
Boring ID:	Z		Sample Type	: bucket	Tested By:	jbr
Sample ID	:S-1, 2, 3, 4	4	Test Date:	03/02/12	Checked By:	jdt
Depth :	20-25 ft		Test Id:	230865		
Test Comm	nent:					
Sample De	scription:	Moist, brown	gravel with sil	t and sand		
Sample Co	mment:	-+++				

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
4 in	100.00	100		_
3 in	75.00	99		
2 in	50.00	95		
1.5 in	37.50	91		
1 in	25.00	83		-
0.75 in	19.00	75		
0.5 in	12.50	61		
0.375 in	9.50	57		
#4	4.75	45		
#10	2.00	35		
#20	0.85	28		
#40	0.42	21		
#60	0.25	16		
#100	0.15	12		
#200	0.075	10		

Coe	efficients
D ₈₅ = 27.7197 mm	D ₃₀ = 1.0851 mm
D ₆₀ =11.4503 mm	D ₁₅ =0.2166 mm
D ₅₀ = 6.4003 mm	D ₁₀ =0.0799 mm
Cu =143.308	Cc =1.287
<u>Clas</u> ASTM N/A	sification
ASTM N/A AASHTO Stone Frag (A-1-a (0))	sification ments, Gravel and Sand
ASTM N/A AASHTO Stone Frag (A-1-a (0)) Sand/Gravel Particle S	ments, Gravel and Sand ments Gravel and Sand Shape : ROUNDED

Client:	CH2M Hill	
Project Name:	Port of Anchorage Expansion	
Project Location:	Archorage, AK	
GTX #:	11559	
Test Date:	3/2/2012	
Tested By:	mgd	
Checked By:	jdt	
Boring ID:	Х	
Sample ID:	S-1, 2, 3, 4	
Depth, ft.:	10-20	

Relative Density Test by ASTM D 4253 / 4254

Notes: Only Dry Method performed.

90	and Fable	Maximum Index Unit Weight, Ib/ft ³	138.8
Checked By: jd	ASTM D 4254 ng a Vibratory	Minimum Index Unit Weight, Ib/ft ³	102.3
11559	ensity and Unit Weight of Soils by nsity and Unit Weight of Soils Usi by ASTM D 4253	Visual Description	Moist, brown gravel with silt and sand
Tuject Lucation.	Index De Index Der	Depth, ft	10-20
9	Minimum 1aximum 1	Sample ID	S-1, 2, 3, 4
2	2	Boring ID	×

Maximum index unit weight determined on a dry sample using Method 1A using a 0.100 ft³ mold Minimum index unit weight determined on a dry sample using Method A using a 0.100 ${\rm ft}^3$ mold Notes:

The double amplitude of vertical vibration used to determine the maximum index density was the standard 0.019 \pm 0.003 in.

Client:	CH2M Hill	
Project Name:	Port of Anchorage Expansion	
Project Location:	Archorage, AK	
GTX #:	11559	
Test Date:	3/8/2012	
Tested By:	kdm	
Checked By:	jdt	
Boring ID:	Х	
Sample ID:	S-1, 2, 3, 4	
Depth, ft.:	20-30	

Relative Density Test by ASTM D 4253 / 4254

Notes: Only Dry Method performed.
-			-	_
03/08/12 kdm	jdt	4 and Table	Maximum Index Unit Weight, Ib/ft ³	
Test Date: Tested Bv:	Checked By:	y ASTM D 4254 sing a Vibratory	Minimum Index Unit Weight, Ib/ft ³	
CH2M Hill Port of Anchorage Expansion	Anchorage, AK 11559	ensity and Unit Weight of Soils b sity and Unit Weight of Soils Us by ASTM D 4253	Visual Description	
Client: Project Name:	Project Location: 3TX #:	Index De Index Der	Depth, ft	
		Minimum 1aximum	Sample ID	
-	E X P R E S S	2	Boring ID	

Minimum index unit weight determined on a dry sample using Method A using a 0.100 ft³ mold Notes:

Maximum index unit weight determined on a dry sample using Method 1A using a 0.100 ft³ mold

The double amplitude of vertical vibration used to determine the maximum index density was the standard 0.019 \pm 0.003 in.

Client:	CH2M Hill	
Project Name:	Port of Anchorage Expansion	
Project Location:	Archorage, AK	
GTX #:	11559	
Test Date:	3/8/2012	
Tested By:	kdm	
Checked By:	jdt	
Boring ID:	Y	
Sample ID:	S-1, 2, 3, 4	
Depth, ft.:	10-20	

Relative Density Test by ASTM D 4253 / 4254

Notes: Only Dry Method performed.

	Minimu Maximun	m Index De	ensity and Unit Weight of Soils nsity and Unit Weight of Soils L by ASTM D 4253	by ASTM D 42 Jsing a Vibrat	ыт 54 and vry Table
Boring ID	Sample ID	Depth, ft	Visual Description	Minimum Index Unit Weight, Ib/ft ³	Maximum Index Unit Weight, Ib/ft ³
٨	S-1, 2, 3, 4	10-20	Moist, brown gravel with sand	105.3	134.5

Maximum index unit weight determined on a dry sample using Method 1A using a 0.100 ft³ mold Minimum index unit weight determined on a dry sample using Method A using a 0.100 ft³ mold

Notes:

The double amplitude of vertical vibration used to determine the maximum index density was the standard 0.019 \pm 0.003 in.

Client:	CH2M Hill	
Project Name:	Port of Anchorage Expansion	
Project Location:	Archorage, AK	
GTX #:	11559	
Test Date:	3/9/2012	
Tested By:	kdm	
Checked By:	jdt	
Boring ID:	Z	
Sample ID:	S-1, 2, 3, 4	
Depth, ft.:	10-20	

Relative Density Test by ASTM D 4253 / 4254

Notes: Only Dry Method performed.

imur	n Index De	ensity and Unit Weight of Soils I nsity and Unit Weight of Soils U by ASTM D 4253	Checked By: by ASTM D 4 sing a Vibrat	^{jdt} 254 and ory Table
Sample ID	Depth, ft	Visual Description	Minimum Inde Unit Weight, Ib/ft ³	t Maximum Index Unit Weight, Ib/ft ³
1, 2, 3, 4	10-20	Moist, brown gravel with silt and sand	106.8	135.6

Minimum index unit weight determined on a dry sample using Method A using a 0.100 ft³ mold

Notes:

Maximum index unit weight determined on a dry sample using Method 1A using a 0.100 ft³ mold

The double amplitude of vertical vibration used to determine the maximum index density was the standard 0.019 \pm 0.003 in.

Client:	CH2M Hill	
Project Name:	Port of Anchorage Expansion	
Project Location:	Archorage, AK	
GTX #:	11559	
Test Date:	3/9/2012	
Tested By:	kdm	
Checked By:	jdt	
Boring ID:	Z	
Sample ID:	S-1, 2, 3, 4	
Depth, ft.:	20-25	

Relative Density Test by ASTM D 4253 / 4254

Notes: Only Dry Method performed.

d e	aximum Index Unit Weight, Ib/ft ³	141.2
STM D 4254 an a Vibratory Tal	Minimum Index Unit Weight, Ib/ft ³	113.8
nsity and Unit Weight of Soils by A sity and Unit Weight of Soils Using by ASTM D 4253	Visual Description	Moist, brown gravel with silt and sand
Index Der Index Den	Depth, ft	20-25
Minimum 1aximum	Sample ID	S-1, 2, 3, 4
	Boring ID	Z

Maximum index unit weight determined on a dry sample using Method 1A using a 0.100 ft³ mold Minimum index unit weight determined on a dry sample using Method A using a 0.100 ${
m ft}^3$ mold

The double amplitude of vertical vibration used to determine the maximum index density was the standard 0.019 \pm 0.003 in.

Client:	CH2M Hill				
Project Name:	Port of Anchorage Expansion				
Project Location:	Anchorage, AK				
GTX #:	11559				
Start Date:	02/29/12	Tested By:	bfs		
End Date:	03/05/12	Checked By:	jdt		
Boring ID:	Х				
Sample ID:	S-1, 2, 3, 4				
Depth:	10-20 ft.				
Soil Description:	Moist, brown gravel v	with silt and sand			

Soil Preparation:	Test specimens compacted to 90% material greater than 1-inch scree	Relative Density at the as-receive ned out of sample prior to testing.	d moisture content. Al
Compaction Characteristics:	Minimum Index Unit Weight (ASTM	ID 4254) 102.3 pcf	
	Maximum Index Unit Weight (AST)	1 D 4253) 138.8 pcf	
Test Equipment:	Top box = 12 in x 12 in; Bottom be data acquisition system for shear f surface area = 144 in^2	ox = 16 in x 12 in; Load cells and L orce, normal load and horizontal di	VDTs connected to splacement readings;
Maximum Particle Size Used, in:	1 Hor	izontal Displacement, in/min:	0.02
Maximum Particle Size Used, in: Soil Height, in:	1 Hor 6 Tes	zontal Displacement, in/min: t Condition:	0.02 inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	5.1	5.0	5.1		+84	
Initial Dry Density, pcf	134	134	134			- Suit
Relative Density, %	90	90	90			
Normal Compressive Stress, psi	10	25	45			
Peak Shear Stress, psi	12	34	45	يبغين		1989
Post Peak Shear Stress, psi						
Final Moisture Content, %	7.1	7.7	4.2			

Notes:	Peak Friction Angle:	43.2	degrees
	Peak Cohesion:	5.4	psi
	Post Peak Friction Angle:		degrees
	Post Peak Cohesion:		psi

Client:	CH2M Hill		
Project Name:	Port of Anchorage Ex	pansion	
Project Location:	Anchorage, AK		
GTX #:	11559	a Yest and	
Start Date:	03/08/12	Tested By:	bfs
End Date:	03/12/12	Checked By:	jdt
Boring ID:	х		
Sample ID:	5-1, 2, 3, 4		
Depth:	20-30 ft		
Soil Description:	Moist, brown sand wi	th silt and gravel	

a feet a spectrum of the second se				
Soil Preparation:	Test specimens compacted to 9 material greater than 1-inch scr	0% Relative Density at t reened out of sample pri	the as-received me or to testing.	oisture content. All
Compaction Characteristics:	Minimum Index Unit Weight (AS	STM D 4254)	104.3 pcf	
	Maximum Index Unit Weight (A	STM D 4253)	138.4 pcf	
Test Equipment:	Top box = 12 in x 12 in; Bottom data acquisition system for shear surface area = 144 in ²	n box = 16 in x 12 in; Lo ar force, normal load and	ad cells and LVDT d horizontal displa	s connected to cement readings;
Maximum Particle Size Used, in:	1	Horizontal Displacement	, in/min:	0.02
Soil Height, in:	6	Test Condition:		inundated
Gap Between Boxes, in:	0.25			

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	5.3	5.5	5.7	5.2		
Initial Dry Density, pcf	135	134	134	135		
Relative Density, %	90	90	90	90		
Normal Compressive Stress, psi	10	25	35	50		
Peak Shear Stress, psi	12	30	37	53		
Post Peak Shear Stress, psi					1000	
Final Moisture Content, %	7.8	7.6	7.6	7.5		

Notes:	Peak Friction Angle:	45.4	degrees
	Peak Cohesion:	2.7	psi
	Post Peak Friction Angle:		degrees
	Post Peak Cohesion:	· · · · · ·	psi

Client:	CH2M Hill			
Project Name:	Port of Anchorage Expansion			
Project Location:	Anchorage, AK			
GTX #:	11559			
Start Date:	03/07/12	Tested By:	bfs	
End Date:	03/09/12	Checked By:	jdt	
Boring ID:	Y			
Sample ID:	S-1, 2, 3, 4			
Depth:	10-20 ft			
Soil Description:	Moist, brown gravel with san	nd		

Soil Preparation:	Test specimens compacted to material greater than 1-inch s	70% Relative Density at the creened out of sample prior t	as-received mois to testing.	sture content. Al
Compaction Characteristics:	Minimum Index Unit Weight (A	STM D 4254) 10	5.3 pcf	
	Maximum Index Unit Weight (ASTM D 4253) 13	4.5 pcf	
Test Equipment:	Top box = 12 in x 12 in; Botto data acquisition system for she surface area = 144 in ²	m box = 16 in x 12 in; Load ear force, normal load and ho	cells and LVDTs prizontal displace	connected to ment readings;
Maximum Particle Size Used, in:	1	Horizontal Displacement, in	/min:	0.02
Soil Height, in:	6	Test Condition:		inundated
Gap Between Boxes, in:	0.25			

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	4.4	4.4	4.3		- <u>6</u> 2	- 22 -
Initial Dry Density, pcf	124	124	124			
Relative Density, %	70	70	70			
Normal Compressive Stress, psi	10	25	45			
Peak Shear Stress, psi	21	29	52			
Post Peak Shear Stress, psi						+
Final Moisture Content, %	7.5	6.5	5.5			

Notes:	Peak Friction Angle:	41.9	degrees
	Peak Cohesion:	10.1	psi
	Post Peak Friction Angle:		degrees
	Post Peak Cohesion:		psi

Client:	CH2M Hill		
Project Name:	Port of Anchorage Ex	pansion	
Project Location:	Anchorage, AK		
GTX #:	11559		
Start Date:	03/08/12	Tested By:	bfs
End Date:	03/13/12	Checked By:	jdt
Boring ID:	Z		
Sample ID:	S-1, 2, 3, 4		
Depth:	10-20 ft		
Soil Description:	Moist, brown gravel	with silt and sand	-

Soil Preparation:	Test specimens compacted to 50% Relative Densi material greater than 1-inch screened out of sam	ity at the as-received moisture content. Al ple prior to testing.
Compaction Characteristics:	Minimum Index Unit Weight (ASTM D 4254)	106.8 pcf
	Maximum Index Unit Weight (ASTM D 4253)	135.6 pcf
Test Equipment:	Top box = 12 in x 12 in; Bottom box = 16 in x 12 data acquisition system for shear force, normal lo	in; Load cells and LVDTs connected to
	surface area = 144 in ²	ad and nonzontal displacement readings,
Maximum Particle Size Used, in:	surface area = 144 in ² 1 Horizontal Displace	ement, in/min: 0.02
Maximum Particle Size Used, in: Soil Height, in:	surface area = 144 in ² Horizontal Displace 6 Test Condition:	ement, in/min: 0.02 inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	4.7	4.7	4,7		- 244	- 44-
Initial Dry Density, pcf	119	119	119	(295)		
Relative Density, %	50	50	50		- *** =	
Normal Compressive Stress, psi	10	25	45			
Peak Shear Stress, psi	16	26	48	(+++)		
Post Peak Shear Stress, psi	+++		444	.444-	111	244
Final Moisture Content, %	7.8	7.4	7.1			

Notes:	Peak Friction Angle:	42.8	degrees
	Peak Cohesion:	5.4	psi
	Post Peak Friction Angle:	a star	degrees
	Post Peak Cohesion:		psi

Client:	CH2M Hill		
Project Name:	Port of Anchorage Ex	pansion	
Project Location:	Anchorage, AK		
GTX #:	11559		
Start Date:	03/09/12	Tested By:	bfs
End Date:	03/14/12	Checked By:	jdt
Boring ID:	Z		
Sample ID:	S-1, 2, 3, 4		
Depth:	20-25 ft		
Soil Description:	Moist, brown gravel	with silt and sand	

Soil Preparation:	Test specimens compacted to 70% Relative Density at the as-received moisture content. A material greater than 1-inch screened out of sample prior to testing.		
Compaction Characteristics:	Minimum Index Unit Weight (AS	TM D 4254) 113.8 pc	f
	Maximum Index Unit Weight (AS	TM D 4253) 141.2 pc	f
Test Equipment:	Top box = 12 in x 12 in; Bottom data acquisition system for shea surface area = 144 in ²	box = 16 in x 12 in; Load cells a r force, normal load and horizont	nd LVDTs connected to al displacement readings;
Maximum Particle Size Used, in:	1 H	orizontal Displacement, in/min:	0.02
Maximum Particle Size Used, in: Soil Height, in:	1 Н 6 Т	orizontal Displacement, in/min: est Condition:	0.02 inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	6.5	6.5	6.5	6.5	777	1
Initial Dry Density, pcf	133	133	133	133		
Relative Density, %	70	70	70	70		
Normal Compressive Stress, psi	10	25	35	50		545
Peak Shear Stress, psi	13	34	47	56		-444-
Post Peak Shear Stress, psi						
Final Moisture Content, %	8.2	7.9	7.4	7.0		

lotes:	Peak Friction Angle:	47.6	degrees
	Peak Cohesion:	4.5	psi
	Post Peak Friction Angle:		degrees
	Post Peak Cohesion:		psi

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{lll} C_c & \mbox{coefficient of curvature, } (D_{30})^2 / (D_{10} \ x \ D_{60}) & u_a & \mbox{pore gas pressure} \\ C_u & \mbox{coefficient of uniformity, } D_{60} / D_{10} & u_e & \mbox{excess pore water pressure} \\ C_c & \mbox{compression index for one dimensional consolidation} & u_v \ u_w & \mbox{pore water pressure} \\ C_a & \mbox{coefficient of secondary compression} & V & \mbox{total volume} \end{array}$	ial test
$ \begin{array}{ccc} C_u & \text{coefficient of uniformity, } D_{60}/D_{10} & u_e & \text{excess pore water pressure} \\ C_c & \text{compression index for one dimensional consolidation} & u_e & \text{pore water pressure} \\ C_a & \text{coefficient of secondary compression} & V & \text{total volume} \end{array} $	
$ \begin{array}{c} C_c \\ C_a \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$	
C_{α} coefficient of secondary compression V total volume	
c. coefficient of consolidation V volume of gas	
c cohesion intercept for total stresses V volume of solids	
c ² cohesion intercent for effective stresses V volume of voids	
D diameter of specimen V volume of voter	
diameter at which 10% of soil is finer	
diameter at which 15% of soil is finer	
diameter at which 30% of soil is finer W totol which the	
Dia diameter at which 50% of soil is finer W total weight	
D_{30} diameter at which 50% of soil is finer W_s weight of soils	
D_{60} diameter at which 0.5% of soil is finer W_w weight of water	
dischargent for 50% consolidation	
dso displacement for 50% consolidation w _c water content at consolidation	
d_{90} displacement for 90% consolidation $w_{\rm f}$ final water content	
d ₁₀₀ displacement for 100% consolidation w ₁ liquid limit	
E roung s modulus w_n natural water content	
e void ratio w _p plastic limit	
e _c void ratio after consolidation w _s shrinkage limit	
e_0 initial void ratio w_0, w_1 initial water content	
G shear modulus α slope of q_f versus p_f	
G_s specific gravity of soil particles α^2 slope of q_f versus p_f^2	
H height of specimen γ_t total unit weight	
PI plasticity index γ_d dry unit weight	
i gradient γ_s unit weight of solids	
K_o lateral stress ratio for one dimensional strain γ_w unit weight of water	
k permeability ε strain	
LI Liquidity Index Evol volume strain	
m_v coefficient of volume change ϵ_h, ϵ_v horizontal strain, vertical strain	1
n porosity µ Poisson's ratio, also viscosity	
PI plasticity index o normal stress	
P _c preconsolidation pressure σ' effective normal stress	
p $(\sigma_1 + \sigma_3)/2$, $(\sigma_y + \sigma_h)/2$ σ_c , σ_c^* , consolidation stress in isotropi	c stress system
p' $(\sigma_1 + \sigma_3)/2, (\sigma_2 + \sigma_3)/2$ σ_5, σ_5 horizontal normal stress	
p'_{r} p' at consolidation σ_{r} σ'_{r} vertical normal stress	
O quantity of flow an incident stress	
$q = (\sigma_1, \sigma_2)/2$	
q_r q at failure q_r minimum and q_r	
τ_1 τ_2 τ_3 τ_4 τ_5	
a at consolidation to tal et	PACCAC
S degree of saturation and the second of the	esses
SI shrinkaze limit φ method angle based on electric	0 31103303
ϕ_{T} restored interformation ϕ_{T} restored interformation	
T time factor for consolidation ϕ_{ull} ϕ for intrinate strength	

Attachment D3

Field Exploration Summary

Field Methodology Summary For Port of Anchorage Intermodal Expansion Project Subsurface Investigation Anchorage, Alaska

Prepared For:

CH2M Hill 949 East 36th Avenue Suite 500 Anchorage, Alaska 99508

Prepared By:

TELLUS, Ltd. 2551 Susitna Drive Anchorage, Alaska 99517 (907) 248-8055

March 2012 12-002

1.0 Introduction

CH2M Hill was contracted by the United States Army Corps of Engineers (USACE) to coordinate, manage and interpret the results derived from this subsurface soils investigation program. Both TELLUS, Ltd. and Discovery Drilling were under subcontract to CH2M Hill during this project.

2.0 Drilling Rig Utilization

Discovery Drilling was the subsurface drilling contractor utilized during this subsurface soils investigation program. Discovery Drilling is headquartered in Anchorage, Alaska but provides drilling services throughout the entire state.

During this project, Discovery Drilling provided two (2) truck-mounted CME 75 drill rigs. The trucks employed were heavy duty all-wheel drive carriers capable of hauling one rig and all of the associated drilling tools for that rig. Since the work site was relatively flat, the truck-mounted rigs were adequate in accessing the soil boring locations and minimizing travel time between locations. Two (2) heavy duty flatbed support trucks were also utilized during this program to haul required supplies and water. The drill rigs were left onsite each night while the crews travelled to and from the work site via the support trucks each day.

At the start of this program, one drilling rig was set up to perform cone penetrometer testing (CPT) while the second rig was scheduled to provide subsurface boring and sampling services using hollow stem auger tools. After four and one half days, CPT testing was concluded and the CPT drilling rig was utilized for bulk soil sampling services using a 7.25-inch outside diameter solid flight auger tool setup. After completing the single day of solid flight auger drilling associated with subsurface material bulk sampling, this drilling rig was demobed from the work site.

Mid-winter conditions existed during the completion of this field program. Two days with winds from the north provided the coldest effects. It is not believed that a significant decrease in productivity occurred other than the impact of drilling in February as opposed to July. Efforts were expended to heat items (water, tools, steel, etc.) and be aware of and compensate for, the presence of ice and snow while working. This subsurface drilling program was completed over fifteen (15) consecutive field days.

3.0 Subsurface Drilling Methodologies

Hollow stem auger drilling tools measuring 3.25-inches inside diameter and 7.25-inches outside diameter were utilized to advance all of the soil borings during this program except the borings installed in order to obtain bulk material samples. The bulk material sample borings (X, Y and Z) were installed using 7.25-inch outside diameter solid flight auger tools.

Solid wall steel casing was driven inside of the hollow stem auger flytes in soil borings B15 (85.0 feet), B16 (77.0 feet), B17 (60.0 feet) and B18 (80.0 feet) in order to attempt to counteract the heaving silts encountered at depths ranging from 55.0 feet to 80.0 feet below ground surface.

Drilling rates were significantly decreased when casing was driven in conjunction with hollow stem auger drilling methods. The decreased footage rate was caused by the increase in handling efforts associated with setting up the steel casing and driving it with the rig's 340 pound auto hammer. Each five foot piece of casing was threaded into the string and then driven down hole. The additional work associated with utilizing, advancing, removing, and re-staging drill casing, increased the time required to complete a soil boring from approximately one (1) day to two (2) days.

In instances where heaving silts were encountered, attempts to counteract the infiltration of fine grained particles into the center of the auger included: addition of water to create a hydraulic head, addition of drilling mud to create an increased hydraulic head, driving of steel casing to seal off the surrounding formation from allowing fine grained particles to flow (heave up) into the auger, and the circulation of drilling mud to clean out the inside of the auger and condition the boring.

4.0 Soil Sampling Methodologies

Subsurface soil sampling was performed by using splitspoon sampling tools. Two types of splitspoon samplers were utilized during this program. The only soil samples that were collected not using splitspoon sampling tools were: three (3) shelby tubes that were pushed into and then extracted (using the drilling rig's head / hydraulics) from the subsurface native clay formation, and the bulk material samples that were collected as cuttings that were spun up from depth using the solid flight auger tools.

A large splitspoon sampler (LPT) measuring 3.0-inches outside diameter / 2.4-inches inside diameter by 24-inches in length was utilized for primary soil sample collection. This sampler was driven into the undisturbed subsurface soils ahead of the lead auger / drill bit by using a 340 pound hydraulic auto-hammer. The hammer's drop height was a consistent thirty (30) inches.

A standard splitspoon sampler (SPT) measuring 2.0-inches outside diameter / 1.375-inches inside diameter by 24-inches in length was utilized for sample collection within the fine-grained and saturated zones of the soil borings. Additional SPT sampler drives were also conducted to

provide data intended to be used for correlation purposes associated with the previous LPT sampler drives. This smaller diameter sampler was also driven into the undisturbed subsurface soils ahead of the lead auger / drill bit by using a 140 pound hydraulic auto-hammer. The hammer's drop height was a consistent thirty (30) inches.

Procedures associated with switching between the LPT and SPT splitspoon sampling tools involved selecting the desired sampling device and replacing the solid steel hammer weight inside of the auto-hammer device. The LPT was only driven with the 340 pound weight hammer while the SPT was only driven with the 140 pound weight hammer.

When the desired depth for sampling was reached, the drilling crew removed the inner drilling rod from inside of the hollow stem auger. Once the inner rod was pulled, the lead bit (centerpiece) was removed from the lead rod and replaced with the splitspoon sampler. The sampler was then lowered into the boring down through the center of the hollow stem auger. Once the sampler reached the bottom of the boring, the hammer was swung into place atop the inner rod and used to drive the inner rod with the attached splitspoon sampler to a depth of 24-inches below the existing bottom of the soil boring. This procedure was repeated for every five (5) foot subsurface interval (i.e.: 10, 15, 20, 25, 30, etc.) down to the completed total depth of each soil boring.

After the sample interval was obtained, the process for removing the inner drill rod was repeated, the splitspoon sampler was removed, and the lead bit was reinstalled and drilling resumed to the next desired sampling interval. The splitspoon sampler is a barrel-shaped, steel, cylindrical device with solid piece ends that thread on over the split sides of the sampler. Once the sampler is opened, the obtained sample media can be examined, photographed, logged using the Unified Soil Classification System (USCS) and collected for analysis.

5.0 Piezometer Installation Methodology

Piezometers installed during this program were fabricated from 1-inch diameter PVC solid conduit. The PVC conduit was manually cut using a hacksaw to install multiple slots along the conduit so water could infiltrate, collect inside and the static level could then be measured. The PVC conduit pieces were fastened together using PVC couplers and epoxy. The piezometers were completed and left accessible by allowing the PVC conduit to stick up above grade. A PVC slip cap was set atop the conduit for an adequate seal and the conduit was labeled with the identifying soil boring number.

6.0 Fluid Levels Within Piezometers

Fluid levels within the piezometers were measured using an electric down-hole water level indicator. All measurements obtained from piezometers that were installed without the use of drilling mud (B2, B5, and B6) appeared to become static overnight. While the piezometers

Field Methodology Summary Port of Anchorage, Anchorage, AK CH2M Hill

installed in the borings drilled with the use of drilling mud had not yet stabilized by the time the field efforts were completed. It was believed the fluid level readings from the piezometers installed with drilling mud were suspect at the time of the initial readings. Table A lists fluid level measurements collected during the field portion of this program.

During the cycle when a high tide was present, seawater with floating ice was observed to be near the top of the existing sheet pile wall. During both high and low tides, the groundwater flow direction was recorded as being towards Cook Inlet.

7.0 Soil Profile Generalization

Drilling activities revealed that the ground onsite was observed to be frozen to depths ranging between 6.0 and 8.0 feet below ground surface. The imported fill material section was logged to range between 36.0 (B17) and 65.0 (B9 & B13) feet in thickness across the eleven (11) borings that were installed during this program. Native soils that varied significantly in composition and thickness were encountered beneath the imported fill section and directly above the native clay layer found to be present across the site between depths of 60.0 and 86.0 feet below ground surface. In most of the borings, a saturated silt was observed directly atop the gray plastic clay (Bootlegger Cove Unit). Table B provides a generalized soil profile summary.

8.0 Soil Boring Summaries

Soil Boring B2 –	 Installed on 2/8/12 down to a total depth of 97.0' bgs. Only hollow stem auger tools and 2.5-inch inside diameter (ID) LPT samplers were used. Groundwater encountered at 20.0' bgs at the time of drilling. Only water used to counteract heaving fines which were present from 25.0'
bgs.	Sampling intervals at 65', 75' and 80' missed due to excessive heave in auger. A 1-inch diameter piezometer was installed upon boring completion.
Soil Boring B5 –	 Installed on 2/9/12 down to a total depth of 64.0' bgs. Only hollow stem auger tools and 2.5-inch inside diameter (ID) LPT samplers were used. A Shelby tube was pushed at 62' to 64' bgs into the native gray clay. Groundwater encountered at 15.0' bgs at the time of drilling. Water used to counteract heaving fines which were present from 25.0' bgs. No sampling intervals were missed during this boring.

Field Methodology St Port of Anchorage, A CH2M Hill	ummary nchorage, AK	12-002 March 2012 Page 5
1	A 1-inch diameter piezometer was installed upon l	boring completion.
Soil Boring B3 –]	Installed on 2/10/12 down to a total depth of 84.0' Hollow stem auger tools and both 1.375-inch ID S samplers were used. Dual samplers were used to provide data for correct Groundwater encountered at 37.0' bgs at the time Drilling mud used to counteract heaving fines press Sampling intervals from 50' to 70' missed due to end A shelby tube was pushed at 82' to 84' bgs into th A 1-inch diameter piezometer was installed upon b	bgs. BPT & 2.5-inch ID LPT lation purposes. of drilling. sent from 40.0' bgs. excessive heave in auger. e native gray clay. boring completion.
Soil Boring B6 –]	Installed on 2/11/12 down to a total depth of 87.0' Hollow stem auger tools and both 1.375-inch ID S samplers were used. Dual samplers were used to provide data for correct as well as attempting to minimize heave travel in Groundwater encountered at approximately 25.0' Water used to counteract heaving fines present fro No sampling intervals missed during the installation A 1-inch diameter piezometer was installed upon b	bgs. BPT & 2.5-inch ID LPT lation purposes to / up the auger stem. bgs at the time of drilling. om 40.0' bgs. on of this boring. boring completion.
Soil Boring B13 –	- Installed on 2/12/12 and 2/13/12 down to a total Only hollow stem auger tools and 2.5-inch ID LF Began boring with 4.25-inch inside diameter aug 3.25-inch inside diameter auger tools due to the auger to spin up cuttings. The 4.25-inch auger h unable to advance the lead flyte / drill bit. Drilli Two failed shelby tube attempts at 90' bgs. Only Groundwater encountered at 11.0' bgs at the time Drilling mud used to counteract heaving fines en	depth of 90.0' bgs. PT samplers were used. er tools. Switched back to inability of the 4.25-inch has smaller flytes that are ng improves after changing. y heave recovered in tubes. e of drilling. countered at 85.0' bgs.
	The sampling interval at 85.0' bgs was missed du A 1-inch diameter piezometer was installed down upon boring completion.	aring this boring. In to a total depth of 63.0' bgs
Soil Boring B15 –	- Installed on 2/14/12 and 2/15/12 down to a total Hollow stem auger tools with casing driven to 82 Both 1.375-inch ID SPT & 2.5-inch ID LPT sam Dual samplers were used to provide data for corr attempt to minimize heave travel into / up the au Groundwater encountered at 25.0' bgs at the time	depth of 84.0' bgs. 2.0' bgs. plers were used. elation purposes as well as uger stem. e of drilling.

Drilling mud used to counteract heaving fines encountered at 60.0' bgs. The sampling interval at 65.0' bgs was missed during this boring. A 1-inch diameter piezometer was installed upon boring completion.

Soil Boring B16 – Installed on 2/16/12 and 2/17/12 down to a total depth of 77.0' bgs. Hollow stem auger tools with casing driven to 75.0' bgs. Both 1.375-inch ID SPT & 2.5-inch ID LPT samplers were used. Dual samplers were used to provide data for correlation purposes as well as attempt to minimize heave travel into / up the auger stem. Groundwater encountered at 25.0' bgs at the time of drilling. Drilling mud was used to counteract heaving fines encountered at 40.0' bgs. No sampling intervals were missed during this boring. A 1-inch diameter piezometer was installed down to a total depth of 67.0' bgs upon boring completion.

Soil Boring B18 – Installed on 2/17/12 through 2/19/12 down to a total depth of 82.0' bgs. Hollow stem auger tools with casing driven to 80.0' bgs. Both 1.375-inch ID SPT & 2.5-inch ID LPT samplers were used. Dual samplers were used to provide data for correlation purposes as well as attempt to minimize heave travel into / up the auger stem. Groundwater encountered at 40.0' bgs at the time of drilling. Drilling mud used to counteract heaving fines encountered at 60.0' bgs. No sampling intervals were missed during this boring. A 1-inch diameter piezometer was installed upon boring completion.

Soil Boring B17 – Installed on 2/19/12 and 2/20/12 down to a total depth of 62.0' bgs. Hollow stem auger tools with casing driven to 60.0' bgs. Both 1.375-inch ID SPT & 2.5-inch ID LPT samplers were used. Dual samplers were used to provide data for correlation purposes as well as attempt to minimize heave travel into / up the auger stem. Groundwater encountered at 25.0' bgs at the time of drilling. Drilling mud used to counteract heaving fines encountered at 36.0' bgs. No sampling intervals were missed during this boring. No piezometer was installed in this boring.

Soil Boring B8 – Installed on 2/21/12 down to a total depth of 80.0' bgs. Only hollow stem auger tools were used during this boring. Both 1.375-inch ID SPT & 2.5-inch ID LPT samplers were used. Dual samplers were used to provide data for correlation purposes as well as attempt to minimize heave travel into / up the auger stem. Groundwater encountered at 32.0' bgs at the time of drilling. Water was used to counteract heaving fines encountered at 34.0' bgs. No sampling intervals were missed during this boring although the interval was offset by -1.0'.

A 1-inch diameter piezometer was installed upon boring completion.

Soil Boring B9 – Installed on 2/22/12 down to a total depth of 72.0' bgs.

Hollow stem auger tools & 2.5-inch ID LPT samplers were used during this boring.

Groundwater encountered at 25.5' bgs at the time of drilling.

Water was used to counteract heaving fines encountered at 26.0' bgs.

No sampling intervals were missed during this boring.

A 1-inch diameter piezometer was installed upon boring completion.

TABLE A - POA INTERMODAL EXPANSION PROJECT # 12-002FLUID LEVEL MEASUREMENTS FROM PIEZOMETERSPORT OF ANCHORAGE, ANCHORAGE, ALASKA.MARCH 2012

F	LUID LEVEL MEASU	Columns added by CH2M HILL		
BORING LOCATION / PIEZOMETER	DATE & TIME MEASURED	FLUID LEVEL READING	Boring Elevation	FLUID LEVEL ELEVALTION
		(Feet BGS)	(Feet MLLW)	(Feet MLLW)
	2/10/12 @ 1230 Hrs	16.4	35.0	18.6
	2/11/12 @ 1035 Hrs	15.4		19.6
B2	2/12/12 @ 1310 Hrs	15.0		20.0
	2/18/12 @ 1245 Hrs	12.2		22.8
	3/23/12 @ 1105 Hrs	10.2		24.8
	2/10/12 @ 1235 Hrs	14.9	35.0	20.1
	2/11/12 @ 1040 Hrs	14.4		20.7
B5	2/12/12 @ 1320 Hrs	14.8		20.2
	2/18/12 @ 1230 Hrs	15.6		19.4
	3/23/12 @ 1020 Hrs	16.1		18.9
	2/11/12 @ 1050 Hrs	12.2	35.0	22.8
B2	2/12/12 @ 1315 Hrs	15.0		20.0
ВЗ	2/18/12 @ 1235 Hrs	19.7		15.3
	3/23/12 @ 1040 Hrs	14.8		20.2
	2/12/12 @ 1317 Hrs	15.4	35.0	19.6
B6	2/18/12 @ 1239 Hrs	20.0		15.0
	3/23/12 @ 1055 Hrs	16.0		19.0
	2/15/12 @ 1100 Hrs	16.1	35.0	18.9
B13	2/18/12 @ 1300 Hrs	19.4		15.6
	3/23/12 @ 1110 Hrs	13.5		21.5
P15	2/18/12 @ 1310 Hrs	6.8	35.0	28.2
615	3/23/12 @ 1205 Hrs	8.6		26.4
B46	2/18/12 @ 1315 Hrs	11.3	35.0	23.7
BIO	3/23/12 @ 1155 Hrs	9.5		25.5
B18	3/23/12 @ 1215 Hrs	10.8	35.4	24.7
B9	3/23/12 @ 1230 Hrs	17.3	34.2	16.9
B8	3/23/12 @ 1240 Hrs	13.3	33.5	20.2
Location / ID	Date & Time	Reading		

NOTES:

1) Fluid level readings were measured using a new Solinst Model 102M down hole water level me

2) Borings / piezometers installed using drilling mud were: B3, B13, B15, B16 & B18.

3) Measured fluid levels in piezometers believed to be influenced by drilling mud

TABLE B - POA INTERMODAL EXPANSION PROJECT # 12-00: GENERALIZED SOIL PROFILE SUMMARY PORT OF ANCHORAGE, ANCHORAGE, ALASKA. FEBRUARY 2012

GENERALIZED SOIL PROFILE					
SOIL BORING LOCATION	DEPTH RANGE	MATERIAL DESCRIPTION			
	(Feet BGS)				
	0.0' - 8.0'	Frozen - Brown Sandy / Gravelly Soils			
	8.0' - 35.0'	Groundwater @ 20.0' - Brown Sandy / Gravelly Soils			
B2	35.0' - 85.0'	Saturated Gray Sandy / Gravelly Soils			
	85.0' - 86.0'	Saturated Gray Fine Sand			
	86.0' - 97.0'	Dense Gray Clay			
	0.0' - 8.0'	Frozen - Brown Sandy / Gravelly Soils			
	8.0' - 40.0'	Groundwater @ 15.0' - Brown Sandy Soils			
B5	40.0' - 50.0'	Saturated Gray Sandy Soils			
	50.0' - 55.0'	Moist Gray Sandy Silt			
	55.0' - 62.0'	Dense Gray Clay			
	0.0' - 8.0'	Frozen - Brown Sandy / Gravelly Soils			
	8.0' - 36.0'	Brown Sandy / Gravelly Soils			
B3	36.0' - 44.0'	Groundwater @ 37.0' - Saturated Gray Silty Soils			
	44.0' - 71.0'	Saturated Sandy Soils			
	71.0' - 84.0'	Dense Gray Clay			
	0.0' - 8.0'	Frozen - Brown Sandy / Gravelly Soils			
	8.0' - 36.0'	Groundwater @ 25.0' - Brown Sandy / Gravelly Soils			
B6	36.0' - 66.5'	Saturated Grav Silty Sandy Soils			
	66.5' - 87.0'	Dense Grav Clav			
	0.0' - 7.0'	Frozon - Brown Sandy / Gravelly Soils			
	7.0' - 75.0'	Groundwater @ 11.0' - Brown Sandy / Gravelly Soils			
B13	75.0' - 76.0'	Saturated Gray Sand			
	76.0' - 90.0'	Gray Clay			
	0.0' 6.0'	Frazan Brown Sandy / Crowelly Saila			
	6.0' - 60.0'	Groundwater @ 25.0' - Brown Sandy / Gravelly Soils			
B15	60.0' - 78.0'	Saturated Gray Sandy Silty Soils			
	78.0' - 84.0'	Gray Clay			
	0.01 7.01	Energy Stary			
	0.0 - 7.0 7.0' 41.5'	Croundwater @ 25.0' Brown Sandy / Gravelly Soils			
	7.0 - 41.3	Soturated Crow Silt			
B16	41.5 - 51.5 E1 E' GE O'	Interheddod Croy Silt & Brown Sondy Soile			
	65.0' - 73.0'	Wet Gray Sandy Silt			
	73.0' - 77.0'	Gray Clay			
	0.0 - 6.0	Croundwater @ 25.0' Prown Sandy / Gravelly Soils			
B18	6.0 - 57.0	Solutionaler @ 25.0 - Brown Sandy / Gravely Solis			
	68.0' - 82.0'	Donso Gray Clay			
	00.0 - 02.0				
	0.0' - 7.0'	Frozen - Brown Sandy / Gravelly Soils			
B17	7.0' - 36.0'	Groundwater @ 25.0 - Brown Sandy / Gravelly Soils			
	36.0' - 55.0'	Saturated Gray Slity Solis			
	55.0 - 62.0	Gray Clay			
	0.0' - 7.0'	Frozen - Brown Sandy / Gravelly Soils			
B8	7.0' - 59.0'	Groundwater @ 32.0' - Brown Sandy / Gravelly Soils			
	59.0' - 79.0"	Saturated Gray Sandy Soils			
	79.0' - 80.0'	Saturated Gray Silt			
	0.0' - 7.0'	Frozen - Brown Sandy / Gravelly Soils			
B9	7.0' - 70.0'	Groundwater @ 25.5' - Sandy / Gravelly Soils			
	70.0' - 70.5'	Wet Gray Silt			
	70.5' - 72.0'	Dense Gray Clay			

12-002 February 2012 Photo Page 1

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 8, 2012 1205 Hours

Drill crew set up and beginning to install Boring B2.

Photo No. P1020657

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Southwest

February 9, 2012 1101 Hours

Drill crew installing Boring B5. Water tank & mud mixer onsite.

12-002 February 2012 Photo Page 2

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 8, 2012 1218 Hours

LPT sampler collected from Boring B2.

Photo No. P1020660

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 8, 2012 1320 Hours

LPT sampler collected from Boring B2.

12-002 February 2012 Photo Page 3

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 9, 2012 1707 Hours

LPT sampler collected from Boring B5.

Photo No. P1020693

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 10, 2012 0959 Hours

Two drilling rigs working on onsite.

12-002 February 2012 Photo Page 4

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 10, 2012 1118 Hours

LPT sampler collected from Boring B3.

Photo No. P1020699

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 11, 2012 1201 Hours

LPT sampler collected from Boring B6.

12-002 February 2012 Photo Page 5

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 12, 2012 0939 Hours

Rig set up for bulk material sampling effort.

Photo No. P1020725

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 12, 2012 1020 Hours

Solid flyte auger in ground during bulk sampling effort.

12-002 February 2012 Photo Page 6

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking South

February 12, 2012 1641 Hours

Bulk sample material pails from Borings X, Y & Z.

Photo No. P1020756

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 12, 2012 1401 Hours

Dual drilling crews working onsite.

12-002 February 2012 Photo Page 7

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking North

February 14, 2012 1456 Hours

Drilling crew installing Boring B15.

Photo No. P1020774

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking East

February 15, 2012 0924 Hours

Drilling equipment being used onsite at Boring B15.

12-002 February 2012 Photo Page 8

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking South

February 15, 2012 0926 Hours

Drilling crew circulating mud within Boring B15.

Photo No. P1020779

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 16, 2012 1207 Hours

SPT sampler collected from Boring B16.

12-002 February 2012 Photo Page 9

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 17, 2012 1313 Hours

Shelby Tube collected from Boring B16.

Photo No. P1020798

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Down

February 18, 2012 1413 Hours

SPT sampler collected from Boring B18.

12-002 February 2012 Photo Page 10

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking East

February 14, 2012 1350 Hours

Drill casing used during mud rotary drilling and circulation.

Photo No. P1020772

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking Southwest

February 10, 2012 1806 Hours

Manual slotting of PVC piping (piezometer) material.

CH2M Hill - Port of Anchorage Intermodal Expansion Project Anchorage, Alaska # 12-002 February 2012 Photo Page 11

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 13, 2012 1641 Hours

Typically installed PVC piezometer.

Photo No. P1020759

Port of Anchorage Intermodal Expansion Project - Subsurface Soil Investigation Anchorage, Alaska

CH2M Hill / TELLUS, Ltd. / Discovery Drilling

Looking West

February 22, 2012 1340 Hours

Installed PVC piezometer with attached snow pole.

Photo No. P1020857

Attachment D4

SCPT Report

Report of Port of Anchorage Geotechnical Investigation

Conducted for: CH2M-Hill, Alaska

Submitted to:

CH2M-Hill, Inc.

In Situ Engineering Project Number: 1037 Date: February, 2012

Testing conducted and report prepared by:

In Situ Engineering 6232 195th Avenue SE

6232 195th Avenue SE Snohomish, WA 98290 360-568-2807

TABLE OF CONTENTS

CONTENTS

1.0	INTRODUCTION	2
2.0	PURPOSE	. 2
3.0	CONE PENETROMETER TESTING	. 2
3.1	CPT Instrumentation and Equipment	3
3.2	CPT Procedure	3
3.3	CPT Data Presentation and Analysis	4
4.0	ELECTRONIC DATA FILES	4
5.0	SUMMARY	4
6.0	REFERENCES	5

APPENDICES

Appendix I CPT Data Appendix II Dissipation Data Appendix III Seismic Data

1.0 INTRODUCTION

This report contains the test results for electronic Cone Penetrometer Testing (CPT) performed at the Port of Anchorage in Anchorage, AK. The Port of Anchorage is currently expanding northward into an area where backfill has been placed inside of open cell sheetpile structures. The work was performed under contract to CH2M-Hill and was at the direction of Army Corp. of Engineers.

As part of the port expansion, fill was placed to depths of up to 85 feet thick and consisted of silt through boulder sized material. Material placed in the water received no initial compaction. Material placed above the water was compacted with vibratory drum rollers. After placement of the fill, the entire fill depth was treated with vibrocompaction on 10 foot centers.

The drilling on the project was performed by Discovery Drilling of Anchorage, Alaska using a CME truck mounted drilling rig. Testing was performed in three different locations labeled C-2, C-5, and C-12. The field work was carried out of February 8 to 11, 2012

2.0 PURPOSE

The purpose of this investigation is to provide geotechnical information on the backfill within the sheetpile structures in the Intermodal Suitability Study, Port of Anchorage, Alaska. Strength information of the backfill is critical to the stability evaluation of the cell structures. Consultants who performed previous studies at the site commented that conducting standard penetration testing provided less than optimum results. Responding to this observation, CH2M-Hill and the United States Army Corps of Engineers (USACE) determined that to try SCPT may be beneficial. The following information will be provided in this report gathered using a Seismic Cone Penetrometer Testing (SCPT): tip resistance corrected for pore pressure effects, friction resistance, friction ratio, porewater pressure, shear wave velocity, subsurface stratigraphy, and equivalent SPT blow counts. Other drilling and sampling concurrent with the SCPT included standard penetration testing (SPT), Shelby tubes sampling, and bulk sampling. Drilling logs for this work are not included in this report.

3.0 CONE PENETROMETER TESTING

Three CPTs were conducted to depths of 28, 61, and 68 feet at test locations C-2, C-5 and C-12 respectively. The tests depth of zero was referenced to the ground surface in each test. At each location the frozen ground surface was drilled out with hollow stem auger to 9 feet before the SCPT was advanced into the ground. The SCPT was advanced until refusal at which point it was removed and the obstruction drilled out with an auger. Following obstruction drilling, casing was placed in the hole, the CPT rods reinserted to the new drilled out depth and SCPT resumed.

3.1 CPT Instrumentation and Equipment

The CME drilling rig hydraulic ram was used to advance standard one meter CPT rods with a 10cm² cross sectional area. The axial load capacity of the rods is 20 tons. The rods were stored in the back of a Full Sized SUV and were pre-strung with a 125 foot data cable through the testing rods. The cable sent data from the instrument to a junction box at the surface via an electronic signal. This junction box communicated with an attached laptop computer to provide real time results so the engineer performing the test can communicate with the driller operating the drilling rig.

To stabilize the CPT rods and prevent buckling in the predrilled areas, the drillers used a BQ wireline casing. The casing has an outside diameter of 2.19 inches and an inside diameter of 1.8 inches. The casing was used from the ground surface to the bottom of the augered out portion of the hole.

The CPT instrument which was used is a 10 ton digital subtraction type piezocone manufactured by the Vertek Company of Randolph, Vermont. The instrument measures tip resistance (0-1000 tsf), sleeve friction (0 – 10 tsf), pore pressure (0 – 500 psi), inclinometer (0 -15 degrees) and shear waveforms (0 – 800 ms). The pore pressure element is in what is known as the #2 position.

Readings were taken at 5 cm intervals of the tip pressure, friction and pore pressure as the rods were advanced using a string pot depth encoder which recorded the depth as rods were advanced. The data was immediately stored on the hard drive of the computer at every reading interval.

One instrument was damaged during testing when it was bent on a presumably cobble or boulder sized obstruction. A data cable was also damaged during SCPT when it was cut by drilling equipment.

3.2 CPT Procedure

CPT testing was performed in general accordance with ASTM D 5778. Each hole was predrilled to a depth below the frost line. The frost line was estimated to be more than 8 feet but not more than 9 feet below grade. The cone was then advanced until refusal. The cone was then pulled out of the hole so the drillers could drill past the depth of refusal and the cone was then advanced starting from the bottom of the predrilled hole.

Once the cone was below the ground water table (GWT) dissipation tests were performed. This was done at the discretion of the on-site engineer. The dissipation tests were performed in areas where the pore water pressure would stabilize rapidly to minimize down time.

Down hole Seismic testing was performed in general accordance with ASTM D 7400. Shear (S) waves and compression (P) waves were taken every meter in C-2, C-5, and C-12. The S waves were obtained by hitting the sides of a beam that was placed under the drill rig's jack stands.

The P waves were obtained by hitting the top of the same beam. This process was repeated several times at each depth to amplify the waves.

3.3 CPT Data Presentation and Analysis

Plots of the CPT results are presented in Appendix I. These plots include columns for corrected tip resistance (Qt), Friction Ratio (Fs/Qc), Pore Pressure, an interpreted soil behavior type, and an equivalent Standard Penetration Test (SPT) N value. The interpreted soil behavior type and equivalent N value are based upon correlations outlined in the Robertson and Campanella reference cited in Section 6.0. The plot is standard output from a software program provided by Vertek, the instrument manufacturer. A second CPT plot has a remarks section that depicts where drilling was performed to help advance the cone.

Dissipation plots of C-2 and C-5 are presented in Appendix II. These plots include a graph of pore water pressure verse log (base 10) of time.

Seismic plots are presented in Appendix III. These plots are filtered and enhanced.

4.0 ELECTRONIC DATA FILES

Electronic data files are provided for the CPT. The files can be read in a text reader such as MS Notepad or imported into spreadsheets such as MS-Excel. CPT data files are a text file with a *.txt format. The CPT data files have headers and are self explanatory.

5.0 SUMMARY

SCPT was not able to be advanced continuously through the fill material. The corrected tip resistance for each sounding is also believed to be biased high due to the large particle size of fill material. The resulting tip values for the SCPT do not correlate with SPT values. The frequently encountered obstructions resulted in significantly lowered production rates due to the drilling out and casing process. Seismic testing resulted in no interpretable results. The lack of seismic response is believed to be due to the large frozen layer thickness which dampened energy from the surface source. Waves observed on the instrument are interpreted to be predominately waves passing down the steel cone penetrometer rods. The SCPT program was terminated early due to the lack of useful results.

6.0 **REFERENCES**

ASTM D 4700. 2007. Standard Test Methods for Downhole Seismic Testing.

ASTM D 5778. 2007. Standard Test Methods for Piezocone Penetration Testing of Soil.

Robertson. P.K., and Campanella, R. G., 1983, 1989. Guidelines for Geotechnical Design using the Cone Penetrometer Test and CPT with Pore Pressure Measurement. Hogentogler and Company, Columbia, MD

Riaud, J. and Miran, J., 1992. The Cone Penetrometer Test. FHWA Report #FHWA-SA-91-043.

Appendix I CPT Data

6 In Situ Engineering

Operator: Gerdes Sounding: CPT-02 Cone Used: DPG1015 CPT Date/Time: 2/9/2012 10:56:32 AM Location: Port of Anchorage Job Number:

*Soil behavior type and SPT based on data from UBC-1983

Port of Anchorage Geotechnical Investigation

Gerdes CPT-02 2/9/2012 10:56:32 AM

Anchorage, Alaska

DPG1015

Port of Anchorage

Operator: Gerdes Sounding: CPT-05 Cone Used: DSG1079 CPT Date/Time: 2/8/2012 1:38:47 PM Location: Port of Anchorage Job Number:

*Soil behavior type and SPT based on data from UBC-1983

Port of Anchorage Geotechnical Investigation

Gerdes CPT-05 2/8/2012 1:38:47 PM

Anchorage, Alaska

DSG1079

Port of Anchorage

Appendix II Dissipation Data

7 In Situ Engineering

Operator Gerdes Sounding: CPT-02 Cone Used: DPG1015 CPT Date/Time: 2/9/2012 10:56:32 AM Location: Anchorage Job Number: Port of Anchorage

Time: (seconds)

Header

Pressure (psi)

Operator Gerdes

Sounding: CPT-02

CPT Date/Time: 2/9/2012 10:56:32 AM Location: Anchorage Job Number: Port of Anchorage

Operator Gerdes

Sounding: CPT-02

Cone Used: DPG1015

CPT Date/Time: 2/10/2012 10:25:08 AM Location: Anchorage Job Number: Port of Anchorage

Operator Gerdes Sounding: CPT-02 Cone Used: DPG1015 CPT Date/Time: 2/10/2012 10:25:08 AM Location: Anchorage Job Number: Port of Anchorage

Pressure (psi)

Operator Gerdes

Sounding: CPT-05

CPT Date/Time: 2/8/2012 1:38:47 PM Location: Anchorage Job Number: Port of Anchorage

Pressure (psi)

Appendix III Seismic Data

8 In Situ Engineering

Seismic Plot C-2 Port of Anchorage, Alaska

Hammer to Rod String Distance 0.333 (m) * = Not Determined

Seismic Plot C-5 Port of Anchorage, Alaska

Hammer to Rod String Distance 0.333 (m)
* = Not Determined

Seismic Plot C-12 Port of Anchorage, Alaska

