GAC Briefing

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to

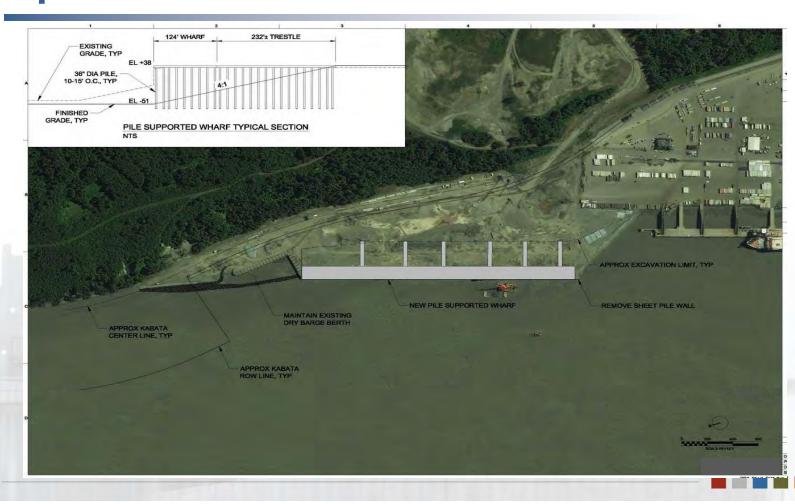
Briefing Outline

- Recap the Design Charrette
- Design Criteria
- Overview of the 3 Concept Plans using visual simulations
- Cost and Schedule Risk Assessment (CSRA)
- Selection Criteria and Recommended Option
- Attributes of the Recommended Option
- Recommended Pile Test Program

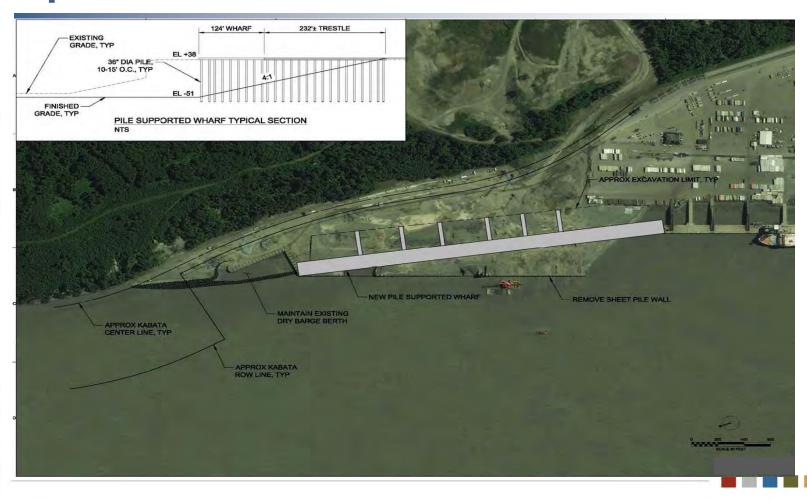
Design Charrette

Port of Anchorage Intermodal Expansion Project Concept Design Study

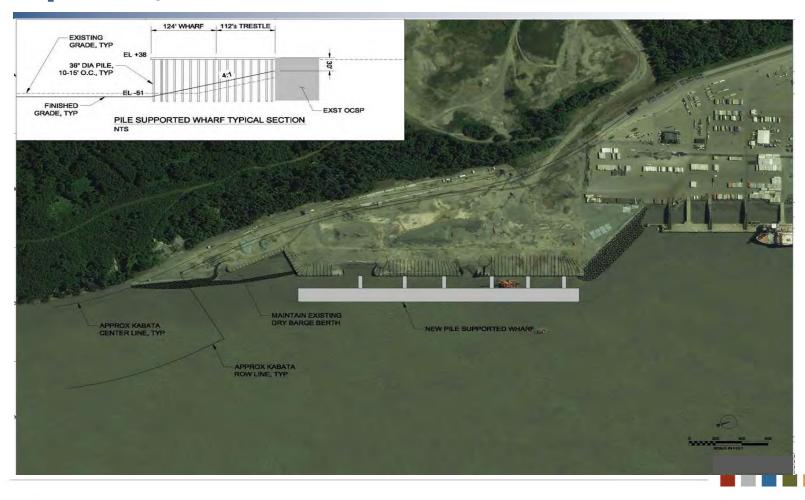
presented to


- Provide adequate facilities at POA to support local commerce and the National Strategic Military Transport
- Provide modern, safe and efficient facilities
- Expand and maintain existing port property
- Encourage natural resource exports and attract new business

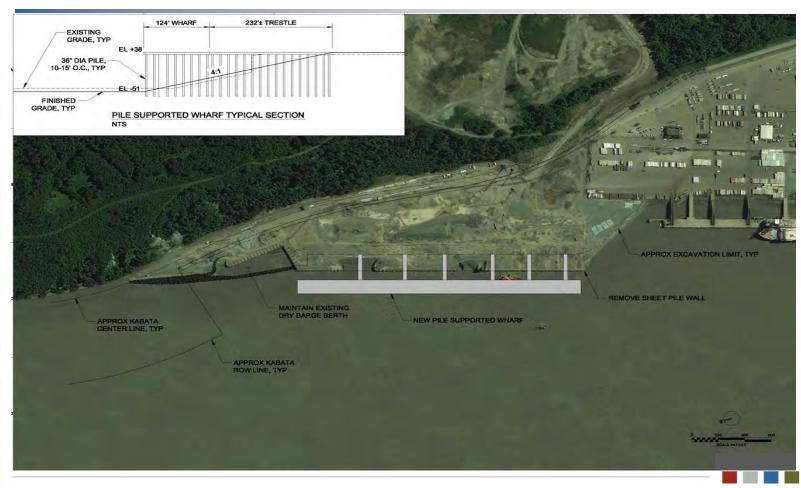
Organizations Represented


- US Maritime Administration (MARAD)
- Municipality of Anchorage (MOA)
 - Port of Anchorage
 - Project Management & Engineering
 - Development Services / Building Safety
- Totem Ocean Trailer Express (TOTE)
- Horizon Lines
- Cook Inlet Tug & Barge
- Southwest Alaska Pilots Association
- US Army Corps of Engineers Alaska District (USACE)
 - Project Management & Engineering
 - Regulatory

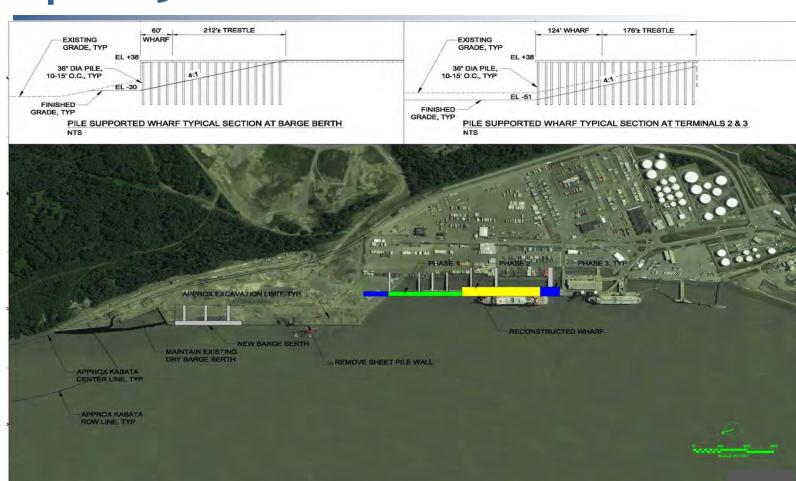
Option 1 – Charrette



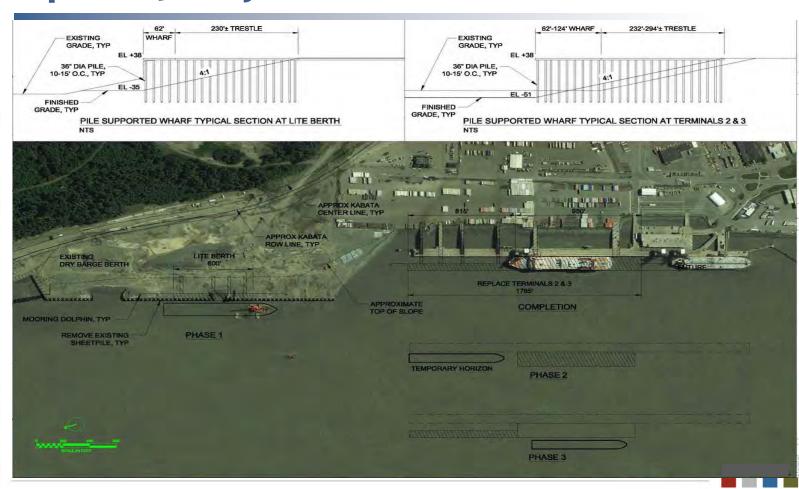
Option 2 – Charrette



Option 3 – Charrette



Option 4 – Charrette



Option 5– Charrette

Option 5-1 Hybrid - Charrette

Charrette Direction

- Option 1 should be carried forward
- Option 2 wasted too much backlands and should be dropped
- Options 3 and 4 were dropped for several reasons:
 - Pushing further offshore is outside the permit area
 - Pushing further offshore creates more challenges for vessel approach and mooring
 - Pushing further offshore exacerbates shoaling at Terminal 3
- Option 5 should be carried forward (popular with carriers)
- Option 5 1 Hybrid should be developed further

Design Criteria

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to

- Overall Meet Project Goals
 - Provide adequate facilities to support transportation needs of POA
 - State and local commerce
 - National strategic transport mission
 - Provide modern, safe, and efficient port
 - Expand and maintain existing properties, facilities, and equipment to meet expected growth
 - Encourage natural resource exports and create employment opportunities

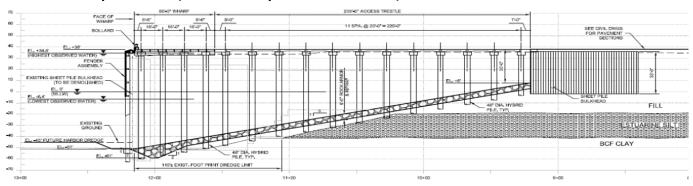

- Design codes and references update to include MOTEMS, AASHTO, ASCE 7-10, etc.
- Facility design requirements
 - Service life
 - 75 years for wharf and trestle
 - 20 years for pavements and fenders
 - 50 years for buildings
 - Design live loads
 - 1,000 psf
 - AASHTO HS25 trucks
 - 275-ton mobile crane
 - 40-ton top pick & 100-ton fork lift
 - 100 gauge rail

Seismic Design

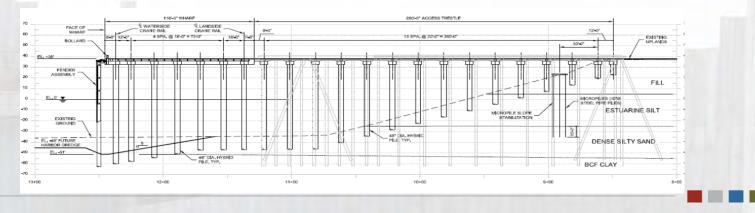
- Earthquakes
 - OLE, CLE, and MCE same definitions as used for OCSP[®] project
 - PGA at ground surface from Suitability Study
 - 0.17g for OLE
 - 0.31g for CLE
 - 0.39g for MCE
 - Seismic performance goals
 - $\Delta = 3''$ for OLE
 - $\Delta = 12''$ for CLE
 - $\Delta = 30$ " for MCE

Other Environmental Loads

- Tidal
 - Highest: +34.6 feet MLLW
 - Lowest: -6.4 feet MLLW
 - Seismic: +7.5 feet MLLW
- Wind
 - 45 mph operating
 - 70 mph max speed for mooring
 - 100 mph max non-operating
- Mooring loads from vessels
 - MOTEMS
 - 150-ton bollards
- Ice
 - 24" with 300 psi crush strength
 - Ice dead load for pile design (8' diameter)

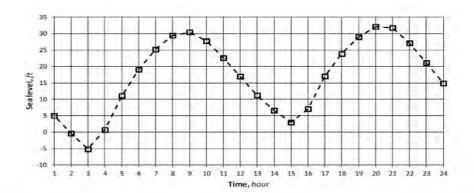


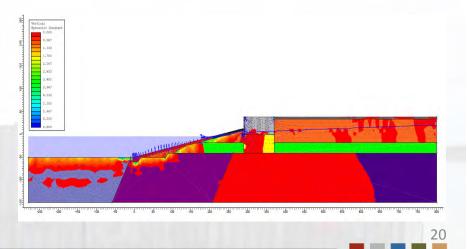
- Geotechnical design checks
 - Embankment stability
 - Axial and lateral pile capacity
 - Pile drivability
- Methodologies and tools
 - SLIDE for stability with transient seepage analyses
 - APILE for axial capacity and displacement; LPILE for lateral
 - GRLWEAP for drivability
- Site & groundwater conditions
 - See Suitability Study for North Extension
 - Existing terminal from PND/GeoEngineer/Terracon explorations for South Replacement area
 - Groundwater from recent measurements



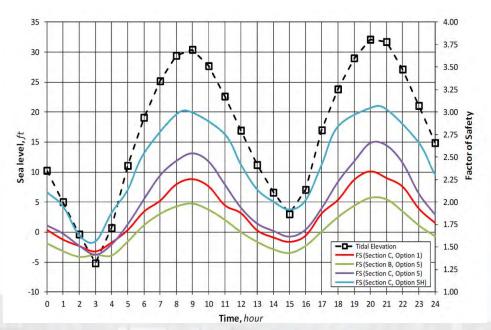
Geotechnical Conditions

Section C, Option 1 (North Expansion Area)


Section C, Option 5-1 Hybrid (Existing Terminal Area



- Tidal fluctuation
 - Typical change over 24hour period
 - Groundwater = 20 feet
 MLLW in backlands
 (approx 500 feet from pierhead)
- Effects on stability
 - Large fluctuation in seepage gradient
 - Modeled in SLIDE as transient flow
 - Required FS = 1.5 against piping at embankment
 - Needed 5 feet of armor rock to control



Embankment Stability – Gravity Loading

- Gravity loading with tidal effects
 - Same approach as Suitability Study
 - Included 24-hour tidal fluctuation
 - Accounted for removal of embankment fill (unloading) at pierhead line
 - Live load = 1,000 psf
 - FS \approx 1.4 to 1.5

Embankment Stability – Seismic Loading

- Pseudo-static method
 - No cyclic degradation in BCF (implies small movements)
 - $K_h = 0.5*PGA$ at ground surface
 - Undrained response in Estuarine Deposits with reduced S_u/σ'_v
 - Porewater buildup in loose granular soil and common fill

Results from the Pseudo-Static Global Stability Analyses for All Considered Embankments

Case No.	Seismic - Event	Global Factor of Safety				
		Option 1	Option 5		Option 5-1 Hybrid	 Range of Seismic-Induced
		Section C	Section B	Section C	Section C	Slope Movement
1	OLE	1.2	1.2	1.2	1.3	No to minor movement
2	CLE	0.9	0.9	1.1	1.0	Minor to considerable movement
3	MCE	0.8	0.8	1.1	0.9	Minor to considerable movement

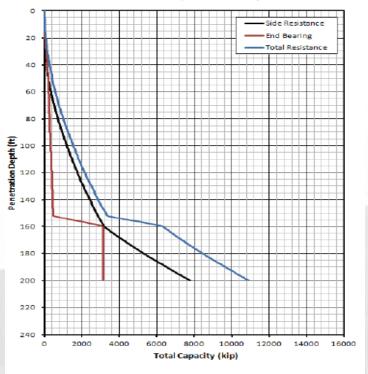
- Simplified chart/equation methods to estimate deformations
- Weighted average of following
 - Hynes-Griffin and Franklin (D₁)
 - Ambraseys and Menu (D₂)
 - Bray and Travasarou (D₃)
 - Rathje and Saygill (D₄)
- Yield acceleration = 0.12g
- Displacements

– OLE: < 1 inch</p>

CLE: ≈2 to 3 inches

MCE: ≈4 to 6 inches

Risk of large-deformation degradation (vis-à-vis 4th Avenue) is minimal



- Wharf and trestle supported with pipe piles
 - 48" pipe pile with 1" wall
 - Driven open-ended to top of till
 - Pileco D-280 Hammer
 - GRLWEAP analyses
 - Capacity using LRFD
 - Assume loading testing conducted (higher R values)
 - Plugged and unplugged capacity

Nominal Capacity Chart

North Extension (Back Row Piles)

24

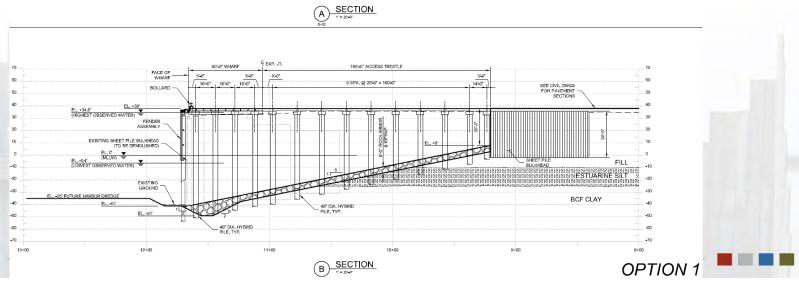
CHZMHILL

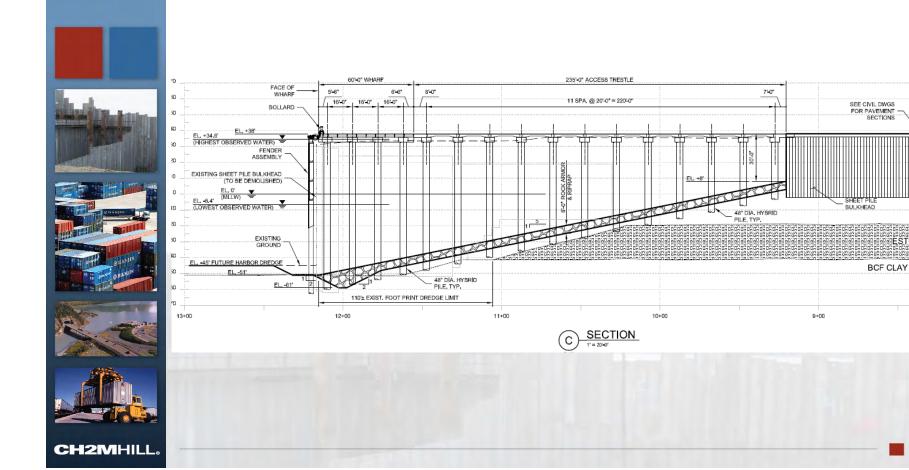
- Design Considerations
 - Refinement of transient seepage analyses
 - SSI studies for wharf embankment using 2D FE/FD methods
 - Liquefaction potential next to piles and bulkhead
 - Embankment slope protection for seepage
 - Retaining wall alternatives (anchored vs cellular vs OCSP)
 - Early pile-load testing (load and indicator piles with PDA)
- Construction
 - Effects of OCSP® demo and granular fill removal
 - Cellular bulkhead design
 - Micropile design

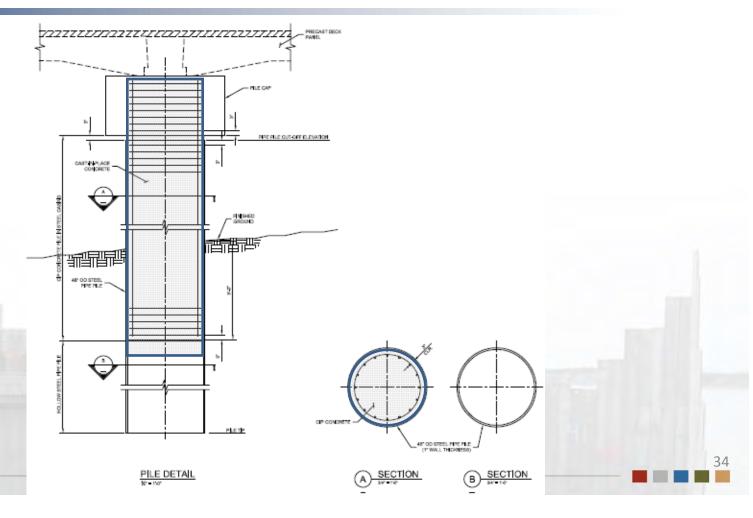
Option 1 - Visualizations

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to




Option 1 – 15% Typical Section (s-03)



Option 1 – 15% Typical Sections (s-04)

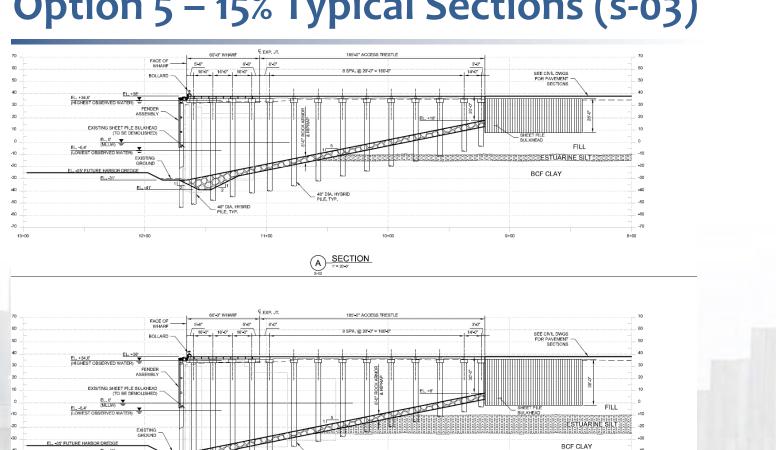
8+00

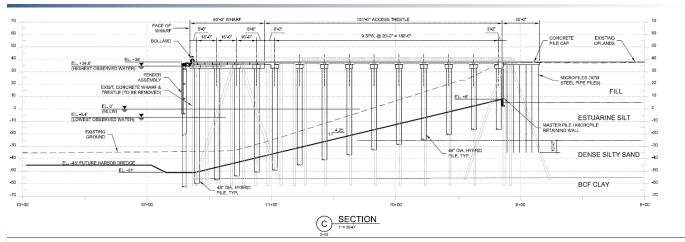
Hybrid Reinforced Concrete Piling

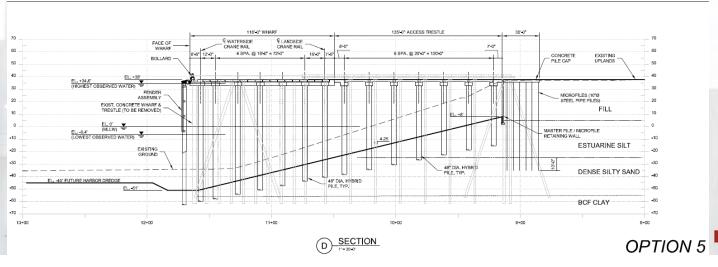
Option 5 - Visualizations

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to




Option 5 – 15% Typical Sections (s-03)



B SECTION

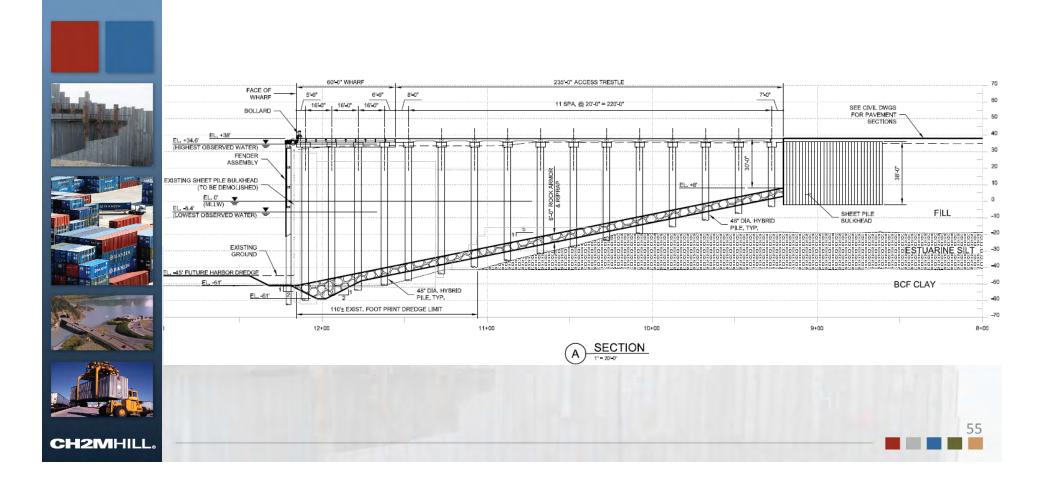
OPTION 5

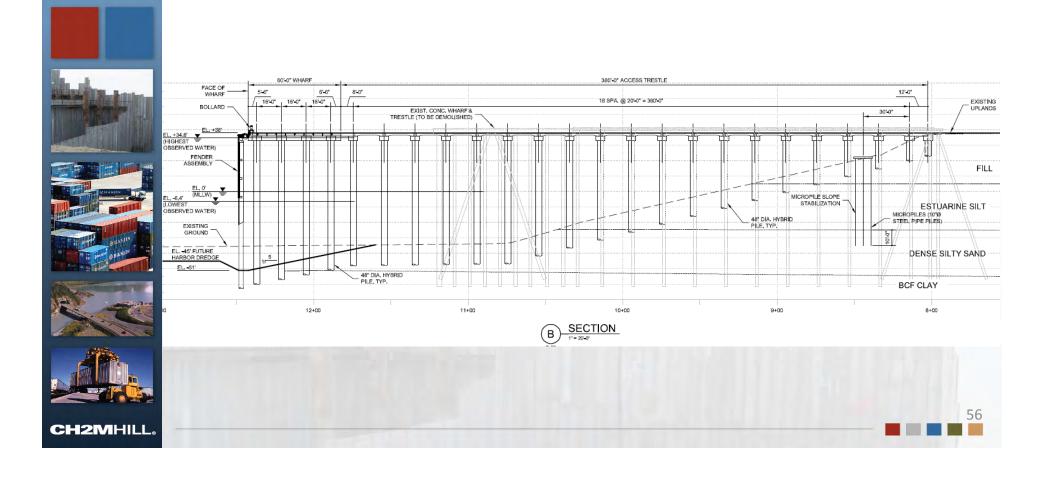
Option 5 – 15% Typical Sections (s-04)

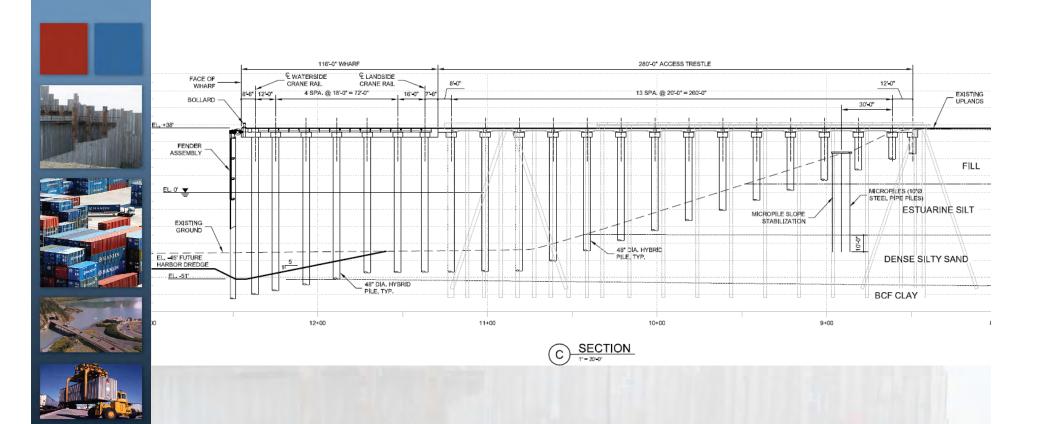
Option 5-1 Hybrid - Visualizations

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to






Option 5-1 Hybrid – 15% Typical Section (s-03)

Option 5-1 Hybrid – 15% Typical Section (s-04)

Option 5-1 Hybrid – 15% Typical Section (s-04)

Cost and Schedule Risk

Assessment (CSRA)
Port of Anchorage Intermodal Expansion Project **Concept Design Study**

presented to

- Typical deterministic method estimates costs then adds contingency (e.g. 20%)
- Benefits of the CSRA
 - Identifies high risk items to cost and schedule
 - Provides leadership contingency information for scheduling and budgeting
 - Allows management of risks through a formal process throughout the design process.
 - Provides a proven structure for communicating project costs with stakeholders.

Cost Estimates

	60% Confidence	80% Confidence	100% Confidence
Option 1	\$363M	\$377M	\$447M
Option 5	\$618M	\$642M	\$763M
Option 5-1 Hybrid	\$582M	\$602M	\$735M

Notes:

- 1.All options assume construction start 2015, with construction midpoint 2017
- 2.All options use surplus sheet piling
- 3.All berths designed to MCE level earthquake

Selection Criteria and Scoring

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to

 The evaluation team consisted of members from the POA, MARAD, MOA, USACE, and CH2M HILL.

1.0 Outstanding

- 0.8 Excellent

- 0.6 Good

0.4 Fair

- 0.2 Poor

0.0 Unsatisfactory

Selection Criteria and Recommended Option

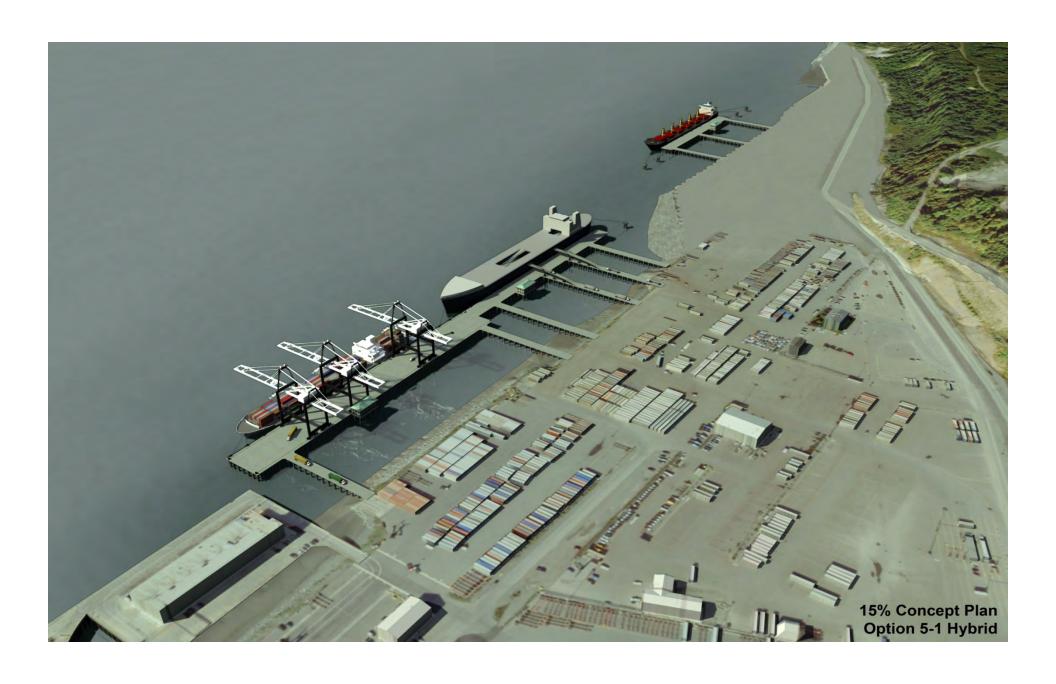
			_	Option 1		Option 5		Option 5-1 Hybrid	
			_		Weighted		Weighted		Weighted
#	Objective	Measure	Weight	Score	Score	Score	Score	Score	Score
Opportunity for New Business									
1	Provides the opportunity to attract new business to the port with new berths	Length, width, depth, backlands of new berth(s)	0.20	0.4	0.08	0.8	0.16	1	0.2
Impact to Existing Customer's Costs									
2	Provide the least long term cost impacts to existing tenants	Operational cost of increased transit times, berthing and line handling	0.15	0.4	0.06	0.4	0.06	0.6	0.09
Ex	pandability								
3	Can the alternative be expanded in future phases	Are there any restrictions created by the project that hinder expansion	0.10	0.2	0.02	0.4	0.04	0.6	0.06
М	aintenance Dredging								
4	Minimize future maintenance dredging	Least amount of dredging / which alternative is located in the deepest water and fastest current	0.05	0.4	0.02	0.6	0.03	0.8	0.04
Lif	e Cycle Cost								
5	Minimize life cycle costs	Lowest calculated life cycle cost	0.15	0.2	0.03	0.6	0.09	0.8	0.12
Investment Cost per linear foot of new berth									
6	Lowest investment cost per linear foot	Lowest investment cost per linear foot	0.20	0.6	0.12	0.4	0.08	0.8	0.16
Se	ismic Capacity								<u> </u>
7	Most berths built to current seismic codes	Number of berths built to current seismic codes	0.15	0.8	0.12	1	0.15	1	0.15
		TOTAL WEIGHTED SCORE	1.00		0.45		0.61		0.82
NO	OTES:								

- 1. Weights and scores are only guides to assist in the evaluation of alternatives; they do not mandate automatic selection of any particular alternative.
- 2. At this time, none of the considered options offer a distinct advantage with respect to environmental considerations; therefore, this criteria has not been included.

Recommended Option Attributes

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to



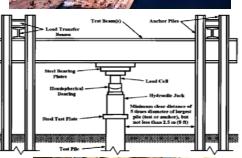
Option 5-1 Hybrid Attributes

- Has the lowest initial investment cost
 - Phase 1 \$327M (North End Hybrid Berth)
 - Phase 2 \$275M (Terminal 2 and 3)
 - Total \$602M
- Hybrid Berth serves both barge and deep draft customers
- Retains most backlands at North End (32 acres)
- Allows for expansion to the south in the future
- Less maintenance dredging anticipated
- Improved vessel approach

Recommended Pile Test Program

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to



- **Objectives**
 - Evaluate installation methods
 - Determine capacity & load displacement
 - Assess plug development [and setup
- Scope
 - 1 to 2 top down capacity tests
 - Fully instrumented
 - Follow ASTM D 1143
 - Indicator pile tests
 - Pile installation
 - 10 to 15
 - Noise and vibrations

- Testing Questions
 - Conduct behind existing OCSP * before removal
 - Overburden effects
 - Noise and vibrations
 - Tests at both existing terminal and in North Extension
 - What pile diameter
 - Full diameter at higher costs -- BEST
 - Smaller diameter and use unit side friction and toe resistance for design
 - How to develop reaction => probably reaction piles and kentledge

- Interpretation of Results
 - Does pile need to be driven to till to meet capacity requirements
 - Function as friction pile
 - Settlement
 - How does plug function during driving
 - Need for driving shoe
 - Long-term setup
 - Plugged vs unplugged capacity
 - What is optimum driving method
 - Size of hammer
 - Driving stresses

Questions

Port of Anchorage Intermodal Expansion Project Concept Design Study

presented to

